
Notions of separation in graphs of dynamical systems

Abstract:
The concept of d-Separation is a key tool to analyze stochastic models defined by probability
distributions of random variables that admit a factorization described by a Directed Acyclic
Graph. However, in the area of dynamical systems, and especially control theory, it is common
to find network models involving stochastic processes that influence each other according to
a directed network where feedback loops may be present as well. These models differ from
standard probabilistic models at a fundamental level. Indeed, for a network of dynamical systems
it is challenging to introduce an appropriate notion of factorization not only because of the
presence of loops, but also because stochastic processes involve an infinite number of random
variables. In this article, we show that the concept of d-Separation can still be applied to
infer properties of least square estimators defined on subsets of stochastic processes, at least if
their mutual influences are described by linear operators. Similar results have been obtained by
(Koster, 1999) in the domain of Structural Equation Models for random variables. However, the
scenario considered in this article involves stochastic processes and deals with several technical
complications, such as noise terms potentially correlated in time and the possibility of causal
estimators. The article provides a general framework to overcome all these difficulties that are
not present when a graphical model just represents random variables.
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1. INTRODUCTION

The adoption of networks as a modeling tool has become
ubiquitous in science. Interconnections of simple systems
are commonly used to explain and describe complicated
phenomena. We find examples in many fields, such as
economics (see e.g. Atalay et al. (2011)), social systems
(see e.g. Acemoglu et al. (2011)) biology (see e.g. Eisen
et al. (1998); Del Vecchio et al. (2008)), cognitive sciences
(see e.g. Brovelli et al. (2004)), and geology (see e.g.
Bailly et al. (2006)). The literature on graphical models is
extensive, but it is principally focused on random variables
inteconnected through static relations. Fundamental work
in this area has been pioneered by Judea Pearl and his
group (see Pearl (1988, 2000); Verma and Pearl (1988))
and by many other researchers (see Spirtes et al. (2000),
Lauritzen (1996), Koller and Friedman (2009)). However,
an approach that is specifically targeted to stochastic pro-
cesses inteconnected through dynamic relations (in other
words considering dependencies occurring at different time
instants) is not been fully developed yet. Indeed, for net-
works of stochastic processes, the presence of dynamic
relations poses several challenges. Compared to random
variables, the amount of data required to obtain infor-
mation about joint probability distributions for stochastic
processes is prohibitive even for small networks because
of the additional “time dimension”. Dependencies at dif-
ferent time instants have to be identified, limiting the
applicability of non-parametric bayesian methods. Also,
compared to a scenario where the random variables are
connected through static functions, the presence of a “time
dimension” makes it meaningful to consider structures
with cycles: the well-posedness of a system is guaranteed if,
for example, there is positive delay in each loop. Thus, not
only more data is needed in order to accurately estimate
joint probabilities, but also the class of structures to iden-
tify is significantly larger since it comprises models with
feedback loops. In addition, the potential presence of cycles
in the structure leads to more complicated probabilistic
dependencies that need to be taken into account.

These challenges are leading to new results and techniques
which are rapidly emerging (see Nabi-Abdolyousefi and
Mesbahi (2010); Sanandaji et al. (2011); Pillonetto et al.

(2011); Chowdhary et al. (2011); Materassi and Salapaka
(2012); Van den Hof et al. (2012); Quinn et al. (2013)).

The article extends and applies the concept of d-Separation
introduced by Judea Pearl (Pearl, 1988) to networks of dy-
namical systems where loops can be present, as well. The
concept of d-Separation is typically defined on stochastic
models described by a joint probability distributions of
random variables. Such a distribution is assumed to admit
a sparse factorization that can be aptly represented by a
Directed Acyclic Graph. However, in the case of a network
of stochastic processes influencing each other according to
a directed network, such a factorization looses its meaning:
especially if feedback loops have to be taken into account.
We show that the concept of d-Separation can still be ap-
plied to infer properties of least square estimators defined
on subsets of stochastic processes, at least if their mu-
tual influences are described by linear operators. Similar
results have been obtained by (Koster, 1999) in the do-
main of Structural Equation Models for random variables.
However, the scenario considered in this article extends
to stochastic processes and deals with several technical
complications, such as noise terms potentially correlated
in time and the possibility of causal estimators. These
complications are not present when a graphical model
simply represents random variables. Furthermore, stan-
dard graphical model approaches and results are usually
derived considering a finite number of random variables.
Thus, their application to the realm of stochastic processes
(viewed as infinite sequences of random variables) is nei-
ther immediate or trivial. The article provides a theoretical
framework that overcomes all these difficulties.

NOTATION

• {xi, xj}: unordered pair of two elements xi, xj
• (xi, xj): ordered pair of two elements xi, xj
• E[·]: mean operator
• RXY (τ) := E

[
X(τ)Y (0)T

]
for two wide sense sta-

tionary stochastic vectors X and Y
• Z(·) : Z-transform
• ΦXY (z) = Z(RXY (τ)): Power spectral density
• (·)∗ : transpose conjugate
• ∅ : empty set
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2. INTRODUCTORY CONCEPTS AND
DEFINITIONS

Aim of this section is to make the reader acquainted with
concepts that will be used in the derivation of the main
results.

In Section 2.1 we recall basic definitions of graph theory
and introduce the notion of d-separation (Pearl, 1988). In
Section 2.2 we define Linear Dynamic Graphs (LDGs), the
main class of dynamical systems that will be considered in
this paper. In Section 2.3 we recall some results obtained
in (Materassi and Salapaka, 2012, 2013) that allow one to
interpret certain variations of Wiener filters as projections
in a pre-Hilbert space of stochastic processes.

2.1 d-Separation on directed graphs

We start recalling basic notions of graph theory which
are functional to the subsequent developments. First, the
standard definition of undirected and directed graphs is
provided.

Definition 1. (Directed and Undirected Graphs).
A directed (undirected) graph G is a pair (V,E) where
V is a set of vertices or nodes and E is a set of edges or
arcs, which are ordered (unordered) subsets of two distinct
elements of V .

Given a graph, a sub-graph can be defined with repect to
a subset of its nodes.

Definition 2. (Restriction of a Graph). Given a directed
graph G = (V,E), its restriction to the node set V ′ ⊆ V
is the graph G′ = (V ′, E′) where E′ = {(xi, xj) |xi ∈
V ′ andxj ∈ V ′}

The skeleton of a directed graph is the undirected graph
obtained by replacing each directed edge with an undi-
rected one. The formal definition follows.

Definition 3. (Skeleton of a directed graph). Given a di-
rected graph G = (V,E), its skeleton is the undirected
graph G = (V,E) where

E = {{xi, xj} | (xi, xj) ∈ E or (xj , xi) ∈ E} .

On a directed graph we also define “chains” and “paths”.

Definition 4. (Paths, chains). Consider a directed graph
G = (V,E) with vertices x1, ..., xn and its skeleton (V,E).
A chain starting from xi and ending in xj is an ordered set
of edges in E ( (xπ1 , xπ2), . . . , (xπl−1

, xπl
) ) where xi = xπ1 ,

xj = xπl
. A path between two vertices, xi and xj is an

ordered set of edges in E ( {xπ1
, xπ2
}, . . . , {xπl−1

, xπl
} )

where xi = xπ1 , xj = xπl
.

From the concept of chains, we can derive the notions of
ancestry and descendance.

Definition 5. (Parents, children, ancestors, descendants).
Consider a graph G = (V,E). A vertex xi is a parent of
a vertex xj if there is a directed edge from xi to xj . In
such a case xj is a child of xi. Also xi is an ancestor of
xj if there is a chain from xj to xi. In such a case xi is a
descendant of xj . Given a set X ⊆ V , we define following
notation

pa (X) := {xi ∈ V | ∃xj ∈ X : xi is a parent of xj}
ch (X) := {xj ∈ V | ∃xi ∈ X : xj is a child of xi}
an (X) := {xi ∈ V | ∃xj ∈ X : xi is an ancestor of xj}
de (X) := {xj ∈ V | ∃xi ∈ X : xj is a descendant of xi} .

x3

x5

x7

x6

x4

x1

x2

x8

x9

Fig. 1. A directed graph with 9 nodes that is not acyclic.

The Markov blanket of a node is given by the set of
parents, children and all the other nodes sharing a child
with it.

Definition 6. (Markov blanket). In a directed graph G,
the Markov blanket a node is the set of the “parents”,
“children” and “parents of the children” of the node.

On a given path we define forks and colliders.

Definition 7. (Forks and colliders). A path has a fork at
xπp

if xπp−1
and xπp+1

are both children of xπp
(that is

xπp−1 ← xπp → xπp+1 appears in the directed graph). A
path has an inverted fork (or a collider) at xπp

if xπp−1

and xπp+1 are both parents of xπp (that is xπp−1 → xπp ←
xπp+1

appears in the directed graph).

The following definition introduces a notion of separation
on subsets of vertices in a directed graphs (Pearl, 1988).

Definition 8. (d-separation) Consider three mutually dis-
joint sets of vertices X,Z, Y . The set Z is said to d-
Separate X and Y if for every xi ∈ X and xj ∈ Y every
path between xi and xj meets at least one of the following
conditions

(1) the path contains a node xk ∈ Z that is not a collider
(2) the path contains a collider at xk given by xk−1 →

xk ← xk+1 where neither xk nor its descendants
belong to Z.

If Z d-separates X and Y in the graph G, we write
IG(X,Z, Y ) othewise we write ¬IG(X,Z, Y ).

As an example, consider the graph of Figure 1. In such
a graph, we have that IG(x5, ∅, x7); IG(x1, {x5, x6}, x7);
IG(x2, {x1, x4}, x3), and ¬IG(x5, x8, x7); ¬IG(x3, ∅, x9).

2.2 Generative class of models: Linear Dynamic Graphs

In this section we describe the class of Linear Dynamic
Graphs (LDGs).

First we define the class of processes that we will use in
the development of our theoretical framework.

Definition 9. Let E be a set containing discrete-time
scalar, zero-mean, jointly wide-sense stationary random
processes such that, for any ei, ej ∈ E , the power spectral
density Φeiej (z) exists, is real-rational with no poles on

the unit circle and given by Φeiej (z) = A(z)
B(z) , where A(z)

and B(z) are polynomials with real coefficients such that
B(z) 6= 0 for any z ∈ C, with |z| = 1. Then, E is a set of
rationally related random processes.

We define two classes of operators, F and F+, trans-
forming rationally related random processes into other
rationally related random processes.

Definition 10. The set F is defined as the set of real-
rational single-input single-output (SISO) transfer func-
tions that are analytic on the unit circle {z ∈ C| |z| = 1}.
Definition 11. Given a SISO transfer function H(z) ∈ F ,
represented as
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H(z) =

∞∑
k=−∞

hkz
−k, (1)

the causal truncation operator is defined as

{H(z)}C :=

∞∑
k=0

hkz
−k. (2)

Definition 12. The set F+ is defined as the set of real-
rational SISO transfer functions in F such that

{H(z)}C = H(z). (3)

It is immediate to verify that the following set is closed
with respect to the operators defined in F .
Definition 13. Let E be a set of rationally related random
processes. The set FE is defined as

FE :=

{
x =

n∑
i=1

Hi(z)ei | ei ∈ E , Hi(z) ∈ F ,m ∈ N

}
.

The following definition provides a class of models for a
network of dynamical systems. It is assumed that the dy-
namics of each agent (node) in the network is represented
by a scalar random process {xj}nj=1 that is given by the
superposition of a noise component ej and the “influences”
of some other “parent nodes” through dynamic links. The
noise acting on each node is assumed not related with the
other noise components. If a certain agent “influences”
another one a directed edge can be drawn and a directed
graph can be obtained.
Definition 14. (Linear Dynamic Graph).
A Linear Dynamic Graph G is defined as a pair (H(z), e)
where

• e = (e1, .., en)T is a vector of n rationally related
random processes such that Φe(z) is diagonal
• H(z) is a n×n matrix of transfer functions in F such

that Hjj(z) = 0, for j = 1, ..., n.

The output processes {xj}nj=1 of the LDG are defined as

xj = ej +

n∑
i=1

Hji(z)xi,

or in a more compact way
x(t) = e(t) +H(z)x(t). (4)

Let V := {x1, ..., xn} and let E := {(xi, xj)|Hji(z) 6= 0}.
The pair G = (V,E) is the associated directed graph of
the LDG. Nodes and edges of a LDG will mean nodes and
edges of the graph associated with the LDG.

If the operator (I − H(z)) is invertible on the space of
rationally related processes it can be guaranteed that, for
any vector of rationally related processes e, a vector x of
processes in the space Fe will be obtained. For this reason,
the following definition is introduced.
Definition 15. A LDG (H(z), e) is well-posed if each entry
of (I −H(z))−1 belongs to F . Thus, x = (I −H(z))−1e.
can be written. A LDG (H(z), e) is causally well-posed if
all the entries of (I − H(z)) and (I − H(z))−1 belong to
F+.

2.3 Wiener filtering as a projection

It is possible to introduce an inner product in FE .
Lemma 1. The set FE is a vector space with the field of
real numbers. Let

< x1, x2 >:= Rx1x2
(0) =

∫ π

−π
Φx1x2

(eiω),

which defines an inner product on FE with the assumption
that two processes x1 and x2 are considered identical if
x1(t) = x2(t), almost always for any t.

Proof. The proof is done by inspection checking the
properties of vector space and of inner product. 2

For any x ∈ FE , the norm induced by the inner product
is defined as ‖x‖ :=

√
< x, x >.

Definition 16. For a finite number of elements x1, ..., xn ∈
FE , tf-span is defined as

tf-span{x1, ..., xn} :=

{
x =

n∑
i=1

Hi(z)xi | Hi(z) ∈ F

}
.

Definition 17. For a finite number of elements x1, ..., xn ∈
FE , c-tf-span is defined as

c-tf-span{x1, ..., xn} :=

{
x =

n∑
i=1

Hi(z)xi | Hi(z) ∈ F+

}
.

Lemma 2. The tf-span operator c-tf-span operators define
two subspaces of FE .

Proof. The proof is left to the reader. 2

The following proposition formulates the problem of non-
causal and causal Wiener filtering (Kailath et al., 2000) in
terms of projections in the space FE .
Proposition 3. (Wiener Filter). Let E be a set of rationally
related processes Let u and w1, ..., wn be processes in the
space FE . Define the vector process W := (w1, ...., wn)T

and let
M := tf-span{w1, ..., wn} or

M := c-tf-span{w1, ..., wn}.
Consider the problem

û := arg inf
q∈M
‖u− q‖2. (5)

If ΦW (eiω) > 0, for ω ∈ [−π, π], then the solution û ∈ M
exists, is unique and is the only element in M such that,
for any q ∈M ,

< u− û, q >= 0. (6)

Proof. See (Materassi and Salapaka, 2012). 2

When M := tf-span{w1, ..., wn} we have the multi-
variable non-causal Wiener filter, while when M :=
c-tf-span{w1, ..., wn} we have the multivariable causal
Wiener filter. In light of the perpendicularity relation given
by (6), the transformation performed by the Wiener filter
û := W(z)W can be interpreted as projection of a vector
u on a suitable space M .
Definition 18. Let M be a subspace of a pre-Hilbert space
H and let u be a vector inH. Then ûM := ProjMu denotes
the projection of u on M if such a projection exists.

We will use interchangeably the notation ûM := ProjMu
to denote the projection performed by the Wiener filter
on a subspace M . Also, notice that Theorem 3 guarantees
that such a projection always exists in the spaces of
rationally related processes that we have defined. We
extend the notation to include the projections of single
components of a vector process U .
Definition 19. If U = [u1, . . . , un] is a vector process and

M is a subspace of H then ÛM := [ û1M û2M . . . ûnM ]
T
.

We also define ŨM := U − ÛM .

We also overload the notation allowing the subspace M
to be replaced by a set X of random processes. In such a
case, we mean that the projection happens on tf-span(X).
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Definition 20. If X is a set of random processes and Z =
[Z1 Z2 . . . Zr ]

′
is a random vector then ẐX := ProjMZ

where M is the span of the random processes Xi in the set
X defined for each component of Z. In this case Z̃X = Z−
ẐX.

The following definition provides a notion of independence
among sets of rationally related stochastic processes.
Definition 21. (Wiener-separation). Let X, Y and Z be
disjoint subsets in a set of rationally related random
processes. We say that X is Wiener-separated from Y
given Z if x̂Y,Z = x̂Z for all x ∈ X and we denote this
relation as IW (X,Z, Y ) when the non-causal Wiener filter
is considered and as IW+(X,Z, Y ) when the causal Wiener
filter is considered.

3. PRELIMINARY RESULTS

The aim of this section is to provide four lemmas that
will be helpful in the derivation of the main results. These
results follow the derivation presented in (Koster, 1999),
but have been suitably modified to fit our framework. The
first lemma shows that in every directed graph each path
is a subset of the set of ancestors of its extreme points and
its colliders.
Lemma 4. Let xi and xj be two nodes in a directed graph
G. Let (xπ0

, ..., xπl
) be a path from xi to xj in G and let

C be the set of colliders on. Then we have that
xπp
∈ an ({xi, xj , } ∪ C)

for p = 0, ..., l.

Proof. We will prove the statement by induction. If there
is no collider on the path the statement is true. Now,
assume that the statement is true if there are nc colliders
on a path. Let π be a path from xi to xj with nc + 1
colliders. Let c be a collider on path. Node c splits the
path in two subpaths πa, from xj to c and πb from c to xj .
Both πa and πb have less than nc + 1 colliders. Thus, the
theorem statement can be applied to both subpaths. This
immediately gives the statement also for π. 2

The following lemma shows that if three disjoint sets
X,Y, Z cover all nodes of a graph then the notion of d-
Separation can be characterized by checking paths of at
most length 2. This result states that, in order to have
d-Separation between two sets X and Y , their nodes can
not be in each other’s Markov blanket.
Lemma 5. Let G = (V,E) be a directed graph and let
X,Y, Z ⊆ V be three disjoints sets satisfying

• X ∪ Y ∪ Z = V .

Then, we have that IG(X,Z, Y ) if and only if for all nodes
xi ∈ X, xj ∈ Y there are no paths of the type

• xi → xj
• xi ← xj
• xi → c← xj

where c ∈ Z.

Proof. If there is a path of the type xi → xj , of the type
xi ← xj , or of the type xi → c ← xj , where xi ∈ X,
xj ∈ Y and c ∈ Z, we have that xi and xj are not d-
separated. Thus, the necessity is proven. Now assume that
¬IG(X,Z, Y ). Then, there is a path π d-connecting one
node in X with a node in Y . Let xi be the node with
largest index in the path that is in X. Let xj be the node
with smallest index in the path that comes after xj and
is in Y . Consider the subpath π′ of π that goes from xi
and xj . The nodes xi and xj are d-connected via π′. Also,

except for xi and xj , all nodes in π′ belong to Z. Thus, π′

can only be of the type xi → xj , of the type xi ← xj , or
of the type xi → c← xj . 2

Lemma 6. LetG = (V,E) be a graph and let Z be a subset
of V . Consider xi, xj ∈ V \ Z. It holds that

IG(xi, Z, xj)⇔ IG′(xi, Z, xj)
where G′ = (V ′, E′) is the restriction of G to the set of
nodes V ′ = an ({xi, xj} ∪ Z).

Proof. If there is a path that connects xi and xj in
G′, then the very same path connects xi and xj in G.
Thus, sufficiency is shown, In order to prove necessity,
assume that there is a path in G connecting xi and xj .
By Lemma 4, we have that all nodes on the path must be
ancestors of either xi, xj or a collider on the path. Since
the path connects xi, xj , all its colliders are ancestors of
some elements of Z. Thus, all the nodes in the considered
path are in V ′ and such a path connects xi and xj in
G′. 2

Lemma 7. Consider a graph G = (V,E). We have that

IG(X,Z, Y )⇒ IG(X ′, Z, Y ′)

where

Y ′ = {x ∈ an (X ∪ Y ∪ Z) \ {X,Z}|such that I(X,Z, x)}
X ′ = an (X ∪ Y ∪ Z) \ (Y ′ ∪ Z).

Proof. Observe that from Lemma 6 there is no loss of
generality by assuming V = an (X ∪ Y ∪ Z). Now, if
xi ∈ X we have that IG(xi, Z, Y

′) by the definition of
Y ′. Instead, if xi ∈ X ′ \X, assume by contradiction that
there is a path π(a) connecting some xj ∈ Y ′ to xi given

Z. Since xi /∈ Y ′ there must exist a path π(b) connecting
xi to some xk ∈ X. Let

π(a) =

(
{x

π
(a)
0

, x
π
(a)
1

}, ..., {x
π
(a)

l(a)−1

, x
π
(a)

l(a)

}
)

π(b) =

(
{x

π
(b)
0

, x
π
(b)
1

}, ..., {x
π
(b)

l(b)−1

, x
π
(a)

l(b)

}
)

be these two paths with

x
π
(a)
0

= xj ; x
π
(a)

l(a)

= xi

x
π
(b)
0

= xi; x
π
(b)

l(b)

= xk.

Let the concatenation of the two paths be

π =
(
{x

π
(a)
0

, x
π
(a)
1

}, ..., {x
π
(a)
p−1

, x
π
(a)
p
}

{x
π
(b)
q
, x
π
(b)
q+1

}, ..., {x
π
(b)

l(b)−1

, x
π
(a)

l(b)

}
)

with x := x
π
(a)
p

= x
π
(b)
q

for some 0 ≤ p ≤ l(a) and some

0 ≤ q ≤ l(b), defining a path from xj to xk. If either 0 = p

or q = l(b) we have that the path π connects xj to xk given
Z. This is not possible since xj ∈ Y ′ and xk ∈ X. Thus it

must be that 0 < p and q < l(b). All the inner nodes in the
concatenated path π are colliders or non-colliders precisely
as in the two original paths π(a) and π(b) with the possible
exception of the connecting node x = x

π
(a)
p

= x
π
(b)
q

. Since

both π(a) and π(b) are open paths given Z, the connecting
node x is the only node that can block π given Z. If the
connecting node x is not a collider on π then it was not a
collider on either π(a) or π(b), thus π is not blocked by Z.
If the connecting node x is a collider on π and a collider
either on π(a) or π(b), then π is again not blocked by Z. If
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ZP

X ′
Y ′

ZY ′ZX′

Fig. 2. Schematic representation of the influences between
the five subsets of nodes X ′, Y ′, ZX′ , ZY ′ and ZP .

the connecting node x is a collider on π but a non-collider
on both π(a) and π(b), in order to have π blocked by Z we
need to have x /∈ an (Z). Thus x ∈ an (X) or x ∈ an (Y ).
Assume there is a chain from x to xi′ ∈ X. With no loss
of generality let xi′ ∈ X be the first node in X in the
chain. The chain is not blocked by Z, othewise we would
have x ∈ an (Z). Concatenating this chain with π(a) gives
a path from xk to xj′ ∈ X that is not blocked by Z. This
is a contradiction. By assuming that there is a chain from
x to xj′ ∈ Y we obtain a contradiction in a similar way

using the path π(b). 2

4. MAIN RESULTS

The following theorem estabilishes a strong connection
between the concept of d-Separation defined on the graph
and the notion of Wiener separation that is instead asso-
ciated with the flow of information through the network.
Theorem 8. In a well-posed LDG with graph G

IG(X,Z, Y )⇒ IW (X,Z, Y ).

Proof. We have to prove that if X and Y are d-separated
by Z according to the graph G, then the two sets of
processes X and Y are separated according to the Wiener-
separation. From Lemma 6, assume, with no loss of gen-
erality, V = an (X ∪ Y ∪ Z). Define X ′, and Y ′ as in
Lemma 7. By Lemma 7 we have that IG(X′,Z,Y ′) and also
that X ′ ⊆ X, and Y ′ ⊆ Y . Partition the set of processes
V in the following sets X ′, Y ′, ZX′ , ZY ′ , and ZP where

ZX′ = ch (X ′)

ZY ′ = ch (Y ′)
ZP = Z \ (ZX′ ∪ ZY ′).

Thus, reordering the processes, we can write V =
(XT , Y T , ZTP , Z

T
X′ , Z

T
Y ′)

T . The matrix H(z) that defines
the LDG dynamics can now be written as

H(z) =


HXX 0 HXP HXZ

X′ HXZ
Y ′

0 HY Y HY P HY Z
X′ HY Z

Y ′
0 0 HPP HPZ

X′ HPZ
Y ′

HZ
X′X 0 HZ

X′P HZ
X′ZX′ HZ

X′ZY ′
0 HZ

Y ′Y HZ
Y ′P HZ

Y ′ZX′ HZ
Y ′ZY ′

 . (7)

where the zero-blocks are a consequence of Lemma 5. A
graphical representation of the influences between the five
subsets X ′, Y ′, ZX′ , ZY ′ and ZP is given in Figure 2.

Exploiting the sparsity pattern of H(z) and the diagonal
structure of Φe, we find that the inverse of power spectral
density has a zero block corresponding to the entries
associated with the processes X and Y

(ΦV )
−1

= H(z)∗Φ−1
e H(z) =


∗ 0 ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


where the symbol ∗ denotes a potentially non-zero block.
From Lemma 26 in Materassi and Salapaka (2012), we
have that the variables X ′ and Y ′ are Wiener-separated

given Z, namely IW (X ′, Z, Y ′). Since X ′ ⊆ X and Y ⊆ Y ′
we have the assertion. 2

The following theorem is the equivalent of Theorem 8 for
the causal scenario.

Theorem 9. Consider a causal LDG with graph G =
(V,E). Let X, Y and Z three mutually disjoint sets. Define
X ′ and Y ′ as in Theorem 7. Define W := V \X ′ ∪ Y ′ and
write the LDG dynamics in the form(

X ′

Y ′

W

)
=

(
eX′
eY ′
eW

)
+

(
HX′X′ HX′Y ′ HX′W
HY ′X′ HY ′Y ′ HY ′W
HWX′ HWY ′ HWW

)(
X ′

Y ′

W

)
Under the assumption that (I − HX′X′)

−1 and (I −
HY ′Y ′)

−1 are causal, it holds that IG(X,Z, Y ) ⇒
IW+(X,Z, Y ).

Proof. We have to prove that if X and Y are d-separated
by Z according to the graph G, then the two sets of
processes X and Y are separated according to the causal
Wiener-separation. From Lemma 6, assume, with no loss of
generality, V = an (X ∪ Y ∪ Z). By Lemma 7 we have that
IG(X′,Z,Y ′) and also that X ′ ⊆ X, and Y ′ ⊆ Y . Partition
the set of processes V in the following sets X ′, Y ′, ZX′ ,
ZY ′ , and ZP where

ZX′ = ch (X ′)

ZY ′ = ch (Y ′)
ZP = Z \ (ZX′ ∪ ZY ′).

Thus, after reordering the processes, we can write V =
(XT , Y T , ZTP , Z

T
X′ , Z

T
Y ′)

T . Since (I − HX′X′)
−1 and (I −

HY ′Y ′)
−1 are causal we have no loss of generality by

assuming HX′X′ = 0 and HY ′Y ′ = 0. Indeed, we have
that

X ′ = eX′ +HX′X′X
′ +HX′X′X

′ ⇒
X ′ = (I −HX′X′)

−1eX + (I −HX′X′)
−1HX′X′X

′.

A similar argument holds to show that the assumption
HY ′Y ′ = 0 does not affect the generality of the proof.
The matrix H(z) that defines the LDG dynamics has the
same sparsity pattern as in (7) with the addition that
HX′X′(z) = 0 and HY ′Y ′(z) = 0. In particular notice that

X ′ = eX′ +HX′ZP
ZP +HX′ZX′ZX′ +HX′ZY ′ZY ′ (8)

Y ′ = eY ′ +HY ′ZP
ZP +HY ′ZX′ZX′ +HY ′ZY ′ZY ′ . (9)

Observe that

arg min
u∈c-tf-span{ZP ,ZX′ ,ZY ′}

‖X ′ − u‖ =

= HX′ZP
ZP +HX′ZX′ZX′ +HX′ZY ′ZY ′

+ arg min
u∈c-tf-span{ZP ,ZX′ ,ZY ′}

‖eX′ − u‖.

At the same time

arg min
u∈c-tf-span{ZP ,ZX′ ,ZY ′ ,Y ′}

‖X ′ − u‖ =

= HX′ZP
ZP +HX′ZX′ZX′ +HX′ZY ′ZY ′

+ arg min
u∈c-tf-span{ZP ,ZX′ ,ZY ′ ,Y ′}

‖eX′ − u‖

= HX′ZP
ZP +HX′ZX′ZX′ +HX′ZY ′ZY ′

+ arg min
u∈c-tf-span{ZP ,ZX′ ,ZY ′ ,eY ′}

‖eX′ − u‖

with all these equalities coming as a consequence of (8).
Since eX′ and eY ′ are perpendicular, and eY ′ ∈ c − tf −
span(ZP , ZX′ , ZY ′) (from Lemma 29 in (Materassi and
Salapaka, 2012)), we have that X ′ and Y ′ are Wiener
separated. 2
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x4

x2 x3x1

H14(z) H34(z)

H21(z) H32(z)

x7

x2 x3x1
H21(z) H34(z)

H54(z)H32(z)
x4 x5

H58(z)

x6

x8
H28(z)

H71(z)
H47(z)

H65(z)H36(z)

(a) (b)

Fig. 3. (a) A LDG where the process x4 plays the role of a
confounding process. (b) A LDG with two confound-
ing processes and a loop.

5. APPLICATIONS AND EXAMPLES

5.1 Confounding process

Consider the graph G of Figure 3(a) representing a LDG
following the dynamics x = e + H(z)x where the only
non-zero entries of H(z) are H21, H32, H14 and H34.
Assume that the graph is known, but not the transfer
functions on the edges. Also assume that only x1, x2
and x3 are observed (but not x4). The goal is to identify
the transfer function H32(z). The task is made difficult
by the presence of the confounding process x4 that is
not accessible. However, observe that x2 and x4 are d-
Separated by {x1}, namely IG(x2, {x1}, x4). Let x̂2,1 and
x̂3,1 be respectively the estimate of x2 and x3 from x1 using
the non-causal Wiener filter. Also, if x4 were observable,
we could in principle obtain its estimate x̂4,1 by Wiener-
filtering x1, as well. However, since x1 d-Separates x2
and x4) we have, from Theorem 8, that x̂2,1 and x̂4,1 are
two non-correlated stochastic processes. Since x̂3,1 = e3 +

H32x̂2,1 +H42x̂4,1 we find that H32(z) =
Φx̂3,1

(z)

Φx̂2,1x̂3,1
(z) .

5.2 Confounding process and a loop

Consider the graph G of Figure 3(b) representing a LDG
following the dynamics x = e + H(z)x where the only
non-zero entries of H(z) are represented by the edges in
the graph. Assume that all processes but x7 and x8 are
observed and that the goal is to identify H34(z). Since
IG(x3, {x1, x2, x5}, {x7, x8}) we have that the Wiener es-
timates of x3 and {x7, x8} from {x1, x2, x5} are not cor-
related. Thus the effect of the processes {x7, x8} on x4
is orthogonal to the effect of the processes x3, given
{x1, x2, x5}. In a way similar to the previous example we
can identify H34(z).

6. CONCLUSIONS

In this paper we have shown how the concept of d-
Separation (Pearl, 1988) can be usefully extended to
networks of stochastic processes interconnected via linear
dynamical systems. Thus, many fundamental results from
the domain of graphical models can be adapted to the
dynamic case, even in presence of feedback loops. The
main result is that d-Separation is directly related to the
sparsity pattern of variations of the Wiener Filter . Under
certain hypothesis of well-posedness and regularity, such
a relation holds for any topology of the network, even in
presence of loops, both in the case of causal and non-causal
estimators.
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