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Abstract: We provide a method for designing a quadratic pricing scheme to induce a desired
local Nash equilibrium in an open-loop differential game with nonlinear dynamics. In addition,
we present conditions when the induced equilibrium is a global equilibrium. The results are
applied to the problem of inducing network managers to invest in security in a multi-network
with an epidemic model of the spread of malware.
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1. INTRODUCTION

When resources are scarce, competition develops between
self-interested agents. Game theory is an established tech-
nique for modeling this interaction, and it has emerged as
an engineering tool for analysis and synthesis of systems
comprised of dynamically—coupled decision—making agents
possessing competing interests (Coogan et al. (2013),Li
and Marden (2011), Ratliff et al. (2012)). In such scenarios,
the strategies chosen by the selfish agents result in a solu-
tion that is often inefficient from a societal point of view.
This motivates the design of coordinating mechanisms that
induce agents to play a Nash equilibrium with desirable
properties, namely an equilibrium that is socially optimal.

Engineering problems in which there are decision making
agents, either with competing interests or different infor-
mation sets, as well as a social planner who is tasked with
coordinating the agents are appearing more frequently
in the literature as technology is integrated into infras-
tructure (Oldewurtel et al. (2010)). It is important to
accurately model these systems and develop control strate-
gies accounting for the interests of all the participating
agents while meeting the organizational objective which
may represent social welfare or the common good.

The interaction of selfish agents in multi-agent system may
be cast as a differential game by modeling dynamically—
coupled agents as strategic players. The coordination prob-
lem may then be cast as an optimization problem whereby
a social planner determines a coordination mechanism en-
suring the agents play the desired equilibrium. The co-
ordination mechanisms modify the agents’ nominal utility
functions thereby allowing for a social planner to shape the
strategies of the agents in order to meet a desired global
objective.

In Ratliff et al. (2012); Calderone et al. (2013); Coogan
et al. (2013) the problem of finding prices to induce a
socially optimal Nash equilibrium in a linear quadratic
game is solved. In this paper, we show that the result
can be generalized to open—loop differential games with
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non-linear dynamics and possibly non—convex costs that
are separable in the state and the control. In particular,
we formulate the problem of designing prices to induce
a desired (socially optimal) equilibrium for games with
non—linear dynamics and non—convex costs as a feasibility
problem. We show that if this feasibility problem has
a solution, then the desired equilibrium is a local Nash
equilibrium of the game resulting from imposition of
prices on the players. Further, if the desired equilibrium
is the unique equilibrium of the pricing induced game,
the designed prices cause the agents to play the socially
optimal solution. If in addition the dynamics are convex,
then we provide an extended feasibility problem to design
prices that force the socially optimal solution to be the
unique Nash equilibrium of the pricing induced game.
Finally, we apply the theory to the problem of security
in multi-networks which is a rising problem in the study
of cyber—physical systems (Cardenas et al., 2008; Bloem
et al., 2009; Alpcan and Bagar, 2010). In this example,
we add an objective function and additional constraints to
the pricing design feasibility problem to ensure a budget
balanced solution.

The rest of the paper is organized as follows. In Section 2,
we formulate the game. In Section 3, we define the pric-
ing optimization problem and state our main results. in
Section 4, we consider the application of designing prices
to induce investment in security in a multi-network sys-
tem with an epidemic model for the spread of malware.
The pricing scheme guarantees that the network dynamics
remains stable meaning the spread of malware does not
destabilize the networks. In Section 5, we summarize the
contributions and discuss future directions.

2. AGENT GAME

Consider a dynamic game with n agents where the system
dynamics are given by the general nonlinear ordinary

differential equation
j::f(taz7u)7 Io(t) = Zo (1)

where
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o(t) =[z1(0)" ... 2. ()] (2)
and

u(t) = [ur ()T .. u ()T (3)
Each z;(t) € R™ where n; is the dimension. The i—th agent

has control over control input w;(t) € R™ where m; is the
dimension of input w;(t) and has nominal cost given by

Ti(a(te), u) = %/fqi(t,a:)—i—ri(t,u) dt+qilts,x) (4)

to

We suppress the dependence of the cost J; on the initial
condition z(ty) when it is clear from context. By an abuse
of notation, we let u; denote the strategy over the horizon
[to,tf] and we drop the dependence on ¢ in the control
action u;(t) where it is clear from context. Each player is
interested in minimizing their cost J;(u;, u_;) with respect
to their choice variable u; and where —i = {1,...,i—1,i+
1,...,n}. We restrict each agent’s choice u; to be an open—
loop control and we denote the space of open—loop control
strategies for agent ¢ by T';.

Given the cost J;(u;,u
player is given by
Hl(t7 Ty Piy Uiy ’U/_i) = Ql(ta Jf) + Ti(t7 ’U,) + pl(t)Tf(ta x, u)
()
and the optimized Hamiltonian for the i—th player is given
by

—;), the Hamiltonian for the i-th

H;(t,z,p;) = IHGIH Hi(t, z, piywi, u_s). (6)
u7 K3
Note that the co—state for each player is a vector p;(t) €
R™ for cach t € [to,¢s]. Let {u}}I; be an open-loop Nash
equilibrium (either local or global) Then, in equilibrium,
the optimality conditions for agent i’s optimization prob-
lem are

0 = St ) (™
B0 = ~ T 0, w) )
0= St i) 0

for all t € [to,ts] where

0q; ,
2(to) =0 and  pilty) = S (). (10)
and oy
8pi (t,iL’ yDiy U ):f(tvl' , U )ﬂ (11)
P 0 ) = 200ty 2 (1), (12
and
oH ut) = 87"1‘ * Tai * )k
aul (t ‘T y Diy U )* 8UZ (t7u )+p7 8ul(t’x y U ) (13)

Equation (7) is the state equation, Equation (8) is the co-
state equation, and Equation (9) is the input stationarity
condition.

Definition 1. A Nash equilibrium in the open—loop
differential game defined by the costs (4) and dynamics
(1) is a set of strategies {u}[to,¢s]}7_; such that for each
ie{l,...,n}

Jl(uf,u*_l) < Jt(ul,u*_l) Vu; € I';. (14)

The above definition can be interpreted as saying a set
of strategies {uf}" , is a Nash equilibrium if no player

can decrease their cost by unilaterally deviating from their
strategy in {u}[to,tf]}7.

The problem of finding an open—loop Nash equilibrium for
the game defined by (1) and (4) is to find a set of control
strategies {u[to,ts]}/_; such that the inequality (14) is
satisfied for each ¢ € {1,...,n}. In general, finding open—
loop Nash equilibria of dynamic games is a difficult prob-
lem. Some recent work has explored the characterization
and computation of local equilibria in continuous games
including open—loop differential games Ratliff et al. (2013).
In Section 4 we will use the techniques introduced in Ratliff
et al. (2013) to compute the Nash equilibrium under the
pricing scheme in order to validate that the pricing scheme
results in the desired behavior modification.

3. PRICING DESIGN

The pricing design problem is defined to be the optimiza-
tion problem solved by the social planner in which she
designs pricing mechanisms to induce agents to use the
desired equilibrium {u}(t) = K;(t)}" ;. We will restrict
ourselves to modifying each player’s cost by adding a pric-
ing mechanism, P;(¢,u), that is composed of a quadratic
term and a linear term in the control inputs. Namely, we
define

Pi(t,u)z/fuT(t)Ri(t)u(t)—i—ciu(t) dt  (15)

to
where R;(t) = R;(t)T = 0. Thus each player’s new cost
with pricing is given by

~ tr
Ji(u) = / qi(t, ) +7i(u, t) + vl Ri(t)u + cpu dt
to
+ ailty, x(ty)). (16)
For convenience, we will partition R;(t) and c¢;(t) as
follows:

R;(t) := [Rll(t) R?(t)} and ¢;(t) := [cll(t) cf(t)] .
(17)

The Hamiltonian for the i—th agent generated under the
pricing scheme is given by

Hi(t,x,pi,u) = gi(t, ) + it w) + w(t)T Ri(t)u(t)
+ei(tyu +pf f(tz,u) (18)
and the optimized Hamiltonian under pricing is given by

ﬁi(t,l'ypi) = milpl ﬁi(tvx,pi,ui,u—i)- (19)
u; €1

k3

The optimality conditions under pricing are

OH;

i(t) = apz(”’p“ u') = f(t,z*,u") (20)
P = - aa” (t, ", piy )
=00y P P 107 ) (1)
R i) = (RO + () + 5T (107 )
+§Z(m)
=0. (22)

Note that since the costs are separable in the states and
controls and since we do not allow the prices to depend
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on the state, both the state equation and the co-state
equation are independent of the pricing mechanism. Thus,
given a set of desired controls, we can solve for the cor-
responding state trajectory, x(t) and co-state trajectory
pi(t) on the time interval [to,¢s]. Then, use the state and
co—state to choose prices that satisfy the input stationarity
condition.

Define the desired equilibrium

ut = K(t) = [Ki(t) - Ka(0)]" (23)
Further, let 2*(¢) and p}(t) denote the state and co-
state at time ¢ under the desired equilibrium control

K (t) respectively. At the desired equilibrium, the input
stationarity condition is

O (1, K (1)) + (1)

7. TE(t) +ci(t)

* T f
+p; (1) o

Rearranging (24), we define az( ) as follows:
ai(t) = Ri(H)T K (1) + c;(t)

0
0" g

(t, 2" (1), K(t)) =0  (24)

(0. K@) - 5

(¢, K(t))
(25)
for each ¢ € {1,...,n}. Note that «;(t) is completely

known. Thus, we want to find R;(¢) and ¢;(t) to satisfy
(25).

Thus designing prices to make K (t) a local Nash equilib-
rium amounts to solving the feasibility problem defined
below in Equation (26).

RA)K(t)+c(t)=at) Vi (26)
where
R(t) = [Ri(t) R (t)" (27)
c(t) = [ei(t) -~ p)” (28)
a(t) =[oa(t) - an(t)]". (29)

We will use the notation R[to,tf] and c[tg,ts] to denote
R(t) and c(t) for each t € [to,t]. We can summarize the
above results in the following theorem.

Theorem 1. Consider the game defined by nominal agent
costs (4) and dynamics (1). Let {u*[to,t¢]}i~; be the
desired Nash equilibrium. If there exists a solution

(R[to,tf],C[to,tf]) (30)
to the feasibility problem defined in Equation (26), then
the desired solution {u*[to,ts]}}; is a local Nash equilib-
rium to the pricing induced game defined by costs (16) and
dynamics (1).

In the case that the desired solution is the unique Nash
equilibrium to the induced game, we get the following
result.

Corollary 1. Consider the game defined by nominal agent
costs (4) and dynamics (1). Let {u*[to,t]}7—; be the
desired Nash equilibrium. If there exists a solution

(Rlto, tg], clto, tf]) (31)
to the feasibility problem defined in Equation (26) and
the desired Nash equilibrium is unique in the result-
ing game defined by costs (16) and dynamics (1), then
the prices (R[to,ty], c[to,ts]) induce the agents to play
{u[to, t5]}izs-

8.1 Dynamics Convez in the State and Control

In the case that the desired equilibrium is unique, the
pricing mechanisms are guaranteed to enforce the desired
equilibrium strategies.

Let us recall the notion of strict diagonal convexity intro-
duced by Rosen in Rosen (1965) and then extended to the
infinite-dimensional case in Haurie and Moresino (2001).

Definition 2. A function >, L;(z,u,t,p;) is diagonally
strictly convex in (r,u) if for all @, 4, T, and & we have

. oL;, _ oL; , .
Z(az - ui)T <au (J?, u7t7pi) - B (Jf, u, t7pz))

— (3 — ;)7 (gi (Z,u,t,p;) —

L
gxz (i,u,t,pi)) >0
(32)

The following lemma and theorem provide conditions un-
der which a Nash equilibrium of an open—loop differential
game is unique.

Lemma 1. Assume that L;(x,u) is convex in (z,u) and
assume that the total running cost

u) = ZLi(a:,u)

is diagonally strictly convex in (z, u). Further, assume that
the dynamics f(t,x,u) are convex in x and u. Then, the
combined Hamiltonian

ZH (t,z,pi)

is diagonally strictly convex in z and concave in p.

Theorem 2. If the combined Hamiltonian H (¢, x,p) is di-
agonally strictly convex in 2 and concave in p, then the
open—loop Nash equilibrium is unique.

(33)

H(t,z,p) (34)

Lemma 1 is a modified version of Lemma 2.1 in Haurie
and Moresino (2001). Theorem 2 is stated in Haurie and
Moresino (2001) and its proof can be found in Carlson
and Haurie (1996) using our version of the lemma. If the
costs under pricing satisfy the assumptions of Lemma 1,
the desired equilibrium is the unique Nash equilibrium of
the open-loop differential game induced through pricing.

Define the total running cost

where Z
Li(z,u,t,p;) = qi(x,t) + 75 (u, t) + u’ Ri(t)u
+ ci(t)ult). (36)

Assumption 1. >, ¢;(x,t) + ri(u,t) is diagonally strictly
convex in (x,u).

Provided Assumption 1, by Lemma 1 and Theorem 2,
we only need to ensure that the pricing mechanism is
diagonally strictly convex in u, i.e. we need to enforce

(a(t) — a()" R(t)(a(t) - alt)) > 0 (37)
for all & and @ and for each t € [to,t;]. Thus in order to
ensure diagonal strict convexity in u, we simply need to
ensure that the symmetric component of R(t), i.e. R(t) +
R(t)T, is positive definite for all ¢.
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RIVK(E) + c(t) = at) ¥ ¢
{ RU)+ROT =0 Vi (38)

We have the following result.

Theorem 3. Consider the game defined by nominal agent
costs (4) and dynamics (1). Suppose that f(¢,z,u) is
convex in z and u. Let {u*[to,tf]}}"_; be the desired Nash
equilibrium. Then, if there exists a solution

(R[thtf]vc[t()atf]) (39)
to the feasibility problem defined in Equation (38), then
the prices (R[to,ts], c[to,ts]) induce the agents to play
{u*[to,ts]}}—; to the game defined by (16) and dynamics
(1). Further, the desired Nash equilibrium is the unique
equilibrium in the pricing induced game.

4. PRICING IN MULTI-NETWORKS

We use the epidemic model for the spread of malware in
a multi-network introduced in Bloem et al. (2009). Self-
spreading attacks on computer networks are expensive
owing to the damage they cause and the security invest-
ment required to defend against them. The social planner’s
goal is to design pricing mechanisms that coordinate the
networks so that the overall multi-network is stabilized.

Suppose that we have n networks with V; nodes in the i—
th network and let 2;(¢) € R denote the number of infected
hosts in a network ¢ where hosts can be fractionally
infected. Let u;(t) be the malware removal rate for network
i, a be the cross—network pairwise rate of infection, and
[ be the pairwise rate of infection within networks. In
general, computers within a network are more likely to
communicate with one another than across networks;
hence, we assume 8 > «. The spread of malware is then

captured in the following epidemic model:
n

(1) = BINi—zi ()i () + > a(Ny—wi (1)) (8) —ui(¢)
=1
(40)
Each network independently tries to choose wu; so that
the ith network is stabilized. For each network in the
multi-network, we consider a cost that is quadratic in the
state, i.e. the number of infected hosts, and quadratic in
the control, i.e. the patching rate. The nominal cost for
network ¢ is
tr
Ji(u) = / 2T Qi 4+ u” Myu dt. (41)
0
where @Q; and M; are the cost of an infected network host
and the cost of the implemented patching response re-
spectively. The social planner designs pricing mechanisms
to coordinate the networks by inducing them to choose
a desired control action which stabilizes the entire multi-
network.

We consider a group of six networks with Ny = 3500,
Ny = 500, N3 = 2000, Ny = 1000, N5 = 500, and
Ng = 1000. For each network, we take Q; to be a diagonal
matrix with random positive entries where the (i,i)th
element of @; is larger than the others. The M; matrices
are chosen to be 0 except for the (4,4)th element which is
1. The ratio between Q;(i,7) and M;(4,4) is 10 to 1. We
scale the time horizon to be over the interval [0, 1] and
take the initial number of infected nodes in each network

to be half of the total number of nodes. As in Bloem et al.
(2009), we take 3 =5.6 x 107°. We set a = 2/3.

Using the discretization scheme for optimal control prob-
lems described in Chapter 4 of Polak (1997), we compute
a centralized solution using the sum of all the agents
costs and standard nonlinear programming techniques.
In general, this only gives us a local optimum to the
centralized problem, but we will see that it does improve
the performance of the system as compared to the Nash
equilibrium. From the centralized solution, we determine

a desired set of controls, K(t) = [K1(t)--- K,(t)]T.

In order to design prices, the social planners solves a
modified version of the feasibility problem outlined in (38)
at each time step. Since the nominal costs are quadratic in
the control, we replace each M; with R; so that the new
cost, for each player becomes

t
Ji(u) = /0 ' 2T Qix + uT Ri(t)u + ¢;(t)u dt. (42)

In this case, Equation (25) becomes
a;(t) = Ri(t)T K (t) + ci(t)

e AU e G OR0)

In addition, we add an objective and several more con-
straints to make the problem budget balanced. Our final
optimization problem is given by

{Ri(tfi?&)};;l ; [1R:(t) — M| + [les(2)]] (43)
subject to:  R(t)K(t) + c(t) = a(t) (44)
Rt)+R®)T =0 (45)
i: Ri(t) — Z M; =0 (46)

i=1 i=1
Ri(t) = Ri(t)" =0, Vi (47)

at each time step. Recall that R(t) = [Ri(t) --- R*(¢)]".
Equation (46) forces the sum of the quadratic components
of the prices to be greater than the sum of the nominal
quadratic components. Given this constraint, (43) seeks
to make the costs with prices as close as possible to the
nominal costs.

Using the same discretization scheme as in the centralized
problem, we numerically approximate local Nash equi-
libria under both the nominal costs and the costs with
pricing using the steepest descent algorithm presented in
Ratliff et al. (2013). Since the dynamics are not convex
in the state, we cannot guarantee global uniqueness of the
induced equilibrium; however by checking the 2nd-order
sufficient conditions presented in Ratliff et al. (2013),
we can show that the Nash under pricing is an isolated
local Nash. Thus control signals initialized close to the
equilibrium will converge to it under the steepest descent
algorithm.

By solving the pricing problem, we make the centralized
solution a local Nash equilibrium of the game with prices.
Moreover, we find that a wide variety of initializations for
the controls actually converge to the desired equilibrium.
Computation of basins of attraction of equilibria for this
problem and other general nonlinear problems is left as
future work.
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It should be noted that the 2nd-order sufficient conditions
for isolated local Nash equilibria are only applicable to
finite dimensional problems. Thus we can not guarantee
that we induce an isolated equilibria of the actual infinite
dimensional optimization problem but only of the finite-
dimensional discretized problem.

Figure 1 shows the control inputs and Figure 2 shows
the state trajectories for the nominal Nash equilibrium,
the centralized optimal solution, and the Nash equilibrium
under pricing.

9000

== Nominal Nash
- mmm Social Optimum
: : == Pricing Induced Nash

8000

= 6000

o
o
(=]
o

Control signals
N
[=]
(=
[=]

1.0

Fig. 1. Control signals at the nominal Nash equilibrium,
the centralized optimum, and pricing induced Nash
equilibrium.

== Nominal Nash
1600, oo e Social Optimum
1 == Pricing Induced Nash

States: Infected nodes in each network, =

2. Number of infected nodes in each network over
time. Note that the nominal Nash strategies do not
eliminate all infected nodes where as the socially
optimal strategies and pricing induced Nash strategies
do.

Fig.

Figure 3 compares the sum of the running costs. The
centralized solution as well as the Nash under pricing
reduces the total cost to the system by 8.2%. We also
see that we are able to force the sum of all the running
costs with prices to be equal to the running cost of the

centralized problem at each time step. Each individual
player’s running cost with prices is not guaranteed to be
equal to their portion of the social cost, however. As an
example in Figure 4, we plot the running costs of players
1 and 6.

2.51e8

== Nominal Nash
mmm Social Optimum
| == Pricing Induced Nash | |

i

Sum of Running Costs, ZL‘

0.0 0.2 0.4 0.6 0.8 1.0
Time, ¢

Fig. 3. Sum of individual running costs at the nominal
Nash, social optimum, and pricing induced Nash. The
fact that the social optimum cost and pricing induced
Nash cost are equal means that we can achieve budget
balance.

1.21e8

| === Player 1 - Nominal Nash
‘| == Player 1 - Social Optimum
| === Player 1 - Price Induced Nash |{
i == Player 6 - Nominal Nash
;| == Player 6 - Social Optimum
| == Player 6 - Price Induced Nash|

Running Costs, L;
(=]
[=2]

°©
S

0.2p. o

0.0 ; ) ! 0.8 1.0

Fig. 4. Individual running costs for players 1 and 6. Though
the sum of all the running costs is the same as the
social optimum under pricing, each individual player’s
running cost is different from their portion of the
social cost.

5. CONCLUSION

In summary, we have formulated a feasibility problem for
finding quadratic and linear prices to induce a socially
optimal local Nash equilibria in the context of open-loop
differential games with non-linear dynamics and general
nominal costs. In addition, we have shown that under
special conditions on the dynamics and prices, the induced
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equilibrium is the global equilibrium of the game with
prices. We apply these techniques to the problem of incen-
tivizing network managers to invest in security to prevent
the spread of epidemics. In this particular example, we
are able to design budget balanced prices that make the
socially optimal controls an isolated local Nash equilibria.

We are currently investigating computation of basins of
attraction for the equilibria of the induced game. We are
also studying the stability of the equilibria as well as
conditions to ensure uniqueness of equilibria in non-convex
games.
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