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Abstract: In this paper a novel solution to the Simultaneous Localization and Mapping (SLAM)
problem for a team of mobile robots is proposed. The algorithm aims at approximating the robots
surrounding environment by a set of polynomials, ensuring high mapping performance and low
communication cost. To this sake, once two robots meet, only the acquired polynomials data are
exchanged. Also, the algorithm has been developed trying to minimize each robot computational
requirements so that it can be implemented in a decentralized way. Numerical simulations are
reported to show the effectiveness of the proposed solution.
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1. INTRODUCTION

The problem of simultaneously localizing a mobile robot
and building a map of its surrounding environment has
been introduced for the first time by Smith et al (1986)
and since then it has received considerably attention. Until
recently, most research on this topic has involved a single
mobile robot; on the other hand, using a team of robots
to solve the SLAM problem allows to achieve the mapping
goal faster and, hopefully, with a better performance w.r.t.
the single robot case (Fox et al (2006)).

The main advantage of the multi-robot SLAM is the data
exchange between robots. When two robots meet, they
can exchange the currently acquired maps: if the two
robots have explored and mapped different parts of the
environment, after the data exchange each of them also
knows the parts detected by the other. However, a team of
coordinated mobile robots also introduces several sources
of complexity: limited bandwidth; unreliable wireless com-
munication channels; team coordination managing; shared
map managing between robots; memory requirements (de-
pending on the number of robots and the map size).

Multi-robot SLAM algorithms can be divided into two
main groups: centralized and decentralized ones. In the
first group, the main computations are performed by a
central unit receiving the information acquired by the
robots. The second group is related to decentralized algo-
rithms where each robot makes its own computations and
shares part of its own information only with the nearest
robots. A centralized approach usually ensures better
results, but if the central unit breaks, the whole algorithm
fails. On the contrary, in a decentralized context, the
algorithm works also if one of the teammates has a failure.

Thrun (2001) proposes a decentralized SLAM algorithm
combining fast maximum likelihood map growing with a
Monte Carlo localizer based on particle representation.
Authors make the restrictive assumptions of known rel-

ative robots initial positions and of overlap in robots
maps. Howard et al (2006) propose a centralized structure
for a team of mobile robots, which solves the mapping
problem using a manifold based representation for two
dimensional maps. The advantage is self-consistency when
closing loops: maps are not affected by cross over problem.

Zhou et al (2006) present a distributed Extended Kalman
Filter (EKF) algorithm to build the local feature map
for each teammate. The local maps are merged into a
single global map after rendezvous events between robots.
Tong et al (2008) propose a centralized multi-robot SLAM
solution based on an EKF that estimates a state vector
collecting the poses of the robots and the locations of
the observed landmarks. Carbone et al (2011) investigate
the SLAM problem for a multi-robot system relaxing
the assumptions made in Thrun (2001) and proposing
an application of Rao-Blackwellized Particle Filters for
the purpose of cooperatively estimating SLAM posterior;
each robot travels independently and each pair of robots
exchange the acquired information once they meet.

All the cited solutions suffer of high costs in terms of
energy consumption, since a large amount of information
must be transferred between the robots (decentralized ap-
proaches) or between the robots and the central unit (cen-
tralized approaches). Data transferring is the most energy
consuming operation in a multi-robot SLAM algorithm,
thus communications have to be correctly managed, and
the amount of exchanged data must be kept to a minimum.

The goal of this paper is to solve the SLAM problem using
a team of mobile robots with little data communications.
We propose a decentralized solution based on approximat-
ing the environment boundaries by a set of polynomials.
By the simple mathematical characterization of a polyno-
mial, exchanging such data between two robots requires a
low communication cost, saving robots’ batteries.

The paper is organized as follows: in Section 2 the problem
statement is given; in Section 3 the multi-robot SLAM
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Fig. 1. Real environment (black line), polynomial based
modeled environment (light blue line).

algorithm is described; in Section 4 numerical simulations
are shown and finally in Section 5 some conclusions are
drawn.

2. PROBLEM STATEMENT

Assume a set of N mobile robots placed in an unknown
environment is given, each robot equipped with nS sensors
Si, {i = 1, . . . , nS}, able to provide its distance from the
environment boundaries and from the other robots 1 . Con-
sider one of the mobile robots, rj , involved into the SLAM
algorithm; Fig. 1 shows the robot for the case nS = 6 (five
distance sensors and one camera). Let (x1j,k, x

2
j,k) be the

robot center coordinates at step k and θj,k be the robot
heading w.r.t. the robot axis (orthogonal to the wheels
axis). Whatever is the robot type, it can be modeled
through a set of non linear difference equations

xj,k+1 = f(xj,k, uj,k) + wj,k (1)

where xj,k = [x1j,k, x
2
j,k, θj,k]T is the state of rj at time k,

the robot input is uj,k and wj,k = [w1
j,k, w

2
j,k, w

θ
j,k]T is a

Gaussian noise with zero mean and covariance matrix Wj ,
which also takes into account for unmodeled dynamics.

Since there is no a-priori knowledge about the environ-
ment, a model for its boundaries is required. Following
D’Alfonso, Grano et al (2013), boundaries will be modeled
by a set of m-th order polynomials, as shown in Fig. 1.
At step k, each robot rj collects the polynomials that
currently map its surrounding environment in the array
Ej,k = {pqj,k}

nj,k

q=1 : see Fig. 1; in the following, to keep the
notation clear, where possible some indexes will be omit-
ted, implicitly relating all the variables to robot rj . Ne-
glecting the time dependency, each m-th order polynomial
p(ξ) =

∑m
i=1 b

q
i ξ
i + cq0 is represented by a coefficient cq0,

related to the polynomial position, and by a set of coeffi-
cients {bqm, b

q
m−1, · · · , b

q
1} related to the polynomial shape.

As shown in Fig. 1 for sensor S3, the measurement taken by
sensor Si is the distance from the robot center to one point
on the environment boundaries, Q̃i = (x̃1i , x̃

2
i ). This mea-

surement is modeled through the distance from the robot
center to the intersection point, Qi = (x1i , x

2
i ), between

the axis of sensor Si and one of the environment modeling
polynomials. As shown by D’Alfonso, Grano et al (2013),

1 For example, cameras could be used and each robot could be
marked with a different marker.

since the orientation βi of each sensor w.r.t. robot axis is
known, measurements are a function of the robot state and
of the polynomials intercepted by sensors beam:

yk = h(xj,k, pk) + vj,k, (2)

where the size of vector yk is nS , pk collects the polynomi-
als intercepted by each sensor axis at time k and vj,k is the
measurement noise, assumed to be a zero mean Gaussian
noise with covariance Vj and uncorrelated with wj,k. The
noises, vj,k and wj,k, affecting each robot rj are assumed to
be uncorrelated with the noises affecting the other robots.

Goal of this work is to estimate the position and orienta-
tion of each robot, xj,k = [x1j,k x

2
j,k θj,k]T , j = 1, . . . , N ,

and to simultaneously find the best polynomial approxi-
mation of each of the environment portions detected by
the robots, i.e., Ej,k, j = 1, . . . , N .

3. MULTI-ROBOT SLAM

Two main parts may be detected into a multi-robot
SLAM algorithm: (1) the part regarding the single robot
behavior and (2) the part about the robots behavior
when they meet. Regarding the first part, since the robot
is equipped with its own sensors, it is able to build a map
and localize itself on its own. As for the second part, the
idea is to use the data exchanged between two robots once
they meet and are involved into a rendezvous event.

Each SLAM algorithm is based on an estimation algo-
rithm to localize the robot and simultaneously build the
environment map. The most used SLAM estimator in the
literature is the Extended Kalman Filter (EKF), which
can be easily adapted to the SLAM context by defining an
augmented state containing both the robot pose and the
environment landmarks.

3.1 Single robot SLAM

In the following, for the sake of simplify notation, the sub-
script index j will be omitted, assuming all the variables
implicitly related to the robot rj . The proposed single
robot SLAM approach is based on the use of two types
of landmarks: shape landmarks and innovation landmarks.
The first ones are the modeling polynomials coefficients;
as proposed by D’Alfonso, Grano et al (2013), they are
used as landmarks into the SLAM landmark extraction
and data association steps. Innovation landmarks are the
polynomials position coefficients, and they are inserted
into the SLAM augmented state and used into the Kalman
filter steps. The resulting augmented state is, for each
robot, Xk = [xTk , c

1
0,k, . . . , c

nk

0,k]T .

This strategy comes spontaneously as we use distance sen-
sors: the Kalman Filter innovation term is used to change
the polynomials position coefficients, moving each map-
ping polynomial towards or away from the robot, while
keeping its shape. In other words, the landmark extraction
process is used to get the shape of the polynomials while
their positions are changed according to the Kalman Filter.

Following the same lines in D’Alfonso, Grano et al (2013),
the resulting EKF based SLAM algorithm contains a
SLAM step made of a landmark extraction and data asso-
ciation task and an update task. The goal of the proposed
landmark extraction and data association algorithm is to
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obtain an accurate environment approximation by storing
the smallest possible amount of data and by requiring a
small enough computational cost to elaborate them during
robot motion. In the following, for the sake of simplicity,
the computations will be referred to x1-variate polyno-
mials but the landmark extraction and data association
algorithm has been developed so that the map is formed
by both x1-variate and x2-variate polynomials.

At each step k, using the robot pose prediction x̂k|k−1
and the measurements yk provided by the sensors, the
landmark extraction and data association process modifies
the polynomials set Ek−1 into Ek. First, starting from
x̂k|k−1 and yk, points πik, i = 1, . . . , nS are obtained as

πik =

[
x̂1k|k−1 + yi,k cos(θ̂k|k−1 + βi)

x̂2k|k−1 + yi,k sin(θ̂k|k−1 + βi)

]
(3)

where yi,k is the measurement provided by sensor Si at
step k and βi is the i-th sensor heading w.r.t the robot
axis. These points can be seen as an approximation of the
points Q̃i (see Fig. 1) due to the estimation errors and
measurements errors.

For each point πik, the data association process is per-
formed. As a first step, among the polynomials in Ek−1, the
one best approximating πik is found. Given a polynomial
segment p, denote by Qm and QM its starting and ending
points: if a point π is in the region approximated by p, then
the approximation error is the LMS error due to the use
of p in modeling π; otherwise we define the approximation
error as min(||Qm − π||2, ||QM − π||2): see Fig. 2. Let p∗k
be the polynomial best approximating πik and let εk be
the related approximation error. The error is checked and
three cases may occur.

The first one is related to a good approximation, that is
εk ≤ ρk, where ρk > 0 is a given threshold; in this case no
further actions are performed.

The second case is ρk < εk ≤ σk, where σk is a given
threshold; here, p∗k should be used to approximate πik but
it is not good enough in modeling this point. The point
πik is then stored into the set Qbad(p∗k), which contains the
points that should be approximated by p∗k but their related
approximation error is too high.

The last case is related to σk < εk; in this situation the
approximation error due to the use of p∗k in modeling πik
is too high and the point is considered to be related to
an environment portion not modeled into the map yet. A
set of points clusters, Zk−1 = {Zj , j = 1, . . . , nz} is used
and each cluster contains a set of environment boundaries
points which have not been mapped yet. Point πik is then
inserted into the cluster Zj ∈ Zk−1 containing the largest
number of points neighbors, in a radius R, to πik. If there
is no cluster that contains at least a point neighbor to πik,
a new cluster is created containing only this point.

As for the ρk and σk thresholds, they are set at each step
considering the current estimation error: the bigger the
error is, the higher each threshold has to be set, in order
to not refuse correct approximation situations due to an
unreliable state estimation. A possible way to set them is

σk = σ + (σ − σ)(||KP0|| − ||KP0 − Pk|k−1||)/||KP0||
ρk = ρ+ (ρ− ρ)(||KP0|| − ||KP0 − Pk|k−1||)/||KP0||

,

where σ, σ (ρ, ρ) are the thresholds minimum and maxi-
mum allowed values, respectively, P0 is the initial predic-
tion error covariance matrix value and K > 0 is one of the
algorithm parameters.

The main idea behind the above equation is to use a
threshold linearly varying w.r.t. the prediction error co-
variance matrix Pk|k−1 in a range ∅ ≤ Pk|k−1 ≤ KP0.
If Pk|k−1 > KP0 then the prediction error covariance
matrix is too large and the filter is considered diverging.

Let now consider the case where ρk < εk ≤ σk; if after
including the point πik within Qbad(p∗k) the number of
points in the above set becomes larger than a threshold
εM , then p∗k is modified to better adapt it to the badly
approximated points. To this end, a set R of εM equally
spaced points on p∗k, is computed. A new polynomial p is
now computed by minimizing the least mean square error
due to the use of a m-th order polynomial to approximate
the points contained inQbad(p∗k)

⋃
R. The new polynomial

p will be used to map the environment and will substitute
the polynomial p∗k; the related set of badly approximated
points will be an empty set, Qbad(p) = ∅.
Where εk > σk, if after including point πik into a cluster Z
the number of points in that cluster becomes larger than a
threshold εZ , then the cluster is removed from Zk−1 and
a new polynomial p is computed by finding the best LMS
m-th order polynomial approximation for the points in Z,
and that polynomial is inserted in the landmarks set Ek−1.

When all the currently acquired points {πik, i = 1, . . . , nS},
have been used, the obtained landmarks set Ek−1 and the
clusters set Zk−1 become the updated environment map:
Ek = Ek−1 and Zk = Zk−1.

The dimensions of the augmented state Xk and of the
matrices involved into the filter are time varying, since
the number of polynomials used to map the environment
changes during the SLAM process. For each change in the
landmarks there is a change in the augmented estimation
error covariance matrix Pk and in Xk. More precisely,
for each landmark added/removed, the related position
coefficient is added/removed from Xk. As for the Pk
matrix, if a landmark is removed from the map, the related
rows and columns are removed from the covariance matrix;
if a new landmark is inserted into the map, then, as shown
in Neira et al (2001), that matrix becomes

P̃k = GxPkGTx +GyV G
T
y , Pk = P̃k, (4)

where the Gx and Gy matrices are computed as

Gx =
∂g(x, y)

∂x

∣∣∣∣ x = x̂k|k−1
y = yk

, Gy =
∂g(x, y)

∂y

∣∣∣∣ x = x̂k|k−1
y = yk

, (5)

and g(x, y) is the landmark generation function used
to obtain the new landmark. Using that update rules
the augmented state and the estimation error covariance
matrix are properly modified according to the variations
in the environment mapping.

3.2 Data exchange process

The second part of a multi-robot SLAM algorithm is
related to the interactions of robots once they meet. Let
the robots poses be given in the absolute reference frame.
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Fig. 2. Polynomial approximating region and approxima-
tion errors.

Each robot rj starts its path from an unknown initial
position xj,0, j = 1, . . . , N . As a consequence, each robot
assumes to start from x̂j,0 = [0 0 0]T and uses this pose as
its relative mapping and localization reference frame.

Let Rj,k be the reference frame consistent with robot rj
at step k: it is centered on robot rj estimated position

(x̂1j,k, x̂
2
j,k) and its x1 axis is rotated of an angle θ̂j,k w.r.t.

the robot relative reference frame Rj,0. The algorithm
outputs will be the robots estimated trajectories and maps,
x̂j,k,Ej,k, j = 1, . . . , N , and they will be related to the
relative robot reference frame Rj,0, and thus biased w.r.t.
the absolute reference frame by xj,0 offsets, respectively.

Each robot starts its path into the environment, taking
measurements by its distance sensors and running its own
SLAM algorithm. No assumptions are made about robots
relative pose; they move as they were on their own and
interact only when a rendezvous occurs. A rendezvous
happens when two robots rj and rl detect each other; in
that case, the two robots establish a connection allowing rj
sending its map Ej,k to rl and vice versa. This event is

denoted by the involved robots (rl, rj) and the time step it

occurs, k. In the following, the index l will denote the robot
that sends the data, while the index j will denote the robot
that receives data from rl.

To use the map El,k, received by rl, robot rj has to rotate

and translate this map w.r.t. its own reference frame Rj,0,
coping with the bias due to the different reference frames.
This transformation translates each polynomial in El,k,

expressed in Rl,0, into the reference frame Rj,0. However,
when a polynomial is rotated, the resulting curve is no mo-
re a polynomial in the new reference frame, unless m = 1.
To face this problem, once rj has received the coefficients
of a m-th order polynomial p from rl, it approximates the
polynomial by a piecewise linear approximation made of a
set of segments {sτ , τ = 1, . . . , T }.
After the segments {s1, . . . , sT } have been obtained, their
starting/ending points are rotated and translated to ex-
press them into the rj reference frame. This transforma-
tion is obtained by finding the transformation matrix Tl0,j0
from the reference frame Rl,0 to the reference frame Rj,0.
As shown in Carbone et al (2011), the transformation
matrix can be found using the rendezvous information:

Tl0,j0 = Tj,j0 Tl,j T
−1
l,l0,

where Tl,l0 is the transformation matrix from the reference
frame Rl,k consistent with robot rl during the rendezvous

to the reference frame Rl,0. Along the same lines, Tj,j0 is
the transformation matrix from the reference frame Rj,k to

the reference frame Rj,0. The transformation matrices are

Fig. 3. Landmarks merging situations: (a) p2 included
into p; (b) polynomials have an overlapping region.

found using the information about x̂l,k|k and x̂j,k|k, respec-
tively. Finally, Tl,j is the transformation matrix from Rl,k
toRj,k, and it depends on the relative pose between robots:

Tl,j =

[
cos(ϑl,j) − sin(ϑl,j) dl,j cos(ϑl,j)
sin(ϑl,j) cos(ϑl,j) dl,j sin(ϑl,j)

0 0 1

]
,

where dl,j is the relative distance between robots, and
ϑl,j = π + αl,j − αj,l; angles αl,j and αj,l are shown in
Fig. 4. Using Tl0,j0, the map El,k is transformed into a

map in the rj reference frame. Let this map be El→j,k,:

robot rj can now update its own map by adding to it
El→j,k.

Remark 1 The solution here proposed only requires to
transfer the environment modeling polynomials from the
previous rendezvous to the current one, thus the amount
of data to be transferred is extremely low. Moreover, if two
robots meet more than one time, they have to exchange
only the polynomials extracted after the last rendezvous.

Remark 2 The proposed strategy uses polynomials to
model the environment and then approximates them as
a set of segments when they have to be rotated. An
alternative approach could be the direct use of segments,
as shown in Castellanos et al (2007). However, using
polynomials instead of lines is expected to yield to better
mapping results, and if the segments based approximation
before the rotation is sufficiently accurate, the resulting
set of rotated segments should preserve the accuracy due
to the polynomial approximation.

3.3 Map merging

Map merging is a problem of interest for both the single
robot and the multi-robot SLAM context, because in both
cases, when a new landmark p is obtained from another
robot or it is extracted from current measurements, it has
to be compared to previously acquired ones and eventually
merged with one of them. Following the same lines as in
Pedraza et al (2009), the map merging process is based on
the geometrical analysis of the polynomial landmarks.

Two cases may occur: in the first case, the extrema of p are
included or completely include the extrema of a mapping
landmark p2: see Fig. 3(a); in the second case, the two
polynomials p and p2 overlap for a sufficiently large region:
see Fig. 3(b). In both cases, let Q0, Q1, . . . , Qm be m + 1
equally spaced points on p in the overlapping region be-
tween p and p2: see Fig. 3(b). Let γ be the LMS approx-
imation error due to using p2 in mapping the Qi points.
If γ is lower than a threshold γM , then p and p2 are merged
by creating a new LMS polynomial from εM points equally
spaced on p and εM points equally spaced on p2.
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Fig. 4. Reference frames involved in coordinate transfor-
mation during a rendezvous event.

To summarize, three landmark creation situations may oc-
cur: (1) a new landmark is created from measurements not
mapped yet; (2) an existing landmark is modified because
of a high number of badly approximated measurements;
(3) a new polynomial is computed by merging two existing
ones. In all the cases, a weighted LMS technique is used.
The badly approximated points and the not mapped points
are weighted by 1/||Pk|k−1||, where Pk|k−1 is the covari-
ance matrix related to the predicted pose used to compute
that point. The points in R are weighted using the inverse
covariance related to the innovation landmark relative to
the polynomial to be updated; the same technique is used
in the third case for the polynomials to be merged. As a
consequence, the function g(x, y) of equations (5) is the
weighted least mean square function: depending on the
landmark creation, its derivatives are computed taking
into account polynomials rotation, translation and update.

4. NUMERICAL RESULTS

To assess the performance of the proposed algorithm,
numerical simulations have been performed using N = 3
differential drive robots, each one assumed to be equipped
with five distance sensors to detect the environment and
one camera to ensure other robots detection.

A set of 100 numerical simulations have been performed
with the following parameters: sampling period T = 1 s,
m = 3, ρ = 0.08 m, ρ = 0.24 m, σ = 0.1 m, σm = 0.3 m,
εM = 5, εZ = 10, K = 150, R = 0.35 m, γM = 0.35 m.
Distance sensors are assumed to be affected by a Gaussian
noise with zero mean and standard deviation of 0.02 m.
The process noise is assumed to have a standard deviation
of 0.001 m on the position and of 0.01 degrees on the
heading. A matrix P0 = diag{0.052, 0.052, 0.01752} has
been used as initial estimation error covariance matrix for
all the robots.

The robots move in the environment shown in Figs. 5,
6, 7 and their angular velocities have been precomputed
to make them follow the shown paths. Each robot moves
in only a part of the environment and could not map
all the environment boundaries on its own. Each path
has been performed in kf = 200 steps ensuring rendezvous
only between robots r2 and r3. To evaluate the algorithm
localization performance, a NEES index (Bar-Shalom et al
(2001)) has been used:

µj =
1

kf + 1

kf∑
k=0

[
xj,k − x̃j,k|k

]T
Pj,k|k

[
xj,k − x̃j,k|k

]

Table 1. Averaged indexes over 100 simulations

robot r1 robot r2 robot r3

µj 1.66 · 10−6 4.66 · 10−7 1.02 · 10−6

νj 0.17 m 0.19 m 0.34 m

τj 0.61 s 0.66 s 0.62 s

where Pj,k|k is the robot rj localization error covariance
matrix and x̃j,k|k is the robot rj estimated pose in the
absolute reference frame (compensating the bias due to
the use of x̂j,0 = [0 0 0]T ).

The mapping performance has been evaluated through
a further index νj . The proposed SLAM algorithm pro-
vides a set of mapping polynomials for each of the in-
volved robots: Ej = {pqj}

nj

q=1. A curvilinear abscissa
is defined on each polynomial and a set of equally
spaced points is taken on the polynomial shape using
a step of 0.01. For each point Qiq,j on polynomial pqj
extracted by robot rj , the distance δiq,j between this
point and its nearest real environment boundaries point is
computed, and used to obtain the overall mapping error:

νj =
1

nj

nj∑
q=1

νq,j , where νq,j =
∑
i

δiq,j .

Averaged results for µj , νj and the computation time 2 τj ,
over the 100 simulations are shown in Table 1.

Typical results of the proposed SLAM algorithm are shown
in Figs. 5, 6, 7 for the three robots. Fig. 8 shows the
results of a single robot SLAM algorithm for robot r3.
Due to the chosen trajectories, robot r1 is not involved
in any rendezvous event and, as shown in Fig. 5, its
map is incomplete and only related to a part of the
environment. Moreover, using a multi-robot approach, the
environment parts detected by both the robots involved
into a rendezvous event are more accurately mapped
w.r.t. the single robot case, thanks to the use of more
measurements acquired in different locations; see the left
up environment part in Figs. 7 and 8.

Table 1 shows that both the error due to robots pose
localization and the one related to environment mapping
are very low, thus the proposed algorithm is efficient in
solving the SLAM problem. Moreover, the computation
times are sufficiently low w.r.t. the chosen sampling period
to use the algorithm in real time during robots motion.

5. CONCLUSIONS

A novel solution to the Simultaneous Localization and
Mapping problem for a team of mobile robots has been
proposed. The algorithm is based on approximating the en-
vironment by a set of polynomials, the use of which ensures
high mapping performance. Also, when two robots are
involved into a rendezvous, only the acquired polynomials
data have to be exchanged, with a low communication
effort. Once a robot has received the information from
another one, it transforms this information in its own ref-
erence frame by means of simple geometric considerations.

2 The algorithm computation times have been computed using
Matlab R2012 running on an Intel(R) Core(TM) i7 Q720 CPU
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Fig. 5. Multi-robot SLAM result for robot r1; green:
mapped environment; red: real environment; blue:
real pose; dashed red: estimated pose.

Fig. 6. Multi-robot SLAM result for robot r2; green:
mapped environment; red: real environment; blue:
real pose; dashed red: estimated pose.

Numerical simulations have shown the effectiveness of the
proposed algorithm both in mapping the environment and
in localizing the robots.

Experimental tests using a team of Khepera III mobile
robots (by K-TEAM Corporation) in a real environment
are in progress to further validate the proposed technique.

REFERENCES

Smith, R. C., and Cheeseman, P. (1986). On the repre-
sentation and estimation of spatial uncertainty. Int. J.
Robot. Res., 5(4), 56–68.

Fox, D., Ko, J., Konolige, K., Limketkai, B., Schulz, D.,
and Stewart, B. (2006). Distributed multirobot explo-
ration and mapping. Proc. IEEE, 94(7), 1325–1339.

Thrun, S. (2001). A probabilistic online mapping algo-
rithm for team of mobile robots. Int. J. Robot. Res.,
20(5), 335–363.

Howard, A., Sukhatme, G., and Mataric, M. J. (2006).
Multirobot simultaneous localization and mapping
using manifold representations. Proc. IEEE, 94(7),
1360–1369.

Zhou, X. S., and Roumeliotis, S. I. (2006) Multi-robot
SLAM with unknown initial correspondence: the robot
rendezvous case. Proc. RSJ Conf., Beijing, China,
Oct. 9-15, 2006, pp. 1785–1792.

Tong, T., Yalou, H., Jing, Y., and Fengchi, S. (2008).
Multi-robot cooperative map building in unknown en-
vironment considering estimation uncertainty. Proc.

Fig. 7. Multi-robot SLAM result for robot r3; green:
mapped environment; red: real environment; blue:
real pose; dashed red: estimated pose.

Fig. 8. Single robot SLAM result for robot r3.

CCDC Conf., Yantai, Shandong, China, July 2-4, 2008,
pp. 2896–2901.

Carbone, L., Kaouk Ng, M., Du, J., Bona, B., and Indri, M.
(2011). Simoultaneous localization and mapping using
Rao-Blackwellized particle filters in multi robot systems.
J. Intell. Robot. Syst., 63(2), 283–307.

D’Alfonso, L., Grano, A., Muraca, P., and Pugliese, P.
(2013). A polynomial based SLAM algorithm for mobile
robots using ultrasonic sensors - Experimental results.
Proc. ICRA Conf., Montevideo, Uruguay, November
25-29, paper #0111.
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