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Abstract: The state estimators used in real-time power system control centers now process bad data as a 
standard routine. With the introduction and deployment of phasor measurement units (PMUs), it is 
possible to model power systems, even with their time-varying nature, in real-time. However, PMUs 
remain vulnerable to providing bad data for several reasons. In this paper, a new intelligent framework, 
the cellular computational network (CCN), is introduced for the decentralized predictive modeling and 
dynamic state estimation (DSE) of a power system with PMU data. The CCN-based DSE is resilient to 
interactions between multiple segments of bad data from one or more PMUs. 
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1. INTRODUCTION 

State estimation (SE) is the process of assigning a value to an 
unknown system state variable based on measurements from 
that system according to some criteria. As power systems 
become increasingly stressed and growing market activities 
cause rapid power flow changes, system operators must make 
decisions based on an accurate real-time model of the power 
system derived in a timely manner using SE. Many 
applications in real-time control centers depend on SE, 
including energy management systems (EMS), automatic 
generation control, contingency analysis, economic dispatch, 
load forecasting and optimal power flow. The weighted least 
squares (WLS) estimation method is the most commonly 
used technique in power system SE.  

In order for the state estimator to estimate the state variables 
accurately, it must be provided with both accurate 
measurements and an accurate network model (Mili et al., 
1985). The network model, which consists of the network 
connection model and network parameter models, is assumed 
to be known in the SE problem. The network topology and 
parameters may be erroneous. For example, in one well-
known instance, the WLS state estimator failed to converge 
due to the existence of a topological error, indirectly 
contributing to the August 2003 blackout of the northeastern 
United States. 

The SE methods commonly used today are very sensitive to 
bad data (Mili et al., 1985).  Bad data detection involves 
determining whether the measurement set contains any bad 
data. Bad data usually are classified based on the type, 
location and number of measurements containing an error. 
Broadly, errors are classified as single bad data, meaning that 
only one measurement in the set of measurements has a large 

error, or multiple bad data, which are further classified as 
multiple either interacting or non-interacting bad data.  

A system’s state can be estimated indirectly in the presence 
of bad data using mathematical and intelligent computational 
approaches. The process involves detecting, identifying and 
removing bad data. Examples of mathematical approaches 
include the chi-square distribution test, the largest normalized 
residual test, and hypothesis testing identification. Intelligent 
computational methods, including heuristic methods, require 
either intensive training under different conditions or 
computationally demanding methods (Khwanram and 
Damorongkulkamjorn, 2009; Asada et al., 2005).  

The integration and increasing penetration of renewable 
energy sources into the power grid demands the use of 
dynamic state estimation (DSE) that can model the time-
varying nature of the power system (Arminifar et al., 2014). 
The introduction and deployment of phasor measurement 
units (PMUs) makes it possible to obtain synchronized 
phasors, the frequency and the rate of change of frequency 
(ROCOF) at 25/30 samples per second, or higher. These 
measurement devices allow for DSE. Adding PMU data to 
existing SE improves its reliability and robustness (Wu and 
Giri, 2006). However, PMUs remain vulnerable to providing 
bad data for several reasons including measuring equipment 
and communication channel failures, and cyber-attacks 
(Beasley et al., 2014) 

In this paper, a new intelligent framework, the cellular 
computational network (CCN), is introduced for 
decentralized predictive modelling and DSE of a power 
system from synchrophasor data. It is shown that the CCN-
based DSE is resilient to single and multiple interacting and 
non-interacting bad data from one or more PMUs. 
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2. CELLULAR COMPUTATIONAL NETWORK 

A CCN (Fig. 1) is a framework that may contain several 
layers (1 to N) of computational units (1 to n) that are 
interconnected in a specific manner in order to capture the 
spatial-temporal dynamics of one or more phenomena in a 
complex system. Each cell in a CCN layer is a computational 
node (Fig. 2) consisting of a communication unit, a 
computational unit and a learning unit. The communication 
unit is responsible for communication between cells in the 
same neighbourhood; the computational unit is responsible 
for performing computations on the input data to produce the 
desired output; and the learning/adaptation unit is responsible 
for dynamically adjusting the parameters of the 
computational unit in order to achieve the desired output.  
 
The CCN can be implemented in a centralized or 
decentralized fashion. In other words, all the cells of the CCN 
can be spatially co-located in one central location, or the cells 
can be spatially distributed. A multi-processor platform at a 
data center is suitable for the former, whereas the latter 
requires a spatially distributed computing platform. In either 
case, the processors and platforms must communicate 
through at least one of several types of communication 
channels having different communication latencies.  
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Fig. 1 A multi-layered (N) cellular computational network. 
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Fig. 2.  Generic cell of a CCN consisting of three units: 
communication, computational and learning. 

 
The computational units used in each of the cells can either 
be deterministic, as in a mathematical model, or heuristic, as 
in a neural network. The CCN cells can be homogeneous, 
meaning that only one kind of computational unit exists in 
the entire network, such as in a mathematical model, or 
heterogeneous, in which some of the computational units are 
mathematical models while some are neural network based. 
Furthermore, each mathematical model or neural network can 
be different. 
 

The learning/adaptation unit must adapt the parameters of the 
computational unit using, for example, a backpropagation 
algorithm, if the computation unit is a feedforward multi-
layered neural network (Werbos, 1994). In the case of 
recurrent neural networks, the learning algorithm can be 
backpropagated through time (Werbos, 1994). A special case 
of the CCN is a cellular neural network (Luitel and 
Venayagamoorthy, 2011; Luitel and Venayagamoorthy, 
2012). 

3. MODELING POWER SYSTEM DYNAMICS          
USING CCN 

The CCN framework is unique because the power system’s 
topology information is captured through the 
interconnections between the cells. The online dynamics of 
the power system are updated continuously with 
measurements made available through PMUs and other 
sensors, as illustrated in Fig. 3 for the IEEE68 test system 
with PMUs on all generator and other selected buses.  
 

 
 

Fig. 3 New York-New England-IEEE 68 bus power system. 

The power system is mapped using a CCN consisting of 16 
cells for the speedNet (generator speed deviation prediction 
layer) and 68 cells for the voltageNet (bus voltage prediction 
layer). In a two-layered CCN consisting of two statevarNets, 
the inter-dependency of system variables in the actual system 
is represented by the interconnection of the cells across the 
statevarNets. Information is shared between the neighboring 
cells of different statevarNets. For example, the speed and 
voltage state variables can be coupled at the generator buses. 
Therefore, a cell that maps a generator bus in voltageNet and 
a cell that maps a generator in speedNet are connected and 
share information. 
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The CCN-based speedNet is shown in Fig. 4. The 
connectivity of the cells was determined by a sparse 
neighborhood matrix in which each generator was assumed to 
be connected to its n nearest neighbors. If each generator is 
connected to the two nearest generators, each cell will be 
connected to the other two cells. In systems with more than 
two generators, the electrical distance between the generators 
can be considered as the neighborhood criteria. The 
neighborhood size was chosen in order to allow full 
connectivity of the components and to avoid islanding of 
cells. 

 
Fig. 4 speedNet for the IEEE 68 bus power system. The 
orange cells are connected with neighbourhood > 2, whereas 
the other cells have a neighbourhood = 2 (Luitel and 
Venayagamoorthy, 2012).   

4. RESULTS AND DISCUSSIONS 

4.1  CCN-Based Predictions 

The typical speed deviations and voltages predicted/estimated 
using CCN appear in Figs. 5 and 6, respectively, for a 10-
cycle, 3-phase line-to-ground fault on bus 8 (Fig. 3). Fig. 7 
depicts a scatter plot with the coefficients of determination of 
all the cells in the speedNet and voltageNet. The plot shows 
results for light loading (base case) and heavy loading 
conditions. During heavy loading, the real and reactive 
powers of the loads in the base case increased by 20% and 
5%, respectively. 

4.2  Handling Loss of Data 

Fig. 8 shows the connections to the cell that predicts the 
speed deviation of generator G10 based on the topology of 
the power system in Fig. 3 and its corresponding CCN-based 
modelling in Fig. 5. 

Fig. 9 shows the results for a single-channel intermittent 
failure in the data input to cell C10. The PMU data 
transferred from generator G10 into cell C10 experienced 
intermittent failure during a 10-cycle, 3-phase short circuit 
for two seconds (20 samples at 100ms sampling rate). At a 
PMU data rate of 30 Hz, one in three PMU samples were 
streamed to the CCN. Due to cell C10’s connectivity, the 
speed deviation estimation of generator G10 was still 
reasonable.  

 
Fig. 5 CCN-based speedNet results of generator speed 
deviation predictions (G1, G2, G3, G11, G12 & G13 – Fig. 
3). 

 
Fig. 6 CCN-based voltageNet results of bus voltage 
predictions (buses 5, 6, 7, 8, 9, 20, 30, 40, 54, 60 & 68). 
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Fig. 7 Coefficients of determination of cell outputs of the 
two-layered CCN-based speedNet and voltageNet. 
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Fig. 8  Data links/connections to the cell (C10) modelling 
generator G10 dynamics. The data links are from the 
neighbouring generators (G1, G11, G12, G14) and itself. 
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Fig. 9 Loss of generator G10 PMU data. 

Figs. 10 through 13 show the prediction of the speed 
deviation of generators in the presence of multiple interacting 
bad data. The bad data occurred as a result of many multiple 
meter (PMU) failures lasting from 100 ms to 2 seconds.  
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Fig. 10 Generator speed deviation prediction by the CCN-
based speedNet with loss of data from one to five PMUs 
lasting 100 ms. 
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Fig. 11 Generator speed deviation prediction by the CCN-
based speedNet with loss of data from one to five PMUs 
lasting 500 ms. 
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Fig. 12 Generator speed deviation prediction by the CCN-
based speedNet with loss of data from one to five PMUs 
lasting 1 second. 
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Fig. 13 Generator speed deviation prediction by the CCN-
based speedNet with loss of data from one to five PMUs 
lasting 2 seconds. 
 
Figs. 10 through 13 indicate that data loss did not severely 
degrade the prediction of the CCN-based speedNet. The same 
is observed with the voltageNet outputs. The CCN 
framework suppressed the propagation of bad data through its 
network. 

5. CONCLUSIONS 

A new intelligent framework known as the cellular 
computational network has been introduced for the predictive 
modelling and dynamic state estimation of power systems. 

This decentralized, nonlinear, computational approach is 
based on real-time data. The CCN-based DSE exhibited 
resilience to loss of single and multiple interacting and non-
interacting data from one or more PMUs. Energy 
management system (EMS) applications could be executed in 
real-time with a high confidence level using the CCN-based 
dynamic state estimator. Ongoing research involves 
developing EMS applications based on CCN. 
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