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Abstract: Several dynamic models are able to represent the phenomenological behaviour
of a flotation process. In addition, the interest in developing control strategies for large-
scale processes has led to formulate novel methodologies which allow to consider the global
performance of a plant, facilitating the design, validation and evaluation of more complex
optimizing control strategies. In this work, we first develop a dynamic hybrid model for flotation
which is calibrated with industrial data. Subsequently, a hybrid prediction model is obtained by
applying identification techniques to the different scenarios and it is used to formulate a hybrid
model predictive control (HMPC) strategy for flotation. Our simulation results show that the
proposed methodology is suitable for modelling the behaviour of a flotation process and its
control stage. This is achieved minimizing the tail grade of a flotation line considering several
operating modes and constrains, providing a robust hybrid model predictive control strategy.

Keywords: Mineral processing, Flotation process, Nonlinear identification, Hybrid systems,
Hybrid model predictive control.

1. INTRODUCTION

One of the most common processes of a mineral pro-
cessing plant is flotation, whose aim is to increase the
concentration of valuable mineral with the highest possible
selectivity. This process takes place in cells which receive
pulp from the grinding stage. Actually, the interest in
developing control methodologies for large scale processes
has led to propose new approaches for flotation facilitating
the design, validation and evaluation of more complex
control strategies.

To date, several dynamic models have been developed to
represent a flotation cell or a set of them. The simplest
are hydraulic models used to evaluate control strategies of
pulp levels (Stenlund and Medvedev, 2002), (Kämpjärvi
and Jämsä-Jounela, 2003). A second group are the mass
balance models based on mineralurgical conditions of one
phase (Casali et al., 2002), (Sbarbaro et al., 2008) and two
phases (Pérez-Correa et al., 1998), (Rojas and Cipriano,
2010). However, the mentioned models only consider the
dynamic evolution of a cell under a single operating mode.
Recently, new efforts have been applied to solve this
problem developing models for training operators (Ortiz
and Toro, 2013), plant simulators (Bergh et al., 2013)
and mineralurgical predictions (Putz and Cipriano, 2013)
which consider different operating modes of a flotation cell.

Moreover, multivariable predictive control methodologies
have been applied to flotation process. Cortés et al. (2008)
proposed the application of a control strategy for stabiliz-
ing the process, generating increases in the copper recov-
ery. Similarly, Foroush et al. (2009) proposed froth thick-
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ness control allowing improvement of concentrate miner-
alurgical characteristics and Bergh et al. (2013) developed
supervisory control strategies.

In this paper, we first develop a dynamic hybrid model
for a flotation cell to obtain a rougher simulator for
control design validated with industrial data. Then, a
hybrid model predictive control (HMPC) strategy for
the plant is proposed obtaining hybrid prediction models
through identification techniques with data generated by
the simulator. This methodology is easily applicable to
other flotation stages (regrinding, scavenger and cleaner)
and considering different operation lines.

1.1 Plant description

Flotation is a physicochemical separation process widely
used in the mining industry. It is based on the charac-
teristics of hidrophobicity of mineral particles that form
part of the pulp. These characteristics are generated by
the use of reagents (collectors, depressants and foaming)
and injection of air into the cell (Wills and Napier-Munn,
2006).

Figure 1 shows the typical configuration of a flotation
process. This consists in a set of cells in series grouped into
banks connected by controlled valves. Each line is actuated
by a discrete valve, which controls the admission of pulp
from the grinding stage. The process delivers concentrate
and tail where the first is accumulated in a collector tank
and sent to a regrinding stage. The second is discarded in
tailing dams.

The current control strategies for rougher flotation have
focused on the use of PID controllers for pulp levels, con-
figured in local operator stations or in Distributed Control
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Systems (DCS). Additionally, many variables influence
this process such as levels of pulp, air flow, rate of froth
and bubble size. In the feed flow the critical variables are
the mineral law, particle size and percent of solids (Cortés
et al., 2008).
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Fig. 1. Plant scheme

2. DYNAMIC HYBRID MODEL

A hybrid system is a dynamic representation whose be-
haviour is determined by the interaction between con-
tinuous and discrete dynamics governed by logical rules
(Paoletti et al., 2007). These type of systems allow to
represent complex dynamics and its evolution over time in-
volves transitions between different operating modes which
is very common in large mineral processing plants.

2.1 Operating modes

The plant evolution through the different operating modes
is achieved by using auxiliary logical variables (Bemporad
and Morari, 1999). These allow to generate instant changes
in the continuous components of the system, represented
by differential equations. According to the first approach
developed by Putz and Cipriano (2013) which explains
a hybrid dynamic model available only for three, each
flotation cell is modelled considering a set of auxiliary
logical variables and its evolution is determined by the
following logical rules:

[

δi1 = 1
]

⇔
[

hi
p ≤ hi

c

]

(1)
[

δi2 = 1
]

⇔
[

hi+1
p ≥ ∆hi

]

(2)
[

δi3 = 1
]

⇔
[

hi
p + hi

e ≥ hi
c

]

(3)

Where δi1, δ
i
2 and δi3 are auxiliary logical variables with

i ∈ {1, 2, . . . , n} the cell number, hi
p the pulp level, hi

e

the froth height, hi
c the maximum height of the cell i and

∆hi the height difference between the cells i and i + 1.
Figure 2 shows the evolution of the four operating modes
of a flotation cell which are: (1) Cell operation without
concentrate overflow and without pressure influence of
next cell, (2) Cell operation without concentrate overflow
but with pressure influence of next cell, (3) Normal cell
operation with concentrate overflow and (4) Presence of
pulp in the concentrate overflow.
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Fig. 2. Cell operating modes where
[

δi1 δi2 δi3
]

2.2 Cell flotation model

The mineralurgical model of Pérez-Correa et al. (1998)
represents the behaviour of a flotation cell by the inter-
action between two phases: pulp and froth. Additionally,
it also considers the following mass flows: feed, tail and
concentrate, as shown in figure 3. Our hybrid dynamic
model is based on the following assumptions: (1) Each
phase of the cell is perfectly mixed, (2) There is transfer
between both phases depending on the collection rate of
pulp phase and the drainage rate of froth phase, (3) m
different granulometries are considered and (4) Flotation
cell has constant area.

By performing a mass balance for each phase and consid-
ering all operating modes set in figure 2, we obtain the
following mineralurgical balance inside a cell:

ṁi
p = Mi

f +αi
em

i
e −

[

αi
p +

Qi
t

V i
p

(

1− ǫip
)

]

mi
p (4)

ṁi
e = αi

pm
i
p −

[

αi
e +

Qi
c

V i
e (1− ǫie)

]

mi
e (5)

Where mi
p and mi

e are vectors which contain the mineral
mass for pulp and froth phases of cell i. These are defined
by (6) and (7) where mij

p and mij
e are the mineral mass

of a granulometry j ∈ {1, 2, . . . ,m} for each phase,
respectively.

mi
p =

[

mi1
p mi2

p · · · mim
p

]⊤
(6)

mi
e =

[

mi1
e mi2

e · · · mim
e

]⊤
(7)

Similarly, αi
p and αi

e are matrices with the collection and
drainage rates for pulp and froth phases of cell i. These are
defined by (8) and (9) where αij

p and αij
e are the collection

and drainage rates of a granulometry j for each phase.

αi
p =











αi1
p 0 · · · 0

0 αi2
p · · · 0

...
...

. . .
...

0 0 · · · αim
p











(8)

αi
e =











αi1
e 0 · · · 0
0 αi2

e · · · 0
...

...
. . .

...
0 0 · · · αim

e











(9)

Furthermore, Mi
f is a vector which contains the mineral

mass feed of cell i. It can be obtained with cifQf , where

cif is a vector that contains the mineral concentrations in

the feed pulp. Qi
c and Qi

t are the concentrate and tail flows
of cell i. V i

p is the pulp phase volume and Ve is the froth

phase volume, ǫip and ǫie are the air holdup for each phase
of cell i.

The collector and drainage mineral rates of matrices (8)
and (9) for j different granulometries are defined according
to the model of Pérez-Correa et al. (1998) and the four
modes set in figure 2. These rates depend of the volumetric
flow of collector Qcol, foaming Qesp and the air holdup
inside the froth phase ǫie.
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The collection and drainage constants are defined as:

αij
p = aijQ3

col + bijQ2
col + cijQcol + αi

p0 (10)

αij
e =

(

diQcol + eiQesp + α
ij
e0

)

ǫie (11)

Where aij , bij , cij , di, ei, αi
p0 and α

ij
e0 of cell i and

granulometry j are tuned with industrial data.

The hydraulic model of Kämpjärvi and Jämsä-Jounela
(2003) allows to represent the pulp level behaviour inside
of a flotation cell. Taking into account that the froth height
is negligible compared to pulp level (Sbarbaro et al., 2008),
the volumetric balance of a cell valid for all operating
modes is:

ḣi
p =

1

Ai
c

(

Qi
f −Qi

t −Qi
c

)

δi1 (12)

Where Qi
f is the pulp feed flow and Ai

c the cell’s area.

The pulp feed flow of a line is Qi
f = vidQf , where Qf is

known and vid is a binary valve of cell i which represents
the state of the discrete valve. According to the hydraulic
model of Stenlund and Medvedev (2002), the tail flow is
derived from a physical laws based in Torricelli’s principle.
Considering a linear model of the cell output valve vic, the
tail flow of cell i is:

Qi
t = αi

tv
i
c

√

hi
p +

(

∆hi − hi+1
p

)

δi2 (13)

The pulp feed flow of the next cell is the tail flow of the
previous cell, it other words Qi+1

f = Qi
t. Additionally, the

tail flow of the last cell is modelled by equation (13) but
setting hi+1

p = 0. The concentrate volumetric flow Qi
c of

cell i is defined as a non-linear function of pulp level, froth
and cell height (Bascur, 2010):

Qi
c = αi

c

(

hi
p + hi

e − hi
c

)1.5
δi3 (14)

Where αi
c is a tuning constant and the froth height is

modelled as a linear function of the total mineral mass of
the froth phase. Defining a sum vector ms = [ 1 1 · · · 1 ]
(with dimension 1 × j) and αi

f another tuning constant,
the froth height is:

hi
e = αi

fmsm
i
e (15)

The total volumes of pulp and froth phases of cell i are
defined as:

V i
p = Ai

ch
i
p (16)

V i
e = Ai

ch
i
e (17)

Considering the approach proposed by Ortiz and Toro
(2013) an air volumetric balance for each phase of cell is
done. This allows to defined the air holdup for pulp and
froth phases of cell i as:

ǫ̇ip =
1

V i
p

(

Qi
a − vibAcǫ

i
p

)

(18)

ǫ̇ie =
1

V i
e

(

vibAcǫ
i
p − αi

aǫ
i
e

)

(19)

Where Qi
a is the air flow into pulp phase of cell i and vib is

the bubble terminal velocity in this phase that is defined
as (Bozzano and Dente, 2001):

vib =

√

gdb

3αd

(20)
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Fig. 3. Flotation cell model diagram

Where db is the bubble diameter, g is the gravitational ac-
celeration and αd is the drag coefficient of a bubble whose
dimensionless value is 0.47 (perfectly spherical bubble).

The tail and concentrate mineral mass flows of cell i are
defined by:

Mi
t =

Qi
t

V i
p

(

1− ǫip
)mi

p (21)

Mi
c =

Qi
c

V i
e (1− ǫie)

mi
e (22)

Where Mi
t and Mi

c are vectors with dimension j × 1.
Additionally, the tail and concentrate mineral grades valid
for all operating modes are defined dividing the sum of the
total fine by the total mineral, both contained in the tail
and concentrate flow, respectively:

git =
βMi

t

msM
i
t

gcu (23)

gic =
βMi

c

msM
i
c

gcu (24)

Where β are grade tuning matrices for tail and concentrate
flows of cell i. This is defined by (25) where it is calibrated
with industrial data and set constant for each granulom-
etry j of cell i. The variable gcu is the copper grade in a
molecule of chalcopyrite (approximately 34.6%).

β =











β1 0 · · · 0
0 β2 · · · 0
...

...
. . .

...
0 0 · · · βm











(25)

Finally, the recovery of mineral in cell i is obtained by
dividing the total fine in the concentrate by the total fine
in the feed.

3. HYBRID SYSTEM IDENTIFICATION

3.1 Hybrid identification

Given a set of input-output data which is measured from a
process with hybrid dynamic, a PieceWise AutoRegresive
eXogenous (PWARX) model is defined as (Ferrari-Trecate
et al., 2003):

y(k) =



























θ1

[

x(k)
1

]

+ e(k) if x(k) ∈ X1

...

θs

[

x(k)
1

]

+ e(k) if x(k) ∈ Xs

(26)
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The regressor vector x(k) ∈ R
n contains only past na

outputs and nb inputs measurements:

x(k) =
[

y(k − 1) · · · y(k − na) u⊤(k − 1)

· · · u⊤(k − nb)
]⊤ (27)

Where u(k) ∈ R
p is the input, y(k) ∈ R is the output

and e(k) ∈ R is a noise term. Furthermore, s is the
number of submodels, θσ(k) are the parameter vectors of
each affine ARX submodel with σ(k) ∈ {1, . . . , s} the
discrete state (or mode). The regressors lie in a bounded
polyhedron X ∈ R

n hereafter referred to as regressor
set where n = na + p · nb. The switching mechanism is
determined by a polyhedral partition {X}

s

i=1 of X and
the discrete state σ(k) is given by the rule:

[σ(k) = i] ⇔ [x(k) ∈ Xi] (28)

With i ∈ {1, . . . , s} and {X}
s

i=1 is a complete partition
of X . For PWARX models defined by (26) and (28),
the identification problem is formulated as follows: Given
a collection of N input-output pairs (y(k),u⊤(k)) with
k ∈ {1, . . . , N} estimate the model with orders na and nb,
the number of submodels s, the parameter vector θi and
the regions Xi with i ∈ {1, . . . , s} (Paoletti et al., 2007).

The identification problem can be approached by several
methodologies (Paoletti et al., 2007). We have used an
identification algorithm called clustering-based procedure.
This method was developed by Ferrari-Trecate et al.
(2003) and it works for fixed parameters na, nb and s.

3.2 Predictive models for HMPC

Our principal aim is to develop predictive models from
input-output data in order to be used in HMPC strategies.
Besides, one of the most interesting features of PWARX
model is its equivalence with Mixed Logical Dynamical
(MLD) models. According to the works developed by Bem-
porad and Morari (1999) a MLD model can be generalized
through the following linear relations:

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) (29)

y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k) (30)

E2δ(k) + E3z(k) ≤ E1u(k) +E4x(k) +E5 (31)

Where x(k) ∈ R
nc × {0, 1}

nl is a vector of continuous
and binary states, u(k) ∈ R

mc × {0, 1}ml is a vector of
continuous and binary inputs and y(k) ∈ R

pc × {0, 1}
pl is

a vector of continuous and binary outputs. Also, δ(k) ∈
{0, 1}rl and z(k) ∈ R

rc represent auxiliary binary and
continuous variables, respectively. These are introduced
when transforming logic relations into mixed-integer in-
equalities. Additionally, A, B1, B2, B3, C, D1, D2, D3,
E1, E2, E3, E4 and E5 are matrices of suitable dimensions.

Additionally, Torrisi and Bemporad (2004) developed a
language called HYSDEL available for Matlab R© which
fully automates the process of generating the matrices
associated to a MLD model defined by (29), (30) and
(31). The code 1 shows our HYSDEL strategy to transform
PWARX models of the form (26) in a MLD form suitable
to be used in HMPC strategies. In this example we have
considered the version 2.0.6 of HYSDEL, only one input,
state and output, two modes and na = nb = 1.

Code 1: HYSDEL example for PWARX to MLD

1: System pwarx2mld {
2: Interface {
3: State {real x [xmin, xmax]; . . . }
4: Input { real u [umin, umax]; . . . }
5: Output { real y; . . . }
6: Parameter {real θ11, θ12, θ13;
7: real θ21, θ22, θ23;
8: real a11, a12, b11; . . . }}
9: Implementation {

10: Aux { real z; . . .
11: bool d; . . . }
12: AD { d = (a11 · x+ a12 · u) ≤ b11; . . . }
13: DA { z = { if d then θ11 · x+ θ12 · u+ θ13
14: else θ21 · x+ θ22 · u+ θ23 }; . . . }
15: Continuous { x = z; . . . }
16: Output { y = x; . . . }
17: Must { u ≤ umax;
18: −u ≤ −umin; . . . }}}

3.3 Simulation results

Simulation results of the hybrid simulator were used for the
model identification procedure. It was considered a sample
time of 9 seconds over eleven hours of simulation and 4400
different data samples. The first half for identification and
the next for validation. The identification was developed
using the Hybrid Identification Toolbox (HIT) (Ferrari-
Trecate, 2005) and generating variations in pulp feed flow
of line one from 1500 to 2500 m3/h. A MISO PWARX
model was identified for each cell’s pulp level whose inputs
were the line’s pulp feed flow and the position of its
control valve. By using the HYSDEL Toolbox (Torrisi
and Bemporad, 2004) and the code 1 a MLD model was
obtained. Figure 4 shows the results of MLD pulp level for
the first cell of line one.
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h p1  [m
]

 

 

0 2.75 5.5 8.25 11
1

2

Time [h]

M
od

e

Simulated
Predicted (MLD)

Fig. 4. MLD model for cell’s pulp level

In addition, a model for line’s tail grade was obtained
whose inputs were the line’s pulp feed flow and the pulp
level of the last cell. The same procedure detailed previ-
ously is used to obtain the MLD model and results can
be seen in figure 5. In both cases the best performance
was achieved with na = nb = 1 orders, and with a
submodel number of s = 2. Besides, the results shows
that the identified models allow to predict the behaviour
of the interest variables and our work considers the in-
strumentation generally available in any mineral flotation
plant. Therefore, these models are valid for use in hybrid
predictive control strategies.
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4. HYBRID MPC STRATEGY

4.1 HMPC for flotation process

Hybrid model predictive control (HMPC) uses models
characterized by the interaction of dynamic behaviours,
logical rules and operating constraints (Bemporad and
Morari, 1999). In this work our models are obtained
through hybrid identification techniques according to sec-
tion 3. Figure 6 shows the model predictive control strat-
egy proposed. The advantage is that by considering a
single controller for each cell the formulation process is
simplified, allowing to obtain an accurate and simple con-
troller valid for different operating modes of the plant.
Moreover, this structure allows validating new optimizing
control strategies, such as ones based on distributed con-
trollers. The main difficulty in developing a hybrid pre-
dictive controller is the identification of a suitable model.
The flotation process is highly complex, where in our work
each cell has four possible modes of operation. When con-
sidering a large line, the number of possible combinations
of operation modes for the cells in the line increase. In this
situation is needed a highly representative data obtained
in the identification process, in order to use highly reliable
models.

Our hybrid model predictive control strategy applied to
flotation process is set as follows:

min
{∆u,δ,z}

N−1
∑

i=0

‖g4t (k + i+ 1|k)− r(k + i|k)‖2Q · · ·

· · · +‖∆u(k + i|k)‖2R

(32)

Subject to:

x(k + 1|k) = Ax(k|k) +B3z(k|k) (33)

y(k|k) = Cx(k|k) (34)

E2δ(k|k) +E3z(k|k) ≤ E1u(k|k) +E4x(k|k) +E5 (35)

hp ≤ hi
p(k|k) ≤ hp (36)

hc
p ≤ hc

p
i(k|k) ≤ hc

p (37)

Where g4t is the tail final grade of a line, ∆u(k) corresponds
to the changes in the output control valve position vc and
r(k) is the reference which can be set as zero. If the line
has more than one output control valve, the changes in this
control variable must be included in the objective function
of the HMPC controller. The princi
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Q4
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Tank
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Fig. 6. Flotation’s Hybrid MPC system

N is the prediction horizon and equations (33), (34) and
(35) corresponds to the MLD identified model. Addition-
ally, equations (36) and (37) are operating constraints,

‖g4t ‖
2
Q = g4t

⊤
Qg4t , ‖∆u‖2R = ∆u⊤R∆u with Q = Q⊤ ≥ 0

and R = R⊤ ≥ 0. This problem can be solved defining the
following vectors:

Ω = [∆u(k|k) · · · ∆u(k +N − 1|k) ]
⊤

(38)

Ξ = [ δ(k|k) · · · δ(k +N − 1|k) ]
⊤

(39)

Γ = [ z(k|k) · · · z(k +N − 1|k) ]
⊤

(40)

And the general vector:

Λ = [Ω Ξ Γ ]
⊤

(41)

The problem defined by equations (32) through (37) can be
formulated like as mixed integer quadratic programming
(MIQP) which can be solved as:

min
{Λ}

1

2
Λ⊤F1Λ+ F2Λ (42)

Subject to:
F3Λ ≤ F4 (43)

Where F1, F2, F3 and F4 are matrices with suitable
dimensions. According to the receding horizon theory only
the control action corresponding to the current sampling
time vc = u(0) is applied and hence the optimization prob-
lem is repeatedly solved at next sampling time (Bemporad
and Morari, 1999).

4.2 Simulation results

Figure 7 shows the results of the HMPC strategy applied
to the first flotation cell of the line with a horizon time
of N = 4 hours and a sampling time of 18 seconds. These
values were established by trial and error due to calibration
developed simulator availability. The initial reference to
the tail grade was established in 0.11% and later it is
changed to 0.19%. It is seen that the opening percentage
of the control valve changes according to the reference and
the level of pulp cell remains within the defined upper and
lower limits. The same design can be replicated for each
of the following cells of the line.
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Fig. 7. HMPC simulation results

5. CONCLUSION

This paper presented the development of a hybrid dynamic
model for a flotation cell. It was used successfully in
the development of a simulator for flotation calibrated
with industrial data. Subsequently, a robust hybrid model
predictive control (HMPC) strategy was formulated us-
ing models generated by hybrid identification techniques
and with data generated by the simulator. This strategy
showed satisfactory the tail grade control of a line, keeping
the variables of interest within operating ranges. In addi-
tion, our strategy allows to control the plant in different
operating modes which can be set by the operator, respect-
ing the constraints of each cell and without needing to use
different controllers for each mode of a flotation line.

Currently, we are working on the development and valida-
tion of distributed control strategies applied to the plant
studied.
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