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Abstract: In this paper, the minimization of an unknown but measurable cost function using
extremum-seeking control is considered. The main contribution of the paper is to formulate
the extremum-seeking problem as a time-varying estimation problem. The concepts of invariant
manifold and adaptive parameter update law are used for adaptive estimation of the time-
varying gradient of the unknown cost function. The proposed approach is shown to avoid the
need for averaging analysis which minimizes the sensitivity of the closed-loop performance to

the choice of dither signal.
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1. INTRODUCTION

Optimization has a significant rule in control applications
due to the increasing needs of products with specific
qualities. The optimization techniques can be used to
achieve optimal plant operating condition and to reduce
the final cost. In many optimization problems, off-line
methods are applied to reach the optimal conditions of
the plant. However, most of the systems in the real world
applications are subject to different initial conditions,
dynamics uncertainties and external disturbances. Under
these conditions, the off-line approaches cannot guarantee
the acceptable performance of the system and real time
optimization is crucial for superior performance (Guay and
Adetola [2013]). Extremum seeking control (ESC) is an
adaptive control method that is design to solve real-time
optimization problems.

The ESC is a classical control approach that is used to
steer a control system to the optimum of a measured objec-
tive function of interest (Tan et al. [2010]). The first precise
stability proof of feedback ESC, based on the averaging
and singular perturbations techniques has been provided
in Krstic and Wang [2000]. Over the last few years, many
researchers have considered various approaches to over-
come the limitations of ESC. In Krstic [2000], some of these
conditions were removed by using dynamic compensators,
while the measurement noise rejection was also achieved.
The non-local and semi-global stability analysis of ESC
is established in Tan et al. [2006] and Tan et al. [2009].
The main contribution of these works was to find explicit
expressions for the domain of attraction in the closed-loop
system.

As highlighted in Krstic and Wang [2000], the stability
analysis relies on a time-scale separation between the fast
transients of the system dynamics and the slow quasi
steady-state condition. This analysis demonstrates that
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the amplitude and frequency of the dither signal, must
be chosen very carefully to guarantee convergence to a
neighbourhood of the unknown optimum. More precise
statements concerning the dependence of the stability
properties on the choice of different dither signals is
provided by Tan et al. [2008].

In Gelbert et al. [2012], extended Kalman filters are used
instead of the low and high pass filters to estimate the
gradient of the input to reference map. The main advan-
tages of this nonlinear filter are the faster response and
the extension of the algorithm to more than one input. On
the other hand, the gain of the gradient update cannot be
adjusted freely since the convergence of the ESC depends
largely on the magnitude of the unknown Hessian of the
steady-state measured output. A Newton-based approach
is reported in Ghaffari et al. [2012], which provides an esti-
mate for the inverse of the Hessian matrix of the unknown
cost function. This technique can effectively alleviate the
convergence problems associated with the gradient-based
approach. The recent work of Nesic et al. [2013] is another
example of non-gradient approach to the ESC problem.

In Guay and Zhang [2003], an adaptive ESC algorithm is
considered for a system with a known objective function
that depends on the system states and uncertain plant
parameters. The proposed adaptive extremum seeking
control has lots of applications in (bio)chemical processes
(see Dochain et al. [2011], and the references therein).

In this paper, we provide an alternative extremum-seeking
technique which is based on the estimation of the gradient
as a time-varying parameter. The estimation scheme is
based on the geometric concepts of invariant manifolds.
For this purpose, a number of high gain estimators and fil-
ters are provided and an almost invariant manifold is gen-
erated from the filters. This allows to exploit an implicit
function relating the known variables and the unknown
variables. Then a parameter update law is presented using
the almost invariant manifold and an adaptive estimator.
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The main contribution of this work is to remove the need
for averaging of the quasi steady-state system, a crucial
element of conventional ESC approach. It also avoids the
need to use the frequency of the dither signal as a singu-
lar perturbation parameter. The proposed ESC algorithm
can improve the transient performance of the closed-loop
system.

The paper is organized as follows. The problem description
is given in Section 2. In Section 3, the proposed ESC
controller is presented for the case of process described
by a static map. The extension of the algorithm to an
unknown dynamical system is presented in Section 4. This
is followed by a simulation example in Section 5 and a brief
conclusion in Section 6.

2. PROBLEM DESCRIPTION

Consider a nonlinear system
&= f(x,u) (1)
y = h(x) (2)
where z € R” is the state, u is the control input taking
values in Y C R™ and y € R is the unknown and
measurable cost function to be minimized. The functions
f(z,u) and h(z) are assumed to be C*° in all of their
arguments.

The objective of ESC is to bring the closed-loop control
system to the unknown equilibrium z* and »* that min-
imizes the cost function y. The equilibrium (or steady-
state) map is the n dimensional vector-valued function
m(u) which is such that f(7(u),u) = 0. The steady-state
cost function is given by y = h(mw(u)) = £(u). Thus,
at steady-state, the problem is reduced to finding the
minimizer u* of the y = ¢(u). The following assumptions
are required.

Assumption 1. The equilibrium cost is such that
ol(u*) 0?0(u)
ou  _ QuouT

(u— u*)Tag% > agllu—u

>ol Yueld

2
il

, Yuel

where matrix I is an identity matrix with suitable dimen-
sion, and a1, ao are strictly positive constants.

Assumption 2. The steady-state map is such that

‘ d0(u) 8%4(u)
ou

OuduT

Iyl <Y,

‘SLla

< Ly
VYu € U with positive constants Y, L1 and Lo.

3. STATIC MAP

Since the minimization of y is performed in real-time, the
input u is taken as a time-varying signal. That is,

y(t) = €(u(t)) 3)
Assumption 3. The input signal u(t) is such that u(t) € U
and ||@(t)]] < as, ¥t > to > 0.

The differentiation of (3) with respect to time results in
— (af(u))T

-~ )" . Following the time-varying approach in
Guay et al. [2013], we define the unknown gradient and
the cost dynamic as

, g =0t)"a(t) (4)

If one has access to the gradient 6(t), then it follows
that the gradient descent & = —k16(¢t) with k; > 0, will
converge the optimum u*.

Lemma 1. Consider the cost function subject to the all
assumptions. The gradient descent update & = —k16(t) is
such that the objective function decreases monotonically
and reaches to its minimum at u*.

Proof. By convexity of the cost, it is shown in the
following that the cost will decrease until a value of u is
reached such that the gradient of the cost be zero. Let
% = u — u* and consider the following Lyapunov function
candidate for the input dynamics:

Va=1a"a

By considering Assumption 1, and differentiation with
respect to t, the following inequality is obtained

Vi =~k @ 2 < kg ()

As a result, the system converges to the unknown mini-
mizer u*.

The design of the extremum seeking scheme is based on
the unknown dynamics (4). The first step consists in
the estimation of the time-varying parameter (t). In the
second step, we define a suitable adaptive controller that
accomplishes the extremum seeking task.

3.1 Parameter Estimation

In this section, an alternative technique based on the idea
of invariant manifolds is proposed for adaptive estimation
of the unknown time-varying parameters. The geometric
concept of invariance has been widely used in nonlinear
control theory (see Tian and Yu [2000], Astolfi and Ortega
[2003]). This algorithm utilizes a number of high gain
estimators and filters. An almost invariant manifold is
generated from the filters, which allows to exploit implicit
functions relating implicitly the known variables and the
unknown variables. A parameter update law is assigned
using the almost invariant manifold.

Invariant Manifold Design:  The basic idea is to find a
mapping from known variables to the unknown variables,
which has an almost invariance property for sufficiently
large value of an assignable design gain. This implicit
mapping is used to facilitate the estimation the unknown
parameters.

The estimator model for (4) is defined as
y=-k@-y), k>0 (5)

and the filter is described along with the structure of the
system by

¢ = —k*(d — 1) (6)
Assumption 4. The vector-valued function ¢(¢) is bounded
with a known bound as ||¢]| < A, VE > tg > 0.
Proposition 2. Consider the estimator (5) and filter (6),
the following implicit manifold
T [k2(5 ) + 670(0)] = 0 ()

is such that the manifold is invariant and internally ex-
ponentially stable. Furthermore, the desired manifold is
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bounded and almost invariant for bounded and sufficiently
large values of k.

Proof. First, it is shown that the manifold (7) has an in-
variance feature. The off-the-manifold coordinate variable
z(t) is defined as

2(t) = k*(5 —y) + o7 0(1). (®)
The derivative of z(t) along the trajectories of the system
is given by

2t) =K — )+ T0(t) + o7 0(t). 9)

It follows from (4)-(6) that
) = —k22(t) + 6TO(t) = —k2(2(t) — ¢T:2(t)). (10)

a o(u) -

By the fact that = suout U, and in view of Assumptions 2
and 3, it follows that H || < Loas = Ly, so ¢Tk92(t) .0 as

k — oo. Suppose there exists a time ¢, such that z(¢.) = 0,
then

2(t)=0=2(t)=0=2(t) =0, Vt>t,

which shows that z(t) = 0 is an invariant manifold for
nonlinear dynamics (4)-(6) as k — oo, and 2(t) = —k?2(t)
is globally exponentially stable.

For the case where k is bounded, a quadratic Lyapunov

function can be defined as

1
Vz(t) = 522@)

The first time derivative of V) along its trajectories,
result in

(11)

Vo = —K*22(t) + 2(£)9"0(t)

As a result of Assumption 4, and applying Young’s In-
equality, one obtains the following inequality'

Vi < —K22(0) + 5 2(0) + ﬁw i)

Ak /\
2
(k: 5 ) Vawy + 57 2k

where £ > % Hence, the manifold normal coordinate
variables z(t) enter a small neighborhood of the origin.
The size of this neighborhood depends on the choice of
the high gain k. Therefore, an almost invariant manifold
is obtained by considering sufficiently large value for k.

(12)

Remark 1. It will be shown that the parameter estima-
tion can be achieved by considering the proposed almost
invariant manifold. Thus, unlike the sliding mode-based
techniques, satisfactory performance can be attained with-
out requiring that the system states reach the reference
manifold.

Adaptive Estimation: The invariant manifold (7) can be

re-written as

K25 —y) = —070(1). (13)
This equation provides an implicit relationship from
known variables (¢, 9, y) to the unknown variable 6(¢).
This mapping provides direct information about the pa-
rameter estimation error without requiring a priori knowl-
edge of the time-varying parameters. This is achieved by
defining the auxiliary variables p and ¢ with the dynamics

p=—kp— ooT O(t)

§ = —kq+ 6K — 9) (14)
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An adaptive estimator is considered as
3(t) = k[bI — 9" (5(1))), B(to) = bI (15)
Based on (14) and (15), the proposed parameter update
law is given by
6(t) = K*S()[ + ko]
where b > 1 and 6 =p —q.

(16)

Assumption 5. There exists constants o > 0 and T > 0
such that

t+T
[ end@irzal vzt ()
t
The condition of the Assumption 5 is equivalent to the
standard persistent excitation (PE) condition required for
parameter convergence.

3.2 Controller Design

The proposed extremum seeking control is given by

= —k10(t) + d(t) (18)
where d(t) is a bounded dither signal with ||d(¢)|| < D. The
dither signal d(t) can be chosen arbitrary, and it only need
to satisfy the PE condition of the Assumption 5. A one
proper choice of d(t) signals are sinusoidal waves, because
of their orthogonality feature (Tan et al. [2008]). Although,
in our algorithm convergence to the optimal value is not
sensitive to the choice of amplitude and frequency of
the sinusoidal signal. Note that, since 0(t) and d(t) are
assumed to be bounded then the controller (18) is such
that ||u|| <kLi+D<as.
Theorem 3. Let Assumptions 1 to 5 hold. Then the pa-
rameter update law (16) and the control law (18) are
such that the closed-loop extremum seeking control system
converges to a neighborhood of the minimizer u* of the
static nonlinear optimization problem (4). The size of this
neighborhood is adjustable by the gains k and k;.

Proof. By construction of parameter estimation error as

0(t) = 0(t) — 6(t), the parameter update law (16) can be
approximated implicitly in the form

A(t) = K25(t) g B(t). (19)
The quadratic Lyapunov function is defined as
1~ -
Vg = §9T(t)9(t) +Va (20)

By differentiating of (20) along (19) and (18), we have
Vigay = —K207 (6)(S(0)ed")0(t) + 0T (1)6(1)
—k1atO(t) + kyato(t) + atd(t)
By Assumption 1, one can write the following inequality
Vigay < —R07(0)(S(0)e")(t) + 67 (1)0(1)
—kroot? @+ kyat 0(t) + atd(t)

Applying Young’s inequality to all indefinite terms of the
last inequality, there exists a positive constant ks such that

Vg < K07 (0)(S(066")0(0) + 507 (1)0(1)

1. kki =p . =
+—0T(t)9() kiasula + 5 20T (1)a(t)
k 1
71~T~ MoTs o g7
+2k u+ 9 +2k2d (t)d(t)
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With collecting the similar terms, one can rewrite the
above inequality as follows

: kky + k .
Viow < - (¥ 20007 - L8 ) 7 0ie)
ki + kk 1 1
- <k1a2 = 1;€2> @it o 0T (00(1) + 5-d (D)

Next we claim the boundedness of the matrix X(t) as
follows. By integration, one gets

(1) = e | / kol (r)dr| (o)

kb /t t exp { / t —kas(&)qu(s)dg} dr >
o | t exp [ / t k¢(€)¢>T(€)d€] dr >

kb /te’“ﬁ“ﬂdT) o b))
to g

where the last inequality is achieved from the boundedness
of matrix ¢¢T. As a result of Assumption 5, we obtain

(1) < S(00) + 10 [ exp [ / t k¢<5>¢T<s>d§] dr <

to

b b(1 — —ka(t—to)
(b+kb/ —ke(t=7) g )I o+b(l—e )1

(21)

to a
(22)
It follows from (21) and (22) that
b(1 — e~ kAt=t0)
( 66T < S(t)o0" -
b+ b(1 — e Felt—to)
< ot i Lgo7
«
and
b(1 — e U=y < |I5(t) o ||
ba +b(1 - e_k"(f fﬂ)) (24)
a

Consider the function V(é,a) and inequality (24), the gain
should be chosen such that

(1= e kB0 > ki +1

ki + kk
1+ 2 o

2k 0

kian —

or equivalently

N
Bt = to) = KBS (0 — tioa) 2 (P )

2k
kko
2]60(2 —1
Based on the last inequality, kGNT’ > In(k; + 1/2k),
where T" is the sampling time and N is an integer. If the

estimation gain is chosen large enough as k > ln(kl;#,

then (1 — e F8(—to)yp > %, Yt > to > 0. For the
given k, there exist strictly positive constants k,, k, and
k' = min {k,, kp} such that

k>

Vig.a < keT()é() kvl + L2+—D2

2k 2ks

L —DQ
2k +2k2

It follows that 6 and @ converge exponentially to a small
neighborhood of the origin. The size of this neighborhood

(25)
/
S _k ‘/(5711) +

depends on the choice of gains k, k1 and the magnitude of
the dither signal. This completes the proof of Theorem 3.
Remark 2. By construction, one can decrease the contri-
bution from d(t) and 6(¢) by increasing the optimization
gain k1 and the estimation gain k, respectively. Since,
the rate of change of the parameter is proportional to
i t)H < Ly (k1 Hé(t)” +D), the
convergence to the small neighborhood is achieved by
ensuring that k& > k.

the optimization gain,

4. OPTIMIZATION IN DYNAMICAL SYSTEMS

In this section, we consider the initial extremum control
system which consists in steering the unknown dynamical
system (1) to the equilibrium that minimizes the measure
cost function (2). The closed-loop extremum seeking con-
trol system is given by (Guay et al. [2013]):

et = f(x,u)

= —k10(t) + d(t)

0(t) = k*S(t)[ + ko]

LT (26)

§g=-k(@G-y

S(t) = kbl — ¢o™ (S(1))]
As in other works on extremum-seeking control, the closed-
loop dynamics of the system are written in error form in
a two time-scale system where ¢ is the slow time-scale and
the system’s dynamics are assumed to evolve over a fast
time-scale 7 = i The parameter €; > 0 is a small strictly
positive parameter to be assigned.

Let us define the deviation variables & = x — 7(u) and @ =
u — u* where u* is the local minimizer of the steady-state
map y = {(u). The auxiliary variable is defined as above.
However, one must take into account the measurement of
the cost function over the fast and the slow time-scale, as
h(Z 4+ 7(t 4 u*)). Therefore, new dynamics are defined for
the off-the-manifold coordinate variable z(t), as

.o (10h(x) Oh(z) O (u) .
Sk '(y (el Ox f@,w) dxr  ou (27)
+o70(t) + ¢ 0(t)
Substituting for g} and q3, one obtains

2(t) = —Kk%z(t) + k? 6h(a£ W) 6;2 Ja -
—? <61182(;)f(x,w + a/(»;(xx)aggf)ﬁ +¢70(1)

As a result, the z(t) dynamic is affected by the fast and
slow dynamics. One can write the system (26) and implicit
manifold (28) in deviation form as follows

ar = f(@+m(a+u’),a+u*)—e 8257)&
e13(t) = —k? 82(;) (z,u) — k2e12(t) + e1070(2)
Oh(m(u)) Or(u) .  Oh(z) On(u) . (29)
thoe < ox u ' oz ou u>
i = —ki0(t) + d(t)

0(t) = —k*S()[6 + k6] + 6(t)
It is assumed that the gain k is such that

2 _ 2, 1.2
k= =k + Sk
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This definition of k£ indicates that the predictor equation
must be operated as a low-pass in the fast time-scale, by
fixing ky to be large. The parameter estimation routine
operates following the slower time-scale with gain k.
Following the standard singular perturbation technique,
the reduced system (Z = w(u)) is given by

= —k22(t) + o7 h(t)

i = —k10(t) + d(t) (30)
0(t) = —k>2(t)[6 + ko) + 6(t)

The boundary layer system is given by

di
% = F(& + (@ + u), @+ u)
dz 5 5 Oh(Z + 7(t + u*))

Oz 31)
Oh(m (i + u* (
F@E+m(a+ut),i+ut) + k,%(M

or(a + u*)ﬁ _ OM@ +m(a+ur)) Or(u+ u*)ﬂ)

ou ox ou

Assumption 6. The origin of the nonlinear system (1) is
locally exponentially stable Yu € U. Let x,, = {& €
R™|||Z|| < r} for r > 0, a positive constant. Similarly,
let & ={z R ||z| <7}
Assumption 7. The vector field f(Z+ 7 (0@ +u*), @+ u*) is
such that

1 (2 + 7+ wr), i+ u)|| < Ly || 7]
vz € x and Yu € U where Ly > 0 is a positive constant.
Assumption 8. The cost function h(x) is such that

H Oh(i + g(ﬂ + ") H <L
Oh(@ ;;r(u)) ~ Oh(g ;;(w) ’ < Lnlz -l

Vz,y € x and Yu € U where Ly > 0 is a positive constant.

Finally, we make the following assumption concerning the
steady-state map, m(u).

Assumption 9. The steady-state map mw(u) is such that
or(u)
ou

Vu € U where L, > 0 is a positive constant.

<L,

By Assumptions 7, 8 and 9, it follows that there exists
a ks such that the origin of the boundary layer (31) is
locally exponentially stable. It then follows that there
exists a Lyapunov function and positive constants, [3; for
i=1,...,6 such that

Bl + [21) < V(& 2) < Ba(|* + |2

v dvdz  dVdz o ,
v _dvdi  dVdz _ B
il i e i L e
av dv . ,
= 5 <
H[dj’dZ” < Bs [|1Z]]” + Be |2
YuelU, & € x,.

Theorem 4. Consider the nonlinear system (1) and the
cost function (2). Let Assumptions 1 to 9 be fulfilled then
the time-varying parameter estimation scheme and the
extremum-seeking controller (18) is such that for every
€1 € (0,€*), the closed-loop system converges to a neigh-
borhood of the unknown local minimizer of the nonlinear

T T T T T T T T T
Estimated value
24 — — — Optimal value ||

L L L L L
[ 0.5 1 15 2 25 3 35 4 4.5 5

Estimated value
— — — Optimal value

35 . . . . . . . . .
0 0.5 1 15 2 25 3 35 4 4.5 5
Time (sec)

Fig. 1. Trajectories of the control inputs

optimization problem. The size of the neighborhood de-
pends on the choice of the gains k, k; and the magnitude
of the dither signal d(t).

The proof is given in Appendix A.
5. SIMULATION EXAMPLE

The unknown static input-output map is given by Ghaffari
et al. [2012] as

y=100+ 5 (u- [ZDT 0 0] (o= [1])

The objective is to minimize the output y with respect to
input u. We apply the proposed extremum-seeking control
algorithm with b = 1.1, & = 1010, k; = 0.3, and
arbitrary dither signal

d(t) = 0.002 [Sin(mt) ] .

sin(20t)

The initial conditions are chosen as u(0) = [2.5,5]7 and

0(0) = [10,10]7, where 0(t) is estimation of the unknown
gradient.

The simulation results are shown in Figs. 1-3. The
extremum-seeking control input trajectories re shown in
Fig. 1. The changes of the unknown cost function y
is depicted in Fig. 2. The results demonstrate that the
proposed extremum-seeking control algorithm provides a
rapid progression to the unknown minimizer of the opti-
mization problem. In addition, the control system provides
satisfactory transient behaviour for both the inputs and
the objective function.

The normal manifold coordinate variable z(¢) is shown in
Fig. 3. As confirmed in this figure, the implicit manifold
z(t) converges to the small neighbourhood of zero. It is
important to point out that the value of this variable is
not known.

6. CONCLUSION

In this paper, an alternative time-varying ESC technique
was proposed. The technique is based on the time-varying
estimation of the unknown gradient which relies on defi-
nition of an invariant manifold principle. The ESC algo-
rithm is shown to provide local exponential convergence
of the closed-loop system to the unknown optimum. The
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Fig. 2. The unknown cost function versus time
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Fig. 3. Trajectory of the implicit manifold

technique simplifies the tuning of the designed gains by
avoiding the limitations associated with choice of dither.
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Appendix A. PROOF OF THEOREM 4

Proof follows standard singular perturbation technique
based on the Lyapunov function candidate
W =puVia+nVawy + (1 —p—nV(Z,2)

where p,n € (0,1) and p+n < 1.
Differentiating with respect to ¢, one obtains

i ) K2 2 AR
nA Oh(m(u)) Om(u) . Oh(z) Om(u) .
2k Ox u " 9r  ou

1—p— . 1—p—
e e S

(A1)

+—— L3 +nk22(t)

By Assumptions 7, 8 and 9, the inequality becomes
W< = (lall a4 | Y] - kv

|2
A2)
Ak TR @ (
_ 2 _ A 2, M 2
n(k 5 )V;@)%- 2% Ly + ngl)
where
1—p— 1
uﬁ?) —=nk2LxLy (k1 L1 + D)
A= ! ? (1—p—mn)
*iﬁkngLh(lel + D) #54

The matrix A is positive definite if ¢; is chosen such that

o < 2VPBsPa(l —p—m) _ o
Y k2L, Ly (ki Ly + D)

It then follows that Ve; € (0, €*),

. bY:
W < —KuVia — (k +n(k? - 2)) Var)
(A.3)
PAEDA L LM
2k 0T 2k,

where k. is a strictly positive constant. This completes the
proof.
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