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Abstract: Heating, Ventilation and Air Conditioning (HVAC) systems play a fundamental
role in maintaining acceptable thermal comfort and air quality levels. Model Predictive Control
(MPC) techniques are known to bring significant energy savings potential. Developing effective
MPC-based control strategies for HVAC systems is nontrivial since buildings dynamics are
nonlinear and influenced by various uncertainties. This complicates the use of MPC techniques
in practice. We propose to address this issue by designing a stochastic MPC strategy that
dynamically learns the statistics of the building occupancy patterns and weather conditions.
The main advantage of this method is the absence of a-priori assumptions on the distributions
of the uncertain variables, and that it can be applied to any type of building. We investigate
the practical implementation of the proposed MPC controller on a student laboratory, showing
its effectiveness and computational tractability.

Keywords: Control applications, Implementation, Model-based and predictive control,
Probabilistic models, Control-oriented models, Stochastic control

1. INTRODUCTION

Heating, cooling and air conditioning is a necessity in
buildings, which account for a major share of the global
energy consumption. Reports indicate that HVAC systems
in developed countries contribute for approximately one
fifth of the total national energy usages (European Com-
mission, 2008). Current practice shows its limits, with
potential energy savings achievable by using systematic
building management being estimated from 5% to 30% of
the total consumptions (Costa et al., 2013; Chua et al.,
2013).

Literature Review. HVAC control systems performance
can be improved by using predictive strategies, like
in Goyal et al. (2012); Gwerder and Toedtli (2005); Sals-
bury et al. (2012); Hua and Karavab (2014). MPC schemes
are expected to become a common solution for smart
buildings in a few years (Aswani et al., 2012).
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This tendency is supported not only by simulations (Treado
and Chen, 2013; Wallace et al., 2012; Fadzli Haniff et al.,
2013), but also by some experimental results on real build-
ings (Sturzenegger et al., 2013; Široký et al., 2011; Parisio
et al., 2013b).

Successful implementations will be likely based on stochas-
tic MPC schemes with probabilistic constraints: indoor
air conditions are intrinsically affected by stochastic dis-
turbances, such as occupancy patterns and outdoor tem-
perature. Current standards state that the probability of
comfort violations should do not exceed certain levels (BSI,
2008).

There is already a vast literature on stochastic MPC
schemes for HVAC control. For example, Mady et al.
(2011); Ma and Borrelli (2012); Ma et al. (2012); Old-
ewurtel et al. (2012).

All the previously mentioned approaches restrict distur-
bances to have Gaussian distribution, assumption that
makes the problems solvable. Instead, we proposed a
scenario-based tractable approximation of the chance con-
strained MPC problem, where the scenarios are i.i.d. sam-
ples extracted from general probability distributions, thus
not restricted to be Gaussian (Parisio et al., 2013a,b).
Another scenario-based approach has been proposed
by Zhang et al. (2013). Here authors propose an itera-
tive bilinearization of the building model around nominal
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trajectories and sample occupancy scenarios from a set of
measurement data collected in eight single offices equipped
with motion sensors. The numerical simulations performed
in this work suggest that scenarios-based techniques out-
perform other predictive methods.

Statement of contributions. With respect to the state-of-
the-art literature, we: i) propose a novel building model,
which better captures the building dynamics while main-
taining linearity assumptions; ii) develop and implement
on a real testbed (the KTH HVAC testbed) an advanced
control scheme that continuously adapt the operation of
the HVAC system to unknown disturbances while guar-
anteeing occupants comfort and wellbeing. More precisely,
the new model accounts for minimal ventilation levels and
more precise actuators dynamics. We then compare and
analyze the performance 3 control schemes applied to the
KTH HVAC testbed. The first controller is the current
practice in our building. The second is a deterministic
MPC disregarding information on the uncertainties of the
disturbances. The third controller is instead our novel
Scenario-based Model Predictive Control (SMPC) scheme.
Results show that the SMPC scheme leads to a more
robust and potentially energy efficient behavior of the
system.

Structure of the manuscript Section 2 presents the novel
building model and related HVAC MPC scheme. Section 3
describes our experimental campaign and Section 4 ends
the manuscript with a summary of our conclusions and
with indications of the next steps.

2. SCENARIO-BASED MPC FOR HVAC SYSTEMS

In this section we first describe the model of the building
(Section (2.1)), and then we outline the general structure
of the Scenario-based Model Predictive Control (SMPC)
control scheme (Section (2.2)).

We remark that, since the overall building energy usage
is commonly computed as the sum of the energy usages
of the single thermal zones (Gwerder and Toedtli, 2005),
here we focus on the control of a single thermal zone (or
room).

2.1 Modeling

To improve the computational tractability of the overall
control problem, we take advantage from the independence
of the CO2 concentration dynamics from the thermal ones,
which allow us to address two separated subproblems: i)
the CO2-SMPC problem, which aims at minimizing energy
use while keeping CO2 levels in given comfort bounds;
ii) the T-SMPC problem, controlling instead the indoor
temperature.

Here we describe the two separated models for the dynam-
ics under consideration.

Model for the CO2 concentration dynamics The model
is derived from a CO2 balance equation accounting for
the fresh air from the ventilation system and the amount
of CO2 generated per occupant. The state of the model

and its output, indicated respectively with xCO2
and yCO2

,
are set to be equal to ∆CO2, the nonnegative difference
between the CO2 concentration in the room and the
inlet air CO2 concentration (the latter assumed equal to
outdoor CO2 concentration levels).

The model disturbance wCO2
represents the number of

occupants, while the control input is the rate of the air
flow coming from the ventilation system, which is denoted
by ṁCO2

venting. This input allows to control the heat flow due
to the ventilation system, indicated with Qventing.

The reduction in the indoor CO2 concentration levels
induced by ṁCO2

venting is modeled with the bilinear term

ṁCO2

venting·xCO2
. Since linear problems can be solved more ef-

ficiently than nonlinear ones, we derive an equivalent linear
model of the CO2 concentration dynamics by introducing
the auxiliary input uCO2

:= ṁCO2

venting · xCO2 , which then
hides the bilinear term defined above. To meet the physical
bounds on the original control input ṁCO2

venting, uCO2
has to

satisfy

ṁmin
venting · xCO2 ≤ uCO2 ≤ ṁmax

venting · xCO2 . (1)

Then, we can then easily derive ṁCO2

venting by inverting the
definition of uCO2

.

With the control input uCO2
, the CO2 concentration

dynamics can eventually be described by the discrete-time
Linear Time Invariant (LTI) system

xCO2
(k + 1) = axCO2

(k) + buCO2
(k) + ewCO2

(k)

yCO2
(k) = xCO2

(k).
(2)

We assume bounds on the input uCO2(k) of the form
umin
CO2

≤ uCO2(k) ≤ umax
CO2

, which can be expressed as
polytopic constraints FuCO2

(k) ≤ f . We further define
comfort constraints on the indoor CO2 concentration as
0 ≤ yCO2

(k) ≤ ymax
CO2

. Considering that xCO2
= yCO2

,
comfort constraints and constraints (1) can be written in a
compact form as mixed constraints on the input and on the
output, VyyCO2(k) + VuuCO2(k) ≤ v. We refer the reader
to Parisio et al. (2013b) for details on the construction of
the constraints matrices.

Model for the thermal dynamics We consider a thermal
Resistive-Capacitive (RC) network of first-order systems,
where the nodes are the states representing the temper-
atures of the room, walls, floor and ceiling. Each state is
associated to a heat transfer differential equation.

The model disturbances represent the outdoor tempera-
ture, radiation, internal gains, heat flows due to occu-
pancy, equipments and lightings. The control inputs are
the temperature of the supplied air, Tsa, the mean radiant
temperature of the radiators, Tmr, and the air flow rate
ṁventing. (We remind that ṁventing must be at least equal

to ṁCO2

venting, the latter representing the minimum air flow

rate needed to maintain optimal CO2 levels.) The inputs
Tsa, Tmr and ṁventing allow to control two different heat
flows: i) Qventing, representing the contribute due to the
ventilation system; ii) Qheating, representing the contribute
due to the radiators.

We now aim to: i) hide the bilinear term of the indoor
thermal dynamics Qventing = ṁventingcpa

(
Tsa − Troom

)
,
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ii) model the contribute due to the requirements on the
CO2 concentration levels (i.e., due to the minimal air flow

ṁCO2

venting) and the absolute value of Qventing (which is part

of the cost function to be minimized).

To achieve these aims, we model the two heat flows as

Qventing = ṁCO2

ventingcpa
(
∆Th −∆Tc

)
+ cpa

(
∆uh −∆uc

)
Qheating =Aradhrad∆Th,rad

where cpa is the specific heat of the dry air, Arad is the
emission area of the radiators, hrad is the heat transfer
coefficient of the radiators, and the nonnegative variables
∆Th, ∆Tc, ∆uh and ∆uc are s.t.

∆Th −∆Tc = Tsa − Troom
∆Th + ∆Tc =

∣∣Tsa − Troom∣∣
∆uh −∆uc = ∆ṁventing

(
Tsa − Troom

)
∆uh + ∆uc = ∆ṁventing

∣∣Tsa − Troom∣∣
with ∆ṁventing := ṁventing − ṁCO2

venting the additional air
flow rate required for guaranteeing the thermal comfort,
and Troom the indoor temperature.

With the newly introduced variables, the dynamics of the
indoor temperature can be modeled with the discrete-time
linear system

xT(k + 1) = ATxT(k) +BT(k)uT(k) + ETwT(k)

yT(k) = CTxT(k),
(3)

where the state xT(k) contains the temperatures of the
room and of the inner and outer parts of the walls,

uT(k) :=
[
∆Th(k),∆Tc(k),∆uh(k),∆uc(k),∆Th,rad(k)

]
is the input vector, and wT(k) is the vector of random
disturbances (outdoor temperature, solar radiation and
internal heat gains). The output yT(k) is the indoor
temperature at time k. We notice that the input matrix
BT(k) is time varying since it depends on ṁCO2

venting(k).

We represent physical bounds on the original control
inputs as

Tmin
sa −Troom(k)≤∆Th(k)−∆Tc(k)≤Tmax

sa −Troom(k) (4)∣∣∆uh(k)−∆uc(k)
∣∣≤∆ṁmax

venting(k)
∣∣∆Th(k)−∆Tc(k)

∣∣ (5)

where ∆ṁmax
venting(k) := ṁmax

venting − ṁ
CO2

venting(k).

Compared to our previous contributions (Parisio et al.,
2013a,b), the building model now encompasses a more
detailed solar radiation model. Furthermore, the temper-
ature variation in adjacent rooms has been estimated by
means of a sinusoidal dependence in time, which proved
to be in sufficiently good accordance with measured data.

As outlined above, hard constraints on inputs and con-
straints (5) can be written in compact form as polytopic
constraints on inputs, FuT(k) ≤ f . Comfort constraints on
the output and constraints (4) can be written in a compact
form as mixed constraints on the input and on the output,
VyyT(k) + VuuT(k) ≤ v.

We eventually notice that, once ṁCO2

venting(k) and uT(k)

have been computed, the original control variables Tsa(k),

Tmr(k) and ṁventing(k) can be easily computed by simple
inversion formulas.

2.2 Scenario-based Model Predictive Control (MPC)

As suggested in the modeling section, we decouple the
synthesis problem in two separated parts and formulate
two problems: the CO2-SMPC problem, which considers
model (2), and the T-SMPC problem, which includes
model (3).

We also remark that, since the requirements on CO2 con-
centrations have priority over the thermal comfort ones,
the solution computed by the CO2-SMPC is considered
by the T-SMPC as a lower bound on the massflow rate.

We thus consider an MPC problem for the control of
discrete-time linear systems of the form

x(k + 1) = Ax(k) +B(k)u(k) + Ew(k)

y(k) = Cx(k),
(6)

where x(k) ∈ Rn is the state, u(k) ∈ Rm is the control
input, w(k) ∈ Rr is the stochastic disturbance and y(k) ∈
Rp is the output. Indeed (6) represents either (2) or (3),
depending on the controller under consideration (CO2-
SMPC or T-SMPC).

Consider then a prediction horizon N and define

x :=
[
x(1)T, . . . , x(N)T

]T
,

u :=
[
u(0)T, . . . , u(N − 1)T

]T
,

y :=
[
y(1)T, . . . , y(N)T

]T
,

w :=
[
w(0)T, . . . , w(N − 1)T

]T
,

where x(k + 1) = Ax(k) + Bu(k) + Ew(k) denotes the
predictions of the state after k time instants into the
future. Defining the prediction dynamics matricesA,B,E
and C s.t. we can express the output as a function of the
initial state x(0) as

y = CAx(0) +CBu+CEw. (7)

The linear constraints on the inputs and outputs over the
prediction horizon can instead be generally written as

Vyy + Vuu ≤ v
Fu ≤ f ,

(8)

where F ∈ Rq×mN , f ∈ Rq, Vy ∈ Rr×pN , Vu ∈ Rr×mN

and v ∈ Rr.

By replacing (7) in (8), we can write the constraints on
the outputs as Guu+Gww ≤ g, where Gu, Gw and g are
matrices of appropriate dimensions.

MPCs can then be formulated so that it can simultane-
ously incorporate weather and occupancy forecasts and
their uncertainties by means of chance-constrained formu-
lations. It is indeed possible to assume the possibility of
violating the comfort bounds on the indoor temperature
and CO2 levels with a predefined probability, i.e., formu-
late output constraints as

P
[
Guu+Gww ≤ g

]
≥ 1− α.

with α ∈ [0, 1] being the violation probability level.
In these formulations α represents a tradeoff between
performance and constraint satisfaction.
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The cost function represents the energy use over the whole
prediction horizon. Denoting by cTu∆k with c ∈ RmN

the cost vector and ∆k the sampling period, the control
problem can be formally stated as

Problem 1. (Chance Constrained MPC for HVAC Control).

min
u
cTu∆k

s.t. P
[
Guu+Gww ≤ g

]
≥ 1− α

Fu ≤ f ,
with 1 − α the desired probability level for constraint
satisfaction.

Chance constrained problems like 1 are generally in-
tractable unless the uncertainties follow specific distribu-
tions, e.g., Gaussian or log-concave Kall and Mayer (2005).

However Gaussian assumptions are rather restrictive.
To overcome this limitation but still obtain a solv-
able MPC problem we propose to apply randomized ap-
proaches Calafiore (2010), which do not require the spec-
ification of particular probability distributions for the un-
certainties but only the capability of randomly extracting
from them.

The approach is as follows: i) let w1, . . . ,wS be a set
of S i.i.d. disturbances samples (called scenarios), wi :=[
wT

i (0), . . . , wT
i (N − 1)

]T
, i = 1, . . . , S. Then the chance

constraints in Problem (1) can be replaced with the
deterministic constraints

Guu+Gwwi − g ≤ 0, i = 1, . . . , S. (9)

Since most of the constraints in (9) are redundant, the
only constraint that is required to be satisfied is

Guu ≤ g − max
i=1,...,S

Gwwi (10)

(where the max applies element-wise to Gwwi); ii) soften
the constraints in (10) by introducing the slack variables
ε(k) ∈ Rp at each time step k, and eventually approximate
Problem (1) with

Problem 2. (SMPC for HVAC Control).

min
u
cTu∆k + ρ1Tε

s.t. Guu ≤ g + ε− max
i=1,...S

Gwwi

Fu ≤ f ,
ε ≥ 0,

where ε is the vector containing all the slack variables, ρ
is the weight on the slack variables, and 1 is a matrix of
ones with appropriate dimensions.

We notice two important remarks:

• (how to choose the number of scenarios S) letting
d = mN be the number of decision variables, S can
be chosen based on the sufficient condition

S ≥ 2

α

(
ln

(
1

β

)
+ d

)
, (11)

that guarantees that considering constraints (9) will
lead to a feasible solution for Problem 2 with a
confidence level (1−β) ∈ (0, 1) with β an user-defined
parameter (Calafiore, 2010). Experience nonetheless
indicates that (11) may be overly pessimistic for an
MPC control scheme Zhang et al. (2013).

• (meaning of the slack variables ε(k)’s) the ε(k)’s tune
the number of possible constraint violations and guar-
antee that the problem with sampled constraints is
always feasible. If the optimal solution can be ob-
tained without violations of the softened constraints,
the slack variables will be set to zero. The designer
can thus considerably penalize constraint violations
by assigning to the weighting factor a value that is or-
ders of magnitude greater than the other coefficients
parameters.

We refer the reader to to Parisio et al. (2013a,b). for details
on the generation of the scenarios.

3. EXPERIMENTAL CASE STUDY

3.1 Description of the experimental setup

We consider a laboratory of approximatively 80m2 in
the ground floor of the Q-building of the KTH Royal
Institute of Technology campus in Stockholm. The room
has a concrete heavyweight structure with limited glass
surface and one external wall, facing South-East, which
is partially shaded by a parking lot. As summarized in
Figure 1, its HVAC system is composed mainly of two
parts: the ventilation system, supplying fresh air, and a
radiator heating system.

Fig. 1. Scheme of the HVAC system of the testbed.

The air in the ventilation system is pushed from a central
fan (not controllable by us) that is active only between
7:00 and 16:00 during working days. Thus no ventilation
control action can be carried when this fan is off, and as
a consequence we only report tests performed when the
central fan was running. A part from this, the ventilation
system works as follows: the balanced ventilation system
pre-conditions fresh air from outside, distributing it at
a temperature of about 20℃. Part of this generated air
flow is then conveyed directly into the room, while part
can be further cooled by a cooling coil. Summarizing,
the controllable actuators of the ventilation system are 3:
two dampers that regulate the opening of the inflow and
outflow ducts, and a valve that regulates the temperature
of the air chilling circuit. When the central fan is on, a
minimum level of the massflow rate is guaranteed in any
case.
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The heating system is instead composed by common
radiators. The flowing hot water is provided by a district
heating, that autonomously decide the temperature of the
fluid considering the external temperature conditions. The
actuator is the valve regulating the flow of the heating
fluid.

Figure 2 depicts the architecture of the implemented con-
trol system: the indoor temperature and CO2 concentra-
tion are controlled through the ventilation system and ra-
diators, which are actuated using low-level PI controllers.
The set-points for the low-level controllers are computed
by our SMPC at each time instant, based on new mea-
surements and updated information about weather and
occupancy patterns.

Room

Ventilation
Unit

Radiators

Low-Level
PI

Low-Level
PI

CO2

SMPC
Temperature

SMPC

Scenarios
Generator

%venting

%cooling

%heating

Qventing

Qheating

CO2 concentrations and
temperature measurements

ṁCO2

venting

ṁventing

Tsa

Trad

Fig. 2. Architecture of the control system implemented on
the testbed.

Denote by SCO2
and ST the minimum number of scenarios

for the CO2-SMPC and the T-SMPC problems respec-
tively, computed according to (11). The scenario-based
controller is synthesized according to Algorithm 1.

Algorithm 1 Control Synthesis

1: for k = 1, 2, . . . do
2: set xCO2

(0) = xCO2
(k) and xT(0) = xT(k)

3: extract SCO2
occupancy scenarios and ST weather

and occupancy scenarios
4: solve the CO2-SMPC problem and compute the

sequence
{
ṁCO2

venting(0), . . . , ṁCO2

venting(N − 1)
}

5: solve the T-SMPC problem and com-
pute set-points for the low-level controllers(
ṁventing(0), Tsa(0), Tmr(0)

)
6: compute the actuation commands and actuate
7: end for

3.2 Model Validation

Figures 3 and 4 reports graphical validations of the CO2

and temperature models (2) and (3) against data from
the testbed collected during July 2013. We notice that the
models accurately capture the dynamics of the systems in
consideration, and that they constitute an improvement
w.r.t. the models considered in Parisio et al. (2013b).

3.3 Discussion of Experimental Results

Our SMPC controller is compared with the current prac-
tice, a simple control logic with PI control loops and

23/07 24/07 25/07 26/07

21

22

23

24

day

te
m

p
er

at
u

re
[℃

]

measured predicted

Fig. 3. Validation of the thermal model using the measured
temperatures collected from the testbed.

23/07 24/07 25/07 26/07

400

500

600

700

800

day
C

O
2

[p
p

m
] measured

predicted

Fig. 4. Validation of the CO2 concentration model us-
ing the measured concentrations collected from the
testbed.

switching logic, indicated by the acronym “AHC” (from
Akademiska Hus, the company managing the building of
the testbed).

The sampling time for the SMPC controllers is 10 minutes,
while the predictions horizon for the weather, occupancy
and solar radiance processes is 8 hours. The comfort range
of the indoor temperature is [20, 22] ℃.

Despite the difference in time, the weather conditions dur-
ing the experiments are similar, as shown in Figure 5, while
the occupancy patterns varied during the experimental
period. We devise two different occupancy profiles: high
and low.

Figure 5 shows experimental results. Each column of Fig-
ure 5 refers to one of the tested controllers, while each row
depicts the disturbances (i.e., outdoor temperature and oc-
cupancy), the control inputs (i.e., supply air temperature
and massflow) and the controlled indoor temperature and
CO2 levels. The horizontal axis reports the time period of
the experiments, from 9:30 to 15:30. We tested the two
controllers in different days: November 11 and 13 show
high occupancy (thick line) while during November 6 and
21, a few people where in the testbed room (low occupancy,
thin line).

Results for high-occupancy tests. Remarkably, for the
SMPC case, the outdoor temperature is lower but its
effect on the controllers performance is negligible since the
occupancy is the dominating disturbance.

The upper bound on the indoor temperature is violated
in all the cases due to the limitations of the ventilation
and cooling system. In case of extreme occupancy levels
(e.g., 25 people inside the room) and relatively moderately
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Fig. 5. Disturbances, CO2 levels, indoor temperatures and
control inputs profiles for high- and low-occupancy
experimental tests. The shaded areas represent the
comfort bounds.

high external temperature, full actuation is not sufficient
to maintain internal temperature / air CO2 levels within
the respective comfort bounds, as shown in some of the
investigated experimental cases. This leads to quite similar
profiles on the indoor CO2 concentration and temperature
for the controllers during the high occupancy hours. Notice
that for the AHC controller the supply air temperature
exhibits a peak at 13:00 due to the change in the occupancy
pattern, while for the SMPC the profile of the supply air
temperature from the ventilation system is significantly
smoother and does not increase too much. This behav-
ior difference is an example of the added value of the
forecasts: the AHC controller does not have knowledge
of the upcoming occupancy pattern and decides to turn
the ventilation system off at 12:30-13:00, despite the high
indoor temperature and the expected number of people.

Results for low-occupancy tests. Considering controller
performance in low-occupancy days, we notice that both
the disturbances and CO2 profiles are reasonably similar,
while the control inputs are different. The supply air
temperature for AHC increases by more than 1 ℃ during
the time intervals 12:00-13:00 and 14:30-15:30, and the
ventilation system is turned on and off often during
the morning (9:30-12:30). The air supply temperature
for SMPC is smoother and kept lower on average. This
behavior is mainly caused by a more stressed pre-cooling
effect during the morning (the ventilation system is always
kept on from 9:30 to roughly 11:30). This leads to an
indoor temperature profile with smaller variations, which
is a more favorable behavior in terms of comfort. Further,
the indoor temperature for the SMPC controller is kept
slightly closer to the lower bound.

4. CONCLUSIONS

This paper extends the research line started in Parisio
et al. (2013a,b) by proposing a novel scenario-based model
predictive controller for Heating, Ventilation and Air Con-
ditioning (HVAC) systems. The proposed SMPC is able
to directly account for the uncertainty of the weather and
occupancy forecast in its control decisions.

This paper offers the following major contributions: i) im-
provements in the modeling of both the building dynamics
and its actuators, leading to a novel and tractable MPC
model; ii) improvements in the practical implementation
of the proposed control scheme on a real building, which is
shown to lead to temperature variations favorably smaller
than the ones obtained with the current practice. The
easy tunability of the tradeoff between energy usage and
comfort violations with one tuning parameter describing
the level of constraint violations is a further benefit of our
SMPC controller that is to be investigated.

We eventually notice that the proposed SMPC technology
is still not completely mature and ready to be massively
deployed. Indeed, current implementations require infor-
mation on the state of the building that up to now are
collected using measurement systems usually not present
in the majority of the existing buildings (e.g., sensors mea-
suring the temperature of the walls). Thus we devise the
necessity of developing advanced estimation schemes that
provide indirectly this information. Another important
research direction is to extend the control scheme towards
networks of thermal zones: the current implementations
indeed consider each thermal zone independently and this
is inefficient from a optimization problem point of view.
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