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Abstract: Many people in need of care still live in their homes, requiring the caretakers to travel
to them. Assigning tasks to nurses (or caretakers) and scheduling their work plans is an NP-hard
problem, which can be expressed as a vehicle routing problem with time windows (VRPTW) that
includes additional problem-specific constraints. In this paper, we propose to solve the Home
Healthcare Scheduling and Routing Problem (HHCRSP) by a distributed Gossip algorithm. We
also apply an extended version called n-Gossip, which provides the required flexibility to balance
optimality versus computational speed. We also introduce a relaxation on the optimality of the
underlying solver in the Gossip, which speeds up the iterations of the Gossip algorithm, and
helps to quickly obtain solutions with good quality.

1. INTRODUCTION

Healthcare services provided at home for patients, who
do not require in-house treatment, can often be more
suitable (Shyu et al. [2002]), and cost efficient (Ahlner-
Elmqvist et al. [2008]) compared to in-house treatment.
The demand for home health care solutions is growing
according to a study conducted in Woodward et al (2004).
The authors suggest a possible explanation in that higher
life expectancy in industrial countries has led to a growing
number of frail and elderly in need of care. Another study
by Ian M. et al (2004), reaches the same conclusion. Also
a broader study by the World Health Organization has
announced the growth of care-dependent elderly in all
of Europe (Tarricone and Tsouros [2008]). Several other
studies attribute the growing demand of home healthcare
to economic factors and patient preference, (Kergosien
et al. [2009]). This paper suggest a scheduling and planning
algorithm to aid caretakers in handling this increase in
demand.

A problem arises in the scheduling and organization of
work plans for caretakers when demand exceeds the num-
ber of caretakers available. Manual planning of work
schedules is difficult due to the large number of variables
involved and the factorial dependence of the problem.
Examples of dependencies are when some caretakers are
qualified to administer drugs, while others are not, the
caretaker method of travelling, time constraints such as
earliest to latest time for doing a job, time of administering
medication or care, and the time of day a caretaker is
available. Furthermore, when there are more patients than
caretakers for a specific time slot, patients with important
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needs are to be prioritized. These are just some exam-
ples of the many constraints needed to be taken into ac-
count when scheduling a work plan. The Home Healthcare
Scheduling and Routing Problem (HHCRSP) concerns the
optimization of the route of each caretaker in a way that
minimizes an objective specified by the service provider.
These objectives may vary, but usually include travel time
and customer dissatisfaction.

There are two main approaches to solving the HHCRSP.
In the first approach, the problem is solved sequentially,
i.e. the assignments of caretaker to jobs is solved inde-
pendently of the routing problem. This has shown to be
viable with shorter travel times and fewer caretakers to
assign (Yalcindag et al. [2012]). In the second approach,
the problems are solved simultaneously, using one single
model. In general, the second approach involves defining
the problem as a vehicle routing problem with time win-
dows (VRPTW). This method, while having the drawback
of increased problem complexity, provides more accurate
solutions.

A classical vehicle routing problem (VRP) can be stated
as the problem of determining an optimal set of routes
for a set of vehicles such that given demands at the
customers are satisfied. Each route starts and ends in
a given depot. Each customer should be visited by one
vehicle and each vehicle has a capacity that cannot be
exceeded. The routes are to be selected such that the
total cost is minimized (Laporte [1992]). In the time-
windowed version of VRP (VRPTW), additional time
constraints are present that force the vehicles to visit
the tasks within a specified time frame. Solomon [1987]
provides a detailed survey on algorithms for VRPTW, and
in Solomon and Desrosiers [1988], the authors present a
survey on variations of this problem.

In an HHCRSP, which essentially is a VRPTW, vehicles
are replaced by the caretakers who travel and serve the
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healthcare customers. The objective function which should
be minimized, may include terms such as for example
the total distance traveled by the caretakers, subject
to the following healthcare specific constraints: (i) each
caretaker has a level of qualification, and each job a level of
requirement and caretakers will only be assigned to routes
where they are qualified to perform all jobs on that route;
(ii) All jobs have durations, earliest possible starting times
and deadlines, caretakers have a start and an end to their
work day.

In this paper, a mixed integer linear programming formu-
lation of the HHCRSP, based on the VRPTW is derived.
This is a simplified theoretical model and includes only
a subset of the real-world constraints. While the model
works well for small to medium problems, an exact de-
terministic solution quickly becomes intractable for larger
problem instances. This is overcome in this paper by em-
ploying a heuristic Gossip method to solve the problem.
Such an algorithm has been successfully applied to a class
of VRPs known as the heterogeneous multi-vehicle routing
problem (HMVRP) (see Franceschelli et al. [2013], and Ri-
azi et al. [2013]). The Gossip algorithm iteratively solves
local problems that only consider a subset of caretakers
and customers in each iteration. The results of these local
optimizations propagate through the entire search space
as iterations continue. This is in contrast to a Centralized
approach, where the entire problem is considered at once.

In the next section, related work to HHCRSP is discussed.
In Section 3, the problem formulation is given and the algo-
rithms are presented in Section 4. Besides using the stan-
dard Gossip algorithm, which works on nurses/vehicles in
a pairwise fashion, an extended version is also used. The
extended algorithm, n-Gossip, presented in Riazi et al.
[2013], is used to obtain the required flexibility to balance
optimality versus computational speed. Finally, Section 5
provides numerical simulations and complexity evaluations
of both Gossip algorithms and the Centralized approach.

2. PREVIOUS WORK

Bredström and Rönnqvist [2008] presents a combined
scheduling and vehicle routing problem with time win-
dows. The model uses a three part weighted-criterion ob-
jective function for modeling: (i) the preference measure
for a particular vehicle when visiting a node, (ii) the
traveling cost between nodes for a particular vehicle; (iii)
the difference in workload. Besides the standard VRPTW
constraints, a constraint to express the workload variable
included in the third objective term is added to the prob-
lem. The workload is defined as the maximal difference
in travel time, or service duration for any two vehicles on
their respective routes.

In Rasmussen et al. [2012], the VRPTW formulations
in Bredström and Rönnqvist [2008] were extended into
a HHCRSP formulation and is expanded to include un-
covered visits. Also here, weighted terms in the objective
function are used. These terms include uncovered visits,
caretaker preferences, and travel cost. The main difference
from other methods is that during assignment, jobs which
fall outside of the given restrictions are considered uncov-
ered. In their paper, the priority of a job is included into
the objective function, rather than added as a constraint.

Besides the mentioned additions to the objective function,
constraints ensuring that the starting times of any job lies
between the start and end time of the work day for any
caretaker are included. They solved the problem using a
branch and price framework, a two step approach where
an initial set of feasible schedules were generated and
then combined in the second step to find the minimum
cost combination of schedules where all constraints were
fulfilled

Eveborn et al. [2006] formulated the problem using a set-
partitioning model, and for solution, they utilized a re-
peated matching algorithm, and they reported a significant
reduction in operational planning time. In Bredström and
Rönnqvist [2008], the authors have generalized and com-
bined the vehicle routing and scheduling model by includ-
ing temporal precedence and synchronization constraints.
They reported that for home care applications, adding
extra constraints had a positive effect on the quality of
the schedules, without making it more difficult to find a
feasible solution.

Trautsamwieser and Hirsch [2011] have proposed a two
step solution for real life scenarios using metaheuristics,
based on the Variable Neighborhood Search (VNS). The
first step generates initial schedules for the caretakers
by assigning the jobs without violating the constraints.
The second step is applying VNS, to refine the schedules
obtained by the initial solution and find the combination
that minimizes the total cost. The benefit of this approach
is that the many criteria of the formulation makes the so-
lution more applicable in a real life scenario, e.g. ensuring
that breaks follow work regulations. Furthermore, by using
soft time window constraints for the majority of jobs and
minimizing with regards to time window violations, some
slack is allowed in finding a feasible solution. The downside
to this approach is that there is no way of finding a
global optimum, or even a feasible solution using standard
solver software for real life situations (i.e. larger problems),
without applying heuristics.

3. PROBLEM FORMULATION

For our mixed integer linear programming model (MILP),
we have used the VRPTW model from Kallehauge et al.
[2005], and modified it to fit the HHCRSP context. The
altered version is also more suitable for the Gossip al-
gorithm, or a partitioning method like Benders decom-
position (Hooker and Ottosson [2003]). This is because
the modified model has a clear distinction between job
assignment variables and route variables.

The problem is defined by a set of n nurses (or caretakers)
N , a set of c customers (or jobs) C, and a graph G =
(V,A), where V is the set of nodes, and A is the set of
arcs. All caretakers are employees of Home HealthCare
Service, and hence they all start from the same depot,
and return to it after completing their jobs. For the sake of
convenience, the depot is modeled by two identical nodes
in the Graph, one for starting from, and the other for
ending to. Therefore, |V| = |C|+2, where nodes 0 and c+1
represent the starting and the ending nodes respectively.

The MILP model in Kallehauge et al. [2005] includes the
following sets of variables
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• X : The set of binary sequencing variables xijn, which
are defined for arcs of the graph. If xijn = 1, the
caretaker n serves client (node) j directly after client
i, and therefore the corresponding arc in the graph
exists. No arc enters the first depot (node 0), and no
arc leaves the last one (node c + 1).

• T : The set of continuous time variables tin defined
for each node i and each caretaker n. If client i is to
be visited by caretaker n, the value of tin determines
when this should happen, otherwise, the value of tin
bears no meaning.

We introduce an additional set of variables Y including bi-
nary job assignment variables yin, to facilitate implement-
ing the Gossip algorithm. If caretaker n serves customer i,
then yin is one, otherwise, it is zero.

The costs and other constants in the model are as follows:

• Caretaker’s time window {ān, b̄n}: ān is the starting
time for caretaker n and b̄n is the finishing time for
caretaker n.

• Customer’s time window {āi, b̄i}: āi and b̄i are the
earliest starting time, and the deadline of task i.

• Caretaker’s qualification level Qn for caretaker n.

• Client’s qualification requirement ri for job i.

• Client’s job duration t̄ti: The duration of the job i
that a caretaker has to perform

• Symmetric cost matrix Cij : This is the Euclidean
distance between clients i and j.

• Travel time t̄ij : This is calculated by dividing the eu-
clidean distance between nodes i and j by caretaker’s
speed.

Hence, the Centralized (or complete) MILP is as follows:

min z =
∑
i∈C

∑
j∈C

∑
n∈N

Cijxijn (1)

s.t.∑
n∈N

yin = 1 ∀i ∈ C (2)

y0n = y(c+1)n = 1 ∀n ∈ N (3)∑
j∈V

xjin = yin ∀i ∈ C, ∀n ∈ N (4)

∑
j∈V

xijn = yin ∀i ∈ V \ {0}, ∀n ∈ N (5)

tin + t̄ij + t̄ti −Mij(1− xijn) ≤ tjn ∀(i, j) ∈ A, ∀n ∈ N
(6)

āi ≤ tin + t̄ti ≤ b̄i ∀i ∈ V, ∀n ∈ N (7)

ān ≤ tin ≤ b̄n ∀i ∈ V, ∀n ∈ N (8)

riyin ≤ Qn ∀i ∈ C, ∀n ∈ N (9)

xijn ∈ {0, 1} ∀i ∈ V \ {c + 1}, j ∈ V \ {0}, ∀n ∈ N
(10)

yin ∈ {0, 1} ∀i ∈ V, ∀n ∈ N (11)

tin ≥ 0 ∀i ∈ V, ∀n ∈ N (12)

The objective function given by (1) minimizes the total
travelling distance for all of the caretakers. Constraints
in (2) assure that any job is visited once, by only one
caretaker. With (3), it is ensured that every caretaker
leaves the depot, and comes back to it, whether it does
anything or not. By (4) and (5) it is guaranteed that if a
job is to be performed by a caretaker, there is an arc (path)
entering the corresponding node, as well as another one
leaving it. Constraints in (6) state the relationship between
the total spent time for a customer, and its immediate
successor. Notice that the large constant Mij can be
reduced to max {b̄i + t̄ij − āj}, (i, j) ∈ A. Furthermore,
(7) affirms that a job is performed within its time window,
while (8) assures that any caretaker works within the
specified work hours. Constraints in (9) assures that only a
qualified enough caretaker is assigned to any job. Finally,
(10) through (12) define the variable domains.

An important remark on the problem formulation is the
absence of the notorious subtour elimination constraints
(SECs). In the classical VRP, SECs guarantee that no
tour not including the depot node exists in the solution.
SECs induce combinatorial explosion, and they cannot
be handled efficiently by a general branching scheme
(see Bektas [2006] for more information on SECs). In a
time windowed version of VRP, like HHCRSP, the service
start variables tin in (6) impose a unique route direction
that necessarily includes the depot, hence, SECs become
redundant. (see more on Solomon and Desrosiers [1988]).

4. THE ALGORITHMS

We have implemented a number of algorithms to solve the
HHCRSP: A Centralized method, which solves the whole
block of the constraints and objective function using a
MILP solver; A logic-based Benders decomposition, which
breaks down the HHCRSP into a master problem that
assigns tasks to the caretakers, and a set of subproblems
that schedule the assigned tasks for the caretaker; A
standard Gossip algorithm that solves the problem locally
and works on pairs of caretakers; An extended Gossip, or
n-Gossip that includes more than two caretakers in the
local problems, and finally, a relaxed gossip that relaxes
the optimality condition on the subproblems to speed up
the search.

4.1 The Centralized Method

The results of the Centralized method was used as a
reference for comparing the results of the other algorithms.
Riazi et al. [2013] reported that the Centralized method
was ineffective for problems with 14 tasks and beyond,
mainly due to explosion of the sub-tour elimination con-
straints (SECs). However, in HHCRSP, we were able to
solve instances as large as 35 tasks within a time limit of
2 hours. This is both because the time-window constraints
in (6) removed SECs, and also because the time-window
constraint significantly reduced the search space as solu-
tions could become infeasible because of timing concerns.

4.2 The Logic-based Benders Decomposition

Logic-based Benders decomposition is a partitioning tech-
nique that decomposes a problem into a master problem,
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and one (or more) subproblems, such that the subproblmes
become easier to solve, or they take form of a known
problem for which efficient algorithms exist. Applying this
method to a problem like HHCRSP results in a master
problem that handles the tasks assignment, and a series
of subproblems (one for each caretaker) that schedule the
assigned tasks on their corresponding caretaker.

In Riazi et al. [2013], Logic-based Benders decomposition
was used for the HMVRP to decompose the problem into a
task assignment problem (master), and a series of schedul-
ing subproblems in form of traveling salesman problems
(TSPs). Integrating the Benders algorithm with a TSP
solver for handling the subproblems led to significant speed
ups that made the Benders method a viable alternative
compared to the Centralized one. In the case of HHCRSP,
however, we found out that Benders algorithm was many
times slower than the Centralized method, for any problem
instance that we tested. One reason could be the fact that
in HMVRP, the main computational burden was to handle
the huge number of SECs that paralyzed the MILP solver.
In contrast, the use of a dedicated TSP solver in Benders
method greatly alleviated this issue, and resulted in a more
successful method compared to the Centralized one.

Another issue affecting the Benders method in both
HMVRP and HHCRSP was that the master problem had
difficulty finding new incumbent solutions. The reason
was that the implemented Benders’ cuts were not strong
enough to rule out large portions of the huge search space.
We attempted to speed up the Benders by generating
stronger indefeasibly cuts. To do this, a relaxed Con-
straint Programming (CP) version of each subproblem was
constructed. Then, CP methods were used to detect the
minimal conflicting set of tasks on a caretaker’s schedule.
Generating the stronger infeasibility cuts was effective, but
it was not enough to make the Benders algorithm a better
alternative to the Centralized method.

4.3 The Gossip Algorithm

The Gossip algorithm for HMVRP was first proposed
in Franceschelli et al. [2013], where instead of caretaker
and customers, the context involved robots and tasks. Ac-
cording to the Gossip rule, after an initial task assignment,
two robots and their tasks are randomly picked to form a
local optimization problem. The solution to this problem
yields either an equal or a better objective function value
by retaining or changing the task assignments among the
robots. Then, the same process is repeated for another
randomly chosen couple of robots, until no further im-
provement is achieved. Notice that the method has no
specific criterion for stopping condition.

The important rationale behind the use of Gossip for
HHCRSP is that it allows us to solve local problems that
are smaller in number of both caretakers, and customers.
For instance, consider a case of 4 caretakers and 36 tasks.
If the algorithm starts with an initial assignment of 9 tasks
for each customer, the first iteration involves solving a
problem of 2 caretakers and 18 clients which is easier to
solve and is handled more efficiently by a local solver.

4.4 The n-Gossip Algorithm

The n-Gossip algorithm was introduced in Riazi et al.
[2013]. In n-Gossip, more than two robots (or caretakers)
are involved in the local optimizations. In fact, for |N |
robots, n can grow up to |N | − 1. This implies higher al-
gorithmic complexity, but the benefit is the higher quality
of the solution, because larger local problems give a better
approximation of the original problem. Therefore, one can
decide to increase the solution quality by increasing n such
that the CPU time is still smaller than an exact method.
According to Riazi et al., increasing the n to its maximum
value resulted in significant reduction of the optimality gap
in most of the tested problem instances, while the solution
time remained considerably less than their fastest exact
method (Benders with TSP solver).

4.5 The Relaxed Gossip Algorithm

The performance of the Gossip algorithm is very depen-
dant on that of its local solver. When the problem size
grows large, the local MILP solver starts losing its effi-
ciency. To overcome this issue, we relax the optimality
requirement and let the solver terminate the search when
the optimality gap reaches 5%. Moreover, if the time spent
on a local problem exceeds a certain threshold, the search
is halted and the best incumbent solution is returned. This
method proved to alleviate the bottlenecking issues arisen
in difficult local problems.

5. NUMERICAL SIMULATIONS

The aim of the numerical experiments is to examine
the behavior of the 3 versions of the Gossip algorithm;
standard, n-Gossip, and the relaxed one. The Centralized
method was used to provide the optimal values of the test
instances, which was used as a measure of the solution
quality and computational efficiency of the Gossip meth-
ods. The MILP solver used was IBM ILOG CPLEX 12.5
(64-bit) in Microsoft Windows 7 Enterprise environment.
The hardware used was an Intel Core2 Quad CPU (2.66
GHz), with 4 GBs of RAM.

5.1 The Test Scenarios

We have evaluated the Centralized and Gossip methods for
different configurations of caretakers and jobs, and divided
the experiments into two sets. For the first set, the number
of caretakers |N | was set to 3, 4, and 5, while the number
of jobs |C| was set to 20, 25, and 30 respectively. For
each of these combinations, three instances were generated
randomly, and each instance was solved 10 times for the
Gossip method to obtain a better picture of its average
performance in terms of CPU time and gap. In the second
set of the experiments, |N | was 6, 7 and 8, with |C| being
40, 50, and 60. Each combination of the second set was
tested for two random instances. The randomly generated
costs were based on real-life conditions as seen in Eveborn
et al. [2006]. For example, {an, bn} was chosen to be
{8, 16} to reflect the working hours of a typical caretaker.
The durations of tasks in the first set are long (10 to 45
minutes), while in the second set the durations are short
(10 to 20 minutes). By using the short version we meant
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to fill-up the schedule of each caretaker with more tasks.
For the first part of the experiments, we selected instances
from the Centralized method with solution time of less
than two hours, and for the Gossip, those instances were
solved subject to a time-limit of 1200 [s]. For the second
part of the tests, the best integer solutions found from the
Centralized and Gossip were reported after spending, in
turn, two hours, and 1200 [s] on each of the algorithms.

5.2 The Standard Gossip

In the standard Gossip, local problems include only two
caretakers, which is denoted by LP = 2. To measure the
quality of the Gossip solution, an artificial gap is defined
as

Gap % =
z∗Gossip − z∗Centralized

z∗Centralized

∗ 100

where z∗Gossip is the best solution obtained from Gossip,
and z∗Centralized is the optimal solution obtained from the
Centralized method. The solution time for the Gossip is
the time at which z∗Gossip first happened.

In Table 1, the Centralized and Gossip (LP=2) columns
present the result of the numerical experiments. As seen in
the table, for the tested instances, the standard Gossip is
generally many times faster than the Centralized, and the
gap varies from 0.02% to 7.02%. Note that the reported
time and gap for each instance are the average of 10
experiments. Note also that in the first iteration of the
Gossip algorithms, the tasks were distributed among the
caretakers such that the workload of the caretakers would
be almost the same, while the qualification requirement
of the assigned tasks were smaller than or equal to the
qualification level of the corresponding caretaker.

Distributing the tasks in a load-balancing fashion in some
cases resulted in infeasible schedules in the first itera-
tion. In several cases, the algorithm was not able to find
a feasible solution within the specified time limit. For
example, for the case of (|N |, |C|, i) = (5, 30, 3), one of
the 10 experiments suffered from this issue. As we will
see in the next section, for larger problems, it is cost-
effective to spend some time on finding a feasible first
assignment. However, as we tested, for smaller problems,
finding a feasible initial solution sometimes resulted in
worse computational performance.

5.3 The n-Gossip Method

As stated in Riazi et al. [2013], the purpose of the n-
Gossip algorithm is to provide the means to balance
solution quality versus computational speed. This trade-
off is achieved by including more than two caretakers in
the local problems, which improves the solution quality at
the cost of computational speed.

Table 1 (columns Gossip (LP=3), Gossip (LP=4)) pro-
vides the performance analyses of the n-Gossip method
for the long task duration. By moving from left (LP=2) to
the right (LP=4), we observe that in most of the instances
the solution quality improves (the gap decreases), and
the CPU time worsens. For the case of (|N |, |C|, i, LP ) =

(5, 30, 1, 4), we can see that the gap is completely elim-
inated, but the solution time is even worse than the
Centralized. Hence, depending on the problem instance,
it may not be wise to increase n in n-Gossip method to
its maximum value (|N | − 1), since the Centralized may
then yield the optimal solution more quickly. Nevertheless,
we observe that for most of the instances, the n-Gossip
method yields solutions with better quality than standard
Gossip, and less CPU time than the Centralized method.
One issue with the n-Gossip is that if the initial step of the
algorithm starts with an infeasible assignment, the algo-
rithm sometimes cannot find a feasible solution before the
time-limit, as was the case for standard Gossip. However,
due to the higher computational complexity of n-Gossip,
it is more prone to the mentioned problem. The remedy,
as it will come, is to start the algorithm with a feasible
solution.

Another problem that generally arises with both versions
of Gossip, is that the underlying CPLEX solver spends too
much time on proving the optimality of the local prob-
lem. This can be alleviated by adjusting the optimality
tolerance of the subproblems, without compromising the
solution quality significantly.

5.4 Gossip With Relaxed Optimality Tolerance

The Centralized method was not able to yield optimal
solution for problems including 40 nodes or beyond, yet
it was used to provide upper bounds on the optimal
objective function value. Such bounds could be compared
to those found by the Gossip algorithm, as a measure
of quality. The relaxed Gossip was started with feasible
solutions obtained from CPLEX using heuristics, and
it was halted after 20 minutes. To perform numerical
experiments for this section, the tasks were generated with
shorter durations (10 to 20 minutes) such that more tasks
could be assigned to each set of caretakers. Table 2 gives
the simulation results of this part of the experiments.

It is seen from the table that, the relaxed Gossip yields
significantly better integer solutions compared to the up-
per bounds obtained from the Centralized method. Note
that the Gossip algorithm was subject to a time limit of
1200[s] (20 minutes), and the Centralized to two hours.
We observed that relaxation strategy in Gossip effectively
prevented the algorithm from spending too much time
on difficult local problems. Moreover, starting the Gossip
with any feasible solution removed the problem of unsolved
instances reported in Table 1.

6. CONCLUSION

The Home Healthcare Scheduling and Routing problem
could be modeled a variation of the vehicle routing prob-
lem with time windows. We have applied standard Gossip,
and n-Gossip algorithms to solve this problem. The stan-
dard Gossip yields quick solutions with reasonable quality,
while the n-Gossip offers a trade-off between optimality
and computational complexity. The solution quality of
both algorithms can further be improved by initializing
them with a feasible solution, and by adjusting the opti-
mality tolerance of the Gossip local problems. This adjust-
ment will allow the Gossip to quickly find integer solutions
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size Centralized Gossip (LP=2) Gossip (LP=3) Gossip (LP=4)

|N | |C| i Seconds Seconds Gap (%) #unsolved Seconds Gap (%) #unsolved Seconds Gap (%) #unsolved

3 20 1 8.68 1.44 0.02 0
2 3.94 0.84 1.60 0
3 1.90 2.58 0.00 0

4 25 1 107.84 8.39 4.70 0 40.52 0.80 0
2 123.82 3.22 2.61 0 34.46 0.00 2
3 24.04 2.65 0.00 0 15.08 1.81 0

5 30 1 99.88 14.18 2.04 0 148.37 1.06 0 132.99 0 0
2 401.19 151.11 7.02 0 240.40 5.85 4 345.72 4.93 2
3 2923.25 120.29 3.31 1 266.99 0.45 1 335.99 3.12 2

Table 1. Comparison of Centralized and Gossip methods: Average CPU time in seconds, Average
gap, and number of unsolved instances (#unsolved); |N |, |C|, and i indicate number of
caretakers, jobs, and the instance number; LP=2, LP=3, and LP=4 mean the number of care

takers in the local problem.

size Centralized Gossip (LP=2)

N |C| i Best integer solution Best integer solution

6 40 1 47.44 41.66
2 45.11 43.19

7 50 1 53.88 48.01
2 72.88 49.27

8 60 1 83.67 61.98
2 81.97 70.36

Table 2. Comparison of Centralized and re-
laxed Gossip: Best integer solution after two
hours (Centralized), and after 20 minutes
(Gossip); |N |, |C|, and i indicate number of

caretakers, jobs, and the instance number.

with good quality compared to those obtained from the
Centralized method.

REFERENCES

Marianne Ahlner-Elmqvist, Marit S. Jordhy, Kristin
Bjordal, Magnus Jannert, and Stein Kaasa. Characteris-
tics and quality of life of patients who choose home care
at the end of life. Journal of pain and symptom manage-
ment, 36(3):217–227, 2008. doi: 10.1016/j.jpainsymman.
2007.10.010.

Tolga Bektas. The multiple traveling salesman problem:
an overview of formulations and solution procedures.
Omega, 34(3):209–219, June 2006.

David Bredström and Mikael Rönnqvist. Combined ve-
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