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1. INTRODUCTION

There has been significant work in the field of output
regulation for hybrid systems recently. Marconi and Teel
(2013) lay out the relevant framework and develop hybrid
regulation equations and a hybrid internal model property.
The proposed framework considers the class of linear sys-
tems and exosystems that are subject to jumps according
to a known clock that satisfies a dwell-time constraint.

The authors have published further related works in the
same vein. For results on designing stabilizers in conjunc-
tion with hybrid internal models, see Cox et al. (2013).
Furthermore, the case where the regulator may not be able
to rely on a known jump clock, but still relies on periodic
jumps, is covered by Cox et al. (2011). More recently,
the authors have shown that hybrid internal models can
be used to achieve robust global exponential tracking of
spline trajectories, see Cox et al. (2012). The previous
paper on spline tracking uses some restrictive assumptions
on the zero-dynamics of the plant, but here we addresses
those shortcomings. In fact, the design proposed here is
motivated by the methods used to track spline trajectories,
but works much more generally.

Recent work has also been done regarding stabilization
and regulation goals achieved for MIMO systems, see
Carnevale et al. (2012a) and Carnevale et al. (2012b),
amongst others. They also study the application of hybrid
output regulation to the problem of tracking a spinning
and bouncing disk, see Carnevale et al. (2013).

In the following, the goal is to achieve hybrid output
regulation for a class of hybrid linear SISO systems and
exosystems. We use the framework of Marconi and Teel
(2013), with a focus on linear systems described in nor-
mal form. As shown by Cox et al. (2012), the general
internal model design method given by Marconi and Teel
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(2013) may not always be sufficient, and in some cases
a more guided approach is necessary. The internal model
developed here builds on a “visibility property” of the so-
called hybrid steady state generator system, namely the
hybrid system that generates the ideal control input able
to keep the regulation error identically zero. In this way
we give a consistent design method for hybrid internal
models applicable in general. The internal model designed
is similar to a state observer, but with the alternate goal
of reproducing the output of the hybrid steady state gen-
erator, as opposed to the entire state. It will be shown that
the design procedure presented in the paper is relevant in
achieving robust output regulation goals.

Notation The unit disk is denoted by D1. The eigenvalues
of a matrix M are denoted by eig(M). The real space is
denoted by R. The Kronecker product of two matrices A1

and A2 is denoted by A1 ⊗ A2, while the Kronecker sum
is A1 ⊕A2.

2. FRAMEWORK

Consider the system that flows according to

τ̇ = 1,
ẇ = S(τ)w,
ż = A11z +A12y + P1w,
ẏ = A21z +A22y + bu+ P2w,

(1)

for (τ, w, z, y) ∈ [0, τmax] × W × Rn × R, and jumps
according to

τ+ = 0,
w+ = Jw,
z+ = M11z +M12y +N1w,
y+ = M21z +M22y +N2w,

(2)

for (τ, w, z, y) ∈ {τmax} ×W × Rn × R.

The system, (z, y), and exosystem, w, jump periodically
according to the clock variable, τ . The exosystem state w
lives in the compact set W ⊂ Rs with the set [0, τmax]×W
that is assumed to be (forward) invariant for the (τ, w).
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The goal of output regulation is to regulate the variable

e = y −Qw,
i.e. we want to find a regulator that processes only the
error, e, and steers it, asymptotically, to zero.

We limit the analysis to minimum-phase systems. Namely,
systems that fulfill the following assumptions.

Assumption 1. (Minimum-Phase). The matrices A11,M11

are such that eig(M11exp(A11τmax)) ∈ D1.

Furthermore, in order to have z-dynamics with a well-
defined hybrid steady state, we assume the following non-
resonance condition between the zeros of the system and
the “poles” of the hybrid exosystem.

Assumption 2. (Non-Resonance Condition). The following
holds: eig(M11exp(A11τmax)) ∩ eig(Jexp(Sτmax)) = ∅.

With assumption 2 in hand we let Πz(τ) : [0, τmax]→ Rn×s
be the continuously differentiable function that is the
unique solution of

dΠz(τ)

dτ
= A11Πz(τ)−Πz(τ)S(τ) +A12Q+ P1,

0 = M12Q+M11Πz(τmax)−Πz(0)J +N1 .

Furthermore we consider the change of variables

z 7→ z̃ = z −Πz(τ)w, y 7→ e = y −Qw,
which transforms the system into a hybrid system flowing
according to

τ̇ = 1, ẇ = S(τ)w,
˙̃z = A11z̃ +A12e,
ė = A21z̃ +A22e+ b(u−R(τ)w),

(3)

whenever (τ, w, z̃, e) ∈ [0, τmax]× Rs × Rn × R, where

R(τ) =
1

b
(QS −A22Q−A21Πz(τ)− P2 ) , (4)

and jumping according to

τ+ = 0, w+ = Jw,
z̃+ = M11z̃ +M12z̃,
e+ = M21z̃ +M22e+ (M21Πz(0) +M22Q−QJ +N2)w,

(5)
whenever (τ, w, z̃, e) ∈ {τmax} × Rs × Rn × R.

The goal of the regulator is to make the set {(τ, w, z̃, e) ∈
[0, τmax]×W ×Rn ×R : z̃ = 0, e = 0} globally exponen-
tially stable for the error system (3)-(5), by compensat-
ing for the term R(τ)w. This necessitates the following
assumption on the jump dynamics because there is no
feedback during jumps to compensate for any disturbance
that may show up.

Assumption 3. The matrix equation M21Πz(0) +M22Q−
QJ +N2 = 0 is satisfied.

A crucial role in the design of internal model-based reg-
ulators is played by the so-called “hybrid steady state
generator system” defined as the following hybrid system

τ̇ = 1
ẇ = S(τ)w

}
(τ, w) ∈ [0, τmax]×W

τ+ = 0
w+ = Jw

}
(τ, w) ∈ {τmax} ×W

yw = R(τ)w

(6)

with output yw ∈ R. This system, in fact, generates all the
ideal steady state control inputs required of the regulator
in order to keep the regulation error, e, identically zero.

Due to the fact that the initial condition (τ(0), w(0))
of the exosystem is arbitrary on [0, τmax] × W , it is
apparent that the “visible” dynamics of system (6) must
be embedded into any regulator that solves the problem of
output regulation 1 . This observation is at the foundation
of the celebrated internal model principle (see Francis and
Wonham (1976) for continuous-time linear systems and
Marconi and Teel (2013) for hybrid linear systems).

For reasons that are motivated by the problem of designing
robust internal models, and to make the notion of visibility
rigorous, it is useful to introduce the class of systems that
are “state-output” equivalent to (6) as formally defined in
Definition 1. In the definition we refer to an “equivalent”
system defined by

τ̇ = 1
ẇ = S(τ)w

}
(τ,w) ∈ [0, τmax]×W

τ+ = 0
w+ = Jw

}
(τ,w) ∈ {τmax} ×W

yw = R(τ)w

(7)

where w ∈ Rs, s ∈ N, and W is a compact subset of Rs

with [0, τmax]×W invariant for (7). We note that (6) and
(7) have the same hybrid time domain (see Goebel et al.
(2009)) dependent on the initial condition τ(0).

Definition 1. System (6) is state-output equivalent to sys-
tem (7) if for any τ(0) ∈ [0, τmax] and w(0) ∈W there ex-
ists a w(0) ∈W such that, having denoted by E ⊂ R≥0×N
the corresponding hybrid time domain,

yw(t, j) = yw(t, j) ∀ (t, j) ∈ E .

By following the prescriptions of Marconi and Teel (2013),
Section IV.A, we focus on a hybrid internal model-based
regulator of the form

τ̇ = 1
η̇ = Fim(τ)η +Gim(τ)u

}
(τ, η) ∈ [0, τmax]× Rν ,

τ+ = 0
η+ = Σimη

}
(τ, η) ∈ {τmax} × Rν ,

u = Γim(τ)η + v,

(8)

where ν ∈ N, Fim : [0, τmax] → Rν×ν , Gim : [0, τmax] →
Rν×1 and Γim : [0, τmax] → R1×ν are continuously dif-
ferentiable functions, Σim is a matrix, and v is a residual
control input, all to be designed.

The following result, which can be proven by slightly
adapting the arguments of Marconi and Teel (2013),
Section IV, provides the main guidelines for the design
of (8).

Proposition 1. Let Assumptions 1, 2 and 3 be fulfilled.
Let (7) be a system that is state-output equivalent to the
hybrid steady-state generator system (6). Assume that the
controller (8) is designed so that for some continuously
differentiable function Πη(τ) the set

S = {(τ,w, η) ∈ [0, τmax]×W × Rν : η = Πη(τ)w} (9)

1 The concept of visibility here is used loosely and will be better
specified later by following D‘Alessandro et al. (1973). Intuitively,
visible dynamics are state trajectories of (6) that show up on the
output yw and, as such, must be reproduced by the regulator.
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is globally exponentially stable for the hybrid system

τ̇ = 1 , ẇ = S(τ)w
η̇ = Fim(τ)η +Gim(τ)R(τ)w

}
(τ,w, η)
∈ [0, τmax]×W × Rν ,

τ+ = 0 , w+ = Jw
η+ = Σimη

}
(τ,w, η)
∈ {τmax} ×W × Rν ,

(10)
with

Γim(τ)Πη(τ) = R(τ) ∀ τ ∈ [0, τmax]. (11)

Then, there exists a κ? > 0 such that for all κ ≥ κ? the
regulator (8) with v = −κe solves the problem of hybrid
output regulation.

An internal model of the form (8) making the set (9)
globally exponentially stable for (10) and fulfilling (11)
always exists provided that the dimension ν is taken
sufficiently large and the triplet (Fim, Gim,Σim) satisfies
some technical requirements (see Proposition 3 of Marconi
and Teel (2013)). However, there are significant cases
where the design tools proposed by Marconi and Teel
(2013) do not directly apply as shown. For instance,
see Cox et al. (2012), where the problem of robustly
tracking a spline generated reference signal is dealt with.
The main objective of this paper is to enrich these tools
by presenting a general methodology for the design of
the triplet (Fim, Gim,Σim) so that the requirements of
Proposition 1 are fulfilled.

As is clear from the statement of the proposition, the
problem at hand is related to the problem of designing
an asymptotic output reproducer for a hybrid system that
is state-output equivalent to the hybrid steady state gen-
erator (6), namely to design a hybrid system that, forced
by yw, is able to asymptotically reproduce all the possible
output behaviors yw(t) of (7), and thus all the possible
output behaviors yw(t) of (6).

Of course the properties required of system (8) in Propo-
sition 1 could be fulfilled by directly using, as system (7),
the hybrid state-steady generator (6). The reason why it is
worth introducing a different, although equivalent, system
(6) in Proposition 1 is related to the design of robust
internal models.

In fact, the quadruplet (Fim(τ), Gim(τ),Γim(τ),Σim) ful-
filling the properties of Proposition 1 generally depends
on the triplet (S,J,R). In this respect, it turns out that
the function R(τ) defined in (4) is, in general, affected by
possible parametric uncertainties in the regulated plant
(1)-(2), which makes the direct use of (6) to design the
regulator (8) according to Proposition 1 ineffective if a
robust regulator is sought. On the other hand, the pres-
ence of possible uncertainties in R(τ) can be overcome by
defining an equivalent system in an appropriate way. This
is certainly the case if R(τ) is linearly parametrized in the
uncertainties, namely if there exists a p ∈ N and known
continuously differentiable functions Ri(τ), i = 1, . . . , p,
such that

R(τ) =

p∑
i=1

Ri(τ)µi (12)

where µi are the uncertain parameters ranging in a known
compact set [µ

1
, µ̄1]×. . .×[µ

p
, µ̄p]. In fact, the next result

follows.

Proposition 2. Let S(τ) = Ip ⊗ S(τ), J = Ip ⊗ J , R(τ) =
(R1(τ), . . . , Rp(τ)) and W = W1 × . . .×Wp where

Wi = {wi ∈ Rs : wi = µw, w ∈W , µ ∈ [µ
i
, µ̄i]}

for i = 1, . . . , p. Then system (7) is state-output equivalent
to (6).

It is worth noting that system (7) as defined in the previous
proposition is not affected by the actual values of the µi’s.
Thus, a quadruplet (Fim(τ), Gim(τ),Γim(τ),Σim) fulfilling
the properties of Proposition 1 immediately yields a robust
regulator.

3. DESIGN OF THE REGULATOR

We approach the problem of designing a quadruplet
(Fim(τ), Gim(τ),Γim(τ),Σim) fulfilling the properties of
Proposition 1 by designing an observer for the dynamics
of (7) that are “visible” on the output yw. Toward this
end, in the next subsection we present a decomposition
of system (7) that isolates visible and invisible dynamics.
Our goal is to identify a hybrid system that is state-output
equivalent to (7) and for which an asymptotic observer
can be designed. The design of the (hybrid) asymptotic
observer is dealt with in Section 3.2. This, in turn, will
lead to immediately obtaining an “output reproducer” of
system (7). For notational convenience, in the following
part we drop the bold notation for system (7), by using
S(τ), J , R(τ), W and yw instead of S(τ), J, R(τ), W and
yw.

3.1 Isolating invisible dynamics

Towards the final goal of isolating visible and invisible
dynamics of the hybrid system (7), we start by focusing
on the flow dynamics by identifying dynamics that do not
affect the output during flow. Consider the continuous-
time time-varying linear system of the form

ẇ = S(τ)w, w ∈ Rs
yw = R(τ)w,

(13)

defined on the interval τ ∈ [0, τmax] and let φ(τ, τ0) be the
state transition matrix associated with ẇ = S(τ)w. As
the system is time-varying, a Kalman-like decomposition
related to observability can be rigorously obtained by the
arguments of D‘Alessandro et al. (1973). The definition of
an invisible state is crucial to that paper and is recalled
here.

Definition 2. We say that a state w ∈ Rs is invisible
at time τ ∈ [0, τmax] in the interval [0, τmax] if it is
unobservable and unreconstructable at time τ in the
specified time interval, namely if

R(t)φ(t, τ)w = 0 for all t ∈ [0, τmax] .

Furthermore, we define the invisible space as in the follow-
ing.

Definition 3. We let L(τ) be the space of states that are
invisible at time τ in the interval [0, τmax].

Let Q be the gramian associated to the system in the
interval defined as

Q(τmax) =

∫ τmax

0

φ(t, τ)T RT (t)R(t)φ(t, τ)dt .
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The following result plays a crucial role in finding the
change of variables that isolates the visible and invisible
dynamics of (13).

Theorem 1. The following holds:

• L(τ) = Ker(Q(τ)) ;
• dimL(τ1) = dimL(τ2) := sno for all τ1, τ2 ∈ [0, τmax].

The proof is omitted, but follows the arguments in
D‘Alessandro et al. (1973) specialized to the present con-
text.

We are now in the position of finding the τ -dependent
smooth change of variables w = T (τ)x such that, in the
new coordinates, system (13) reads as

ẋno = 0
ẋo = 0
yw = Ro(τ)xo,

(14)

with xno ∈ Rsno , xo = Rso , where so := s− sno, for some
appropriately defined continuously differentiable function
Ro(·) such that the gramian

Qo(τmax) =

∫ τmax

0

RTo (t)Ro(t)dt (15)

associated to the xo subsystem is not singular.

As a matter fact, pick any τ0 ∈ [0, τmax] and let {vi}sno
i=1

be a basis of L(τ0) (namely a basis of Ker(Q(τ0))). Fur-
thermore, let C(τ0) be the complement of L(τ0) relative to
Rs, namely the space such that C(τ0) ⊕ L(τ0) = Rs, and
let {vi}si=so+1 be a basis of C(τ0).

In the following we derive a basis for L(τ) and C(τ), with
C(τ) such that L(τ)⊕C(τ) = Rs for all τ ∈ [0, τmax]. Those
bases are obtained by flowing forward and backward in
time the bases of L(τ0) and C(τ0). To this end, it turns
out that (see D‘Alessandro et al. (1973))

L(τ) = span {φ(τ, τ0) [ v1 · · · vsno ]} ∀τ ∈ [0, τmax]. (16)

To prove this, note that φ(τ, τ0)vi ∈ L(τ) for all i =
1, . . . , sno. As a matter of fact

Q(τ)φ(τ, τ0)vi = φ(τ, τ0)−Tφ(τ, τ0)TQ(τ)φ(τ, τ0)vi
= φ(τ, τ0)−TQ(τ0)vi = 0 .

Furthermore,

rank φ(τ, τ0) [ v1 · · · vsno ] = sno .

Since dimL(τ) = sno, the previous facts prove (16).
Similarly,

C(τ) = span {φ(τ, τ0) [ vsno+1 · · · vs ]} (17)

for all τ ∈ [0, τmax]. As a matter of fact,

rank φ(τ, τ0) [ vsno+1 · · · vs ] = so

and

rank φ(τ, τ0) [ v1 · · · vsno vsno+1 · · · vs ] = s

by which, using (16), (17) follows.

By using the previous results we thus consider the
(smooth) change of variable w = T (τ)x with

T (τ) = φ(τ, τ0)V V := [ v1 · · · vsno
vsno+1 · · · vs ] .

By construction it turns out that

S(τ)w = ẇ = Ṫ (τ)x+ T (τ)ẋ,

from which

ẋ = T (τ)−1(S(τ)T (τ)− Ṫ (τ))x .

Using,

Ṫ (τ) = φ̇(τ, τ0)V = S(τ)φ(τ, τ0)V = S(τ)T (τ),

the previous relations yield

ẋ = 0 .

Furthermore, by construction and by the definition of an
invisible state space,

R(τ)φ(τ, τ0)V = [ 0 Ro(τ) ] ,

where

Ro(τ) = R(τ)φ(τ, τ0) [ vsno+1 · · · vs ] .

Simple arguments can be finally used to show Qo(τ) is not
singular for all τ in the interval. Rewrite (15) as

Qo(τmax) = [ vsno+1 · · · vs ]
T Q(τmax) [ vsno+1 · · · vs ] .

Then by construction of C(τ0), Qo(τmax) is non-singular.

We note that the subspace {x : xo = 0} is invariant
and composed of invisible states. On the other hand the
subsystem

ẋo = 0
yw = Ro(τ)xo

is “visible” in the interval, namely the subspace of invisible
states Lo(τ) associated to the previous system is such that
Lo(τ) ≡ {0}.

Remark It is worth noting that the previous visibility
property of the pair (0, Ro(·)) does not imply, in general,
that the pair is uniformly observable, namely that the ob-
servability matrix Oo(τ) associated to the pair (0, Ro(τ))
is not singular for all τ in the interval. The latter property
is related to a uniform observability that is time-wise. /

Now we consider the hybrid system (7), with the goal of
identifying visible and invisible dynamics for this system.
By applying the change of variable T (τ) discussed above,
the jump relation of system (7) transforms according to

x+ = [T (τmax)−1]+w+ = T (0)−1Jw = T (0)−1JT (τmax)x,

where 2 x = x(τmax) and w = w(τmax). By partitioning
T (0)−1JT (τmax) consistently with x,

x+o = Jo xo(τmax) + Jono xno(τmax)
x+no = Jno xno(τmax) + Jnoo xo(τmax)

(18)

where the matrices Jo, Jono, Jno, Jnoo do not have any
special properties.

We note that, by construction, the hybrid system flowing
according to (13) and jumping according to (18) is state-
output equivalent to (7). Furthermore, we note that the
xno state component, that is invisible for the continuous-
time system (13) during flows, might become visible for the
hybrid system (7). As a matter of fact, the xno component
might show up during jumps by affecting xo through the
jump relation x+o = Joxo + Jonoxno, thus affecting the
output yw(t) in the “subsequent” flow interval. This means
that in the attempt to identify a system that is state-
output equivalent to (7) and for which an asymptotic
observer can be designed, it cannot be ignored.

This observation motivates the forthcoming developments
in which the goal is to compute a system that is state-
output equivalent to the hybrid system flowing according

2 Here and in the following we compactly denote by ξ(τmax) and
ξ(0) the value of a state variable ξ at the end and at the beginning
of a generic time interval.
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to (14) and jumping according to (18) by isolating the
component of xno that is also invisible during jumps. To
this purpose, let Υ ∈ Rsno×Rsno be the change of variable
that puts the pair (Jno, Jono) in observable canonical form.
Namely,

ΥJnoΥ
−1 =

(
J ′no 0
? ?

)
, JonoΥ

−1 =
(
J ′ono 0

)
,

where

(J ′no, J
′
ono) ∈ Rs

′
no×s

′
no × R(s−sno)×s′no , s′no ≥ 0 ,

is an observable pair, with ? denoting generic blocks of
no interest in the subsequent developments. By changing
coordinates as xno 7→ x′no = Υxno and by partition-

ing x′no = col(x′noo, x
′
nono) with x′noo ∈ Rs′no , x′nono ∈

Rsno−s′no , it turns out that the dynamics of xo and x′no
are described by the flow dynamics

ẋo = 0
ẋ′no = 0 ,

and by the jump relation

x+o = Joxo + J ′onox
′
no

x′+noo = J ′nox
′
noo + J ′nooxo

x′+nono = ?

where J ′noo ∈ Rs′no×so is the matrix obtained by extracting
the first s′no rows from the matrix ΥJnoo, and where ?
denotes a linear combination of x′noo(0), x′nono(0) and
xo(τmax) of no interest in the following. By keeping in mind
that the output yw is only affected by the xo component, it
is immediately seen that x′nono has no effect on the output,
neither during flows nor during jumps. Hence, we conclude
that system (13), (18) is state-output equivalent to the
hybrid system

żo = 0
żno = 0

z+o = Nozo +Nonozno
z+no = Nnozno +Nnoozo

yw = Ro(τ)zo

(19)

where No = Jo, Nono = J ′ono, Nno = J ′no, Nnoo = J ′noo.

All the state components of the previous system are visible,
as is shown by the result in the next section, where an
asymptotic hybrid observer for this system is presented.

3.2 Design of the internal model

The goal of this section is to present a methodology for the
design of the internal model having the output reproducer
capabilities required in Proposition 1. The idea that is
followed in the design is to construct a hybrid asymptotic
observer for the dynamics of (19). The design of the
observer for the zno part (which is invisible during flows
but which show up during jumps) follows the intuition
that a discrete time observer could be designed using the
“measure” z+o − Nozo to construct an innovation term.
As z+o is not measurable we “inject” it in the zno jump
dynamics through the change of variable

zno 7→ ξno = zno +K2zo

with K2 to be fixed. By also letting ξo = zo, in the new
coordinates system (19) reads as

ξ̇o = 0

ξ̇no = 0

ξ+o = N̄oξo + N̄onoξno

ξ+no = N̄nooξo + (Nno +K2Nono)ξno

yw = Ro(τ)ξo

(20)

where N̄ono := Nono and

N̄o := (No −NonoK2)
N̄noo := Nnoo −NnoK2 +K2No −K2NonoK2 .

Using the fact that the pair (Nno, Nono) is observable we
now choose K2 such that

eig(Nno +K2Nono) ∈ D1 .

We now develop two different observers for (20) according
to the properties fulfilled by the pair (0, Ro(τ)).

(A)The pair (0, Ro(τ)) is not uniformly observable. As
remarked in Section 3.1, there is no guarantee that the
“visible” pair (0, Ro(τ)) is uniformly observable. The only
guarantee is that the gramian (15) is not singular. In such
a case the asymptotic properties of the observer are mainly
obtained through jumps, by integrating the output yw in
the interval [0, τmax] to compute a “finite-time” estimate of
ξo (by inversion of the gramian). Specifically, the following
proposition, for which the proof is omitted to save space,
holds.

Proposition 3. As system (8), consider the system

η̇i = RTo (τ)u

η̇o = 0

η̇no = 0

η+i = 0

η+o = N̄oQo(τmax)−1 ηi + N̄onoηno

η+no = (Nno +K2Nono)ηno + N̄nooQo(τmax)−1 ηi

yη = Ro(τ)ηo .

(21)

Then, there exists a differentiable function Πη(τ) satisfy-
ing the properties of Proposition 1, that is the set S in (9)
is globally exponentially stable for (10) and (11).

We observe that the role of the variable ηi, which is reset
at every jump, is to estimate the state component ξo of
(20) at the beginning (ξo(0)) and at the end (ξo(τmax)) of
the time interval through the relations

ξo(0) = ξo(τmax) = Qo(τmax)−1ηi(τmax) (22)

and to use those estimates at the jump time to enforce a
cascade structure of the error system.

Remark The flow dynamics of the ηi variable in (21)
are those of a pure integrator, which could open the door
to some criticism about the sensitivity of the proposed
observer to noise superimposed on the input u. With
regards to this, a variant of the observer structure in (21)
could consider flow ηi dynamics of the form

η̇i = Hηi +RTo (τ)u,

where H is a Hurwitz matrix introduced to filter possible
noise superimposed on u. The previous construction con-
tinues to hold having care to substitute Qo(τmax) in the
expressions of ηo+ and η+no, with the “filtered” gramian

Qfo (τmax) =

∫ τmax

0

exp(H(τmax − τ))RTo (t)Ro(t)dt .
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(B) The pair (0, Ro(τ)) is uniformly observable. An
alternative observer design can be proposed if the visible
pair (0, Ro(τ)) is also uniformly observable in the interval.
The uniform observability condition is formalized in the
next assumption.

Assumption 4. The observability matrix

O(τ) =


Ro(τ)

Ṙo(τ)
...

R(so−1)
o (τ)


is non-singular for all τ ∈ [0, τmax].

Under this assumption, the observer for the system (20)
can be done by using high-gain tools to estimate, during
flows, the observable component of the system as presented
in the following. Let P (τ) be a matrix defined by its inverse

P−1(τ) =
[
q(τ) L̃q(τ) . . . L̃so−1q(τ)

]
where q(τ) is the last column of O(τ)−1 and L̃(·) is the
differential operator

L̃q(τ) := −q̇(τ) .

It turns out (see Bestle and Zeitz (1983)) that P−1(τ)
is non-singular in the interval, and is continuously dif-
ferentiable by construction. Furthermore, the change of
variables

ξo 7→ χo = P (τ)ξo, ξno 7→ χno = ξno,

transforms system (20) into the following form.

χ̇o = Aχo + r(τ)Cχo
χ̇no = 0

χ+
o = Moχo +Monoχno

χ+
no = (Nno +K2Nono)χno +Mnooχo
yw = Cχo

(23)

where r(τ) is appropriately defined,

A =

(
01×so−1 0
Iso−1 0so−1×1

)
, C = ( 0so−1 1 ) ,

and
Mo := P (0)N̄oP

−1(τmax)
Mono := P (0)N̄ono
Mnoo := N̄nooP

−1(τmax) .

It should also be noted that the change of variables is
a Lyapunov Transformation if the following assumption
holds. This guarantees that the transformed system will
have the same stability properties as the original system.

Assumption 5. The matrices P (τ) and P−1(τ) are bounded
for all τ ∈ [0, τmax].

Proposition 4. Under assumptions 4 and 5, let system (8)
be taken as

η̇o = Aηo + r(τ)yw +K1(Cηo − u)
η̇no = 0

η+o = Moηo +Monoηno
η+no = (Nno +K2Nono)ηno +Mnooηo

yη = Cηo

(24)

in which

K1 =
(
cno

`no cno−1`
no−1 . . . c1`

)T

with the ci’s chosen as coefficients of a Hurwitz polynomial
and where ` is a design parameter. Then there exists an
`? ≥ 1 such that for all ` ≥ `? there exists a differentiable
function Πη(τ) satisfying the properties of Proposition 1,
that is the set S in (9) is globally exponentially stable for
(10) and (11).

4. CONCLUSIONS

We have given a general internal model design in the
context of hybrid output regulation for linear systems. The
key notion of visibility introduced for linear time varying
systems has been used in order to obtain a systematic
design procedure of the regulator. The proposed procedure
is also able to systematically deal with uncertainties in
the regulated plant as long as they affect the steady state
control map in a linear way. Future works on the subject
will attempt to extend the theory to nonlinear hybrid
systems.
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