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Abstract: Motivated by the study of complex motor control systems, we consider the
identification and control of PieceWise Affine (PWA) systems and propose a novel data-driven
framework that adaptively inverts the dynamics of such systems using noisy sampled data. First,
we propose a novel PWA identification algorithm based on convex optimization applicable to
both state–space and input/output models. Given a PWA model of the dynamics obtained
from the identification algorithm, we consider the control of the resulting hybrid system where
our goal is to find an input that reproduces a given reference trajectory or that extremizes a
performance criterion. We demonstrate our proposed framework on a model of a jumping robot.
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1. INTRODUCTION

To move through and interact with its environment, a
complex motor control system (e.g. an animal or robot)
must intermittently contact objects or terrain. The dy-
namics of such systems are complicated, being generally
high–dimensional due to the presence of many mechanical
degrees–of–freedom and piecewise–defined (or hybrid) due
to impact mechanics. Though careful investigations into
the design of such control systems has been undertaken
at least since Bernstein (1967), it remains intractable to
study their behavior analytically. We propose a data–
driven framework for the identification and control of hy-
brid systems that adaptively inverts the dynamics of such
systems using noisy sampled data. Our procedure is based
on a novel identification method and novel extensions to
established control algorithms.

Hybrid systems, which are heterogeneous dynamical sys-
tems arising from the interaction of continuous and dis-
crete dynamics, have attracted increasing attention, due
to their rich modeling capabilities. An important class
of hybrid systems are PieceWise Affine (PWA) models,
which consist of affine submodels between which the sys-
tem switches as a consequence of the state/input or the
input/output signal (Sontag (1981)). PWA models can de-
scribe real phenomena whose discrete dynamics arise from
logic devices or from different phases of a process/activity,
such as footfall during walking. Moreover, PWA models
can be used to approximate nonlinear dynamical systems
with arbitrary accuracy.
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1.1 Identification of PWA models

In order to perform analysis, verification and control of
PWA systems, one needs to have a model for the process
at hand. However, it is often impractical to derive models
using first principles. Identification provides effective tools
for obtaining such models from experimental observations.

The identification of PWA models can be performed in
the input/output or the state–space form. Ferrari-Trecate
et al. (2003); Ferrari-Trecate and Schinkel (2003) proposed
an identification algorithm by clustering parameter vec-
tors, each of which is locally estimated using the nearest
neighobors of each data point. Ragot et al. (2003) proposed
a method for identifying the parameters of submodels
by choosing an adapted weighting function, which allows
one to select the data for which each submodel is active.
Nakada et al. (2005) proposed a method based on statis-
tical clustering of measured data via a Gaussian mixture
model and support vector classifiers. Vidal et al. (2003)
proposed an algebraic geometric approach, based on poly-
nomial factorization, in order to estimate the parameters
and the number of submodels. Roll et al. (2004) reduced
the identification problem of a special class of PWA models
to a mixed-integer programming problem. Such methods
suffer from challenges such as having a nonconvex formula-
tion, being computationally demanding or not being able
to deal with outlying estimates.

1.2 Control of PWA models

Given a PWA approximation for the dynamics of a com-
plex motor control system, our goal is to find an input
that reproduces a given reference trajectory as in Crawford
and Sastry (1995) and Remy and Thelen (2009) or that
extremizes a performance criterion as in Srinivasan and
Ruina (2005) and Aguilar et al. (2012). Sontag (1981) an-
alytically characterized the solution to such inverse mod-
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eling problems for PWA systems, but computationally–
tractable solutions are lacking. We cast both problems—
trajectory tracking and performance extremization—in an
optimization framework, and propose a scalable algorithm
that allows discontinuities in the hybrid system execution.

Previous work on optimal control of hybrid systems offers
analytical characterizations and numerical algorithms sub-
ject to various restrictions. Sussmann (1999) and Riedinger
et al. (2003) derived first–order necessary conditions for
local extrema based on the maximum principle and Bran-
icky et al. (1998) characterized global optima using quasi–
variational inequalities for a general class of hybrid op-
timal control problems. Passenberg et al. (2013) derived
a two–stage algorithm for continuous–time systems with
partitioned state–space that first chooses an optimal dis-
crete mode sequence and subsequently computes the cor-
responding optimal continuous input.

1.3 Paper Contributions

In this paper, we propose robust and efficient algorithms
for the identification and control of PWA models. First,
in Section 2, we propose a novel PWA identification
algorithm based on convex optimization that can deal with
both state–space and input/output models. Instead of
searching over the entire parameter space of all submodels
while assigning data to submodels, which leads to a
non-convex formulation, we propose to estimate a set of
candidate submodels first and then select a few submodels
that best explain the given observations via a convex
optimization framework. Thus, unlike the state-of-the-
art PWA identification algorithms that are non-convex,
rely on greedy suboptimal algorithms, or are initialization
dependent, our proposed formulation can find the global
optimal solution efficiently. We find the partitioning of
the state–input domain (in the state–space form) or the
regressor domain (in the input/output form) using the
output of our algorithm. Since we select a few models
that best describe the observations, unlike clustering-based
algorithms (Ferrari-Trecate et al. (2003); Nakada et al.
(2005)), outlying estimates will not affect our solution.
This is particularly important for PWA approximations
of physical phenomena obtained from sampled data.

For the control of PWA models, in Section 3, we use a
first–order algorithm to approximate local extrema of a
performance criterion in a nonlinear programming frame-
work. Although this scheme will generally not yield global
optima, its scalability makes it an attractive approach to
control of the high–degree–of–freedom mechanical systems
characteristic of complex motor control systems.

Finally, in Section 4, we demonstrate the effectiveness of
our proposed framework on a mechanical model of an
isolated limb intermittently impacting terrain.

2. PIECEWISE–AFFINE IDENTIFICATION

In this section, we propose a robust and efficient algorithm
for the identification of PieceWise Affine (PWA) models,
given the input {u(t) ∈ Rp}Tt=1 and the output {y(t) ∈
Rq}Tt=1 data. Our framework can address both state–space
and input/output model identification, however, we only
focus on the former in this paper.

2.1 State–Space PWA Models

A PWA model in the state–space form can be described as

x(t+ 1) = Aσt
x(t) +Bσt

u(t) + gσt
+w(t)

y(t) = Cσtx(t) +Dσtu(t) + hσt + v(t),
(1)

where x(t) ∈ Rn is the continuous state of the system
at time t. The terms w(t) ∈ Rn and v(t) ∈ Rq rep-
resent errors, which arise from process, measurement, or
modeling errors. The discrete state σt describes the affine
dynamics at time t and is assumed to take a finite number
of values from {1, 2, . . . , s}, where s is the number of affine

submodels. We represent by βi , {Ai,Bi,Ci,Di, gi,hi}
the parameters of the i-th affine submodel, Mi. The dis-
crete state of a PWA model in the state–space form is
determined according to the rule

σt = i iff

[
x(t)
u(t)

]
∈ Ψi, i = 1, 2, . . . , s, (2)

where {Ψi}si=1 denotes a partitioning of the state–input
domain Ψ ⊆ Rn+p.

Given the input {u(t)}Tt=1 and the output {y(t)}Tt=1 data
as well as the number of submodels s, our goals are: (a)
identify the parameters {Ai,Bi,Ci,Di, gi,hi}si=1 of sub-
models; (b) find the discrete state σt ∈ {1, . . . , s} at each
time instant t = 1, . . . , T ; (c) estimate the partitioning
{Ψi}si=1 of the state–input domain.

2.2 A Convex Formulation for PWA Model Identification

In this section, motivated by Elhamifar et al. (2012)
and Kaufman and Rousseeuw (1987), we formulate a
convex optimization for the identification of PWA models
{Mi}si=1. Notice that we can write the identification
problem as

min
{βi},{zit}

T∑
t=c

s∑
i=1

`(y(t),u(t);βi) zit

s. t.

s∑
i=1

zit = 1, zit ∈ {0, 1}, ∀i, t
(3)

where the loss function `(y(t),u(t);βi) evaluates how well
a submodel Mi with parameters βi can describe the
observations {y(t),u(t)}, while the selection variable zit
enforces that each observation can be represented by only
one submodel. The starting time index, c, depends on the
order of the model n in the state–space form. In fact, the
formulation (3) is non-convex and NP-hard to solve due
to {βi} and {zit} being unknown at the same time as well
as binary constraints on the variables zit.

In order to efficiently address the identification problem,
instead of searching over the entire parameter space, as in
(3), we propose to first find a set of candidate parameters

{β̂k}Nk=1, where N ≥ s, and then select the best s param-
eters from this set. Finding a set of candidate parameters
can be done by taking the input/output trajectories at
different time intervals and fitting a state–space model to
each snippet. To select the best parameter estimates, we
consider the following optimization program
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min
{zkt}

T∑
t=c

N∑
k=1

`(y(t),u(t); β̂k) zkt

s. t.

N∑
k=1

zkt = 1, zkt ∈ {0, 1}, ∀k, t

N∑
k=1

‖zk‖∞ ≤ s,

(4)

where zk , [zkc . . . zkT ]
>

. Notice that the last constraint
in (4) imposes that the optimization can select at most
s candidate parameters. This comes from the fact that

if the parameter β̂k is selected to describe some of the
observations {y(t),u(t)} for some t ∈ [c, T ], then ‖zk‖∞ =
1, since the nonzero variables zkt will be 1 by the binary

constraint. Otherwise, if β̂k is not selected, then ‖zk‖∞ =

0. Hence, the sum
∑N
k=1 ‖zk‖∞ corresponds to the number

of selected submodels. As a result, the constraints together

impose that we select at most s parameters from {β̂k}Nk=1
while each observation {y(t),u(t)} is associated with only
one of the s selected submodels.

Notice that unlike (3) that searches over the entire param-
eter space and the binary selection variables at the same
time, the formulation in (4) only searches over the selection
variables. However, in order to do so, we have increased
the number of selection variables from s · (T − c + 1) to
N · (T − c + 1). However, the optimization program (4)
is still non-convex due to the binary constraints on zkt.
Thus, we consider the relaxation zkt ∈ [0, 1] and propose
to solve the following convex program

min
{zkt}

T∑
t=c

N∑
k=1

`(y(t),u(t); β̂k) zkt

s. t.

N∑
k=1

zkt = 1, zkt ≥ 0, ∀k, t

N∑
k=1

‖zk‖∞ ≤ s.

(5)

Remark 1. Even with the relaxation zit ∈ [0, 1], the
optimization program (3) remains nonconvex, due to both
{βi} and {zit} being unknown, hence gets trapped in local
minima. Moreover, only certain loss functions lead to a
smooth optimization. On the other hand, our proposed
formulation in (5) is convex and can be applied to any
arbitrary loss function, since, in our case, the value of the
loss function is known prior to solving the optimization.

Once we solve the above optimization, we can determine
the selected parameters by finding the nonzero vectors zk.
Furthermore, we can find the discrete state σt by assigning
the observation at time t to its associated selected pa-
rameter. In other words, if {j1, . . . , js} denote the set of

indices of the selected parameters {β̂k}Nk=1, then we find
the discrete state from

σt = argmaxi zjit. (6)

Once we cluster the regressors or the state–input vectors
according to their memberships to different submodels,
we use a (multi-category) SVM classifier in order to find
the partitioning of the domain into different subregions
corresponding to different submodels.

3. PIECEWISE–AFFINE CONTROL

We seek solutions to two classes of optimization problems
for complex motor control systems: choosing inputs that
reproduce reference trajectories as in Crawford and Sastry
(1995) and Remy and Thelen (2009); and finding inputs
that extremize a performance criterion as in Srinivasan
and Ruina (2005) and Aguilar et al. (2012). The un-
derlying physical phenomena evolve in continuous–time,
with the transitions between discrete modes triggered (for
instance) when appendages establish or break contact with
the terrain. Hence, it is natural to compute control inputs
that extremize performance in a continuous–time model.
However, since we aim to estimate models from noisy
sampled data, the PWA approximation for the phenom-
ena will generally be discrete–time, in either the state–
space form or the input/output (I/O) form. Therefore
we begin by transforming a discrete–time PWA model to
a general continuous–time form suitable for control, and
subsequently derive a first–order algorithm to compute
locally optimal inputs for the model using nonlinear pro-
gramming.

3.1 Continuous–Time Hybrid Dynamical Systems

The discrete–time state–space PWA model of Section 2.1
is generally written over a partition {Ψi}si=1 of state–input
space Rn×Rp = Rn+p. For the control scheme considered
in this section, we restrict to partitions determined entirely
by the state, and hence write Ψi = Di × Rp for each
i ∈ S = {1, . . . , s} We then construct a hybrid dynamical
system over the finite disjoint union D =

∐
i∈S Di where

Di is a connected smooth manifold with boundary for each
i ∈ S. We endow D with the natural (piecewise–defined)
topology and smooth structure and refer to such spaces
as smooth hybrid manifolds (see Burden et al. (2012) for
more details).

Definition 1. A hybrid dynamical system is specified by a
tuple H = (D,F,G,R) where:

D =
∐
i∈S Di is a smooth hybrid manifold;

F : D → TD is a smooth hybrid vector field;
G ⊂ ∂D is an open subset of ∂D;
R : G→ D is a smooth hybrid map.

For a PWA model, F |Di
is affine for each i ∈ S. Note that,

in principle, we allow an arbitrary choice of coordinates
in each state domain Di; this is advantageous since the
principal axes returned from a state–space identification
algorithm may differ among discrete modes, necessitating
discontinuous state update during mode transition.

Roughly speaking, an execution of a hybrid dynamical
system is determined from an initial condition in D by
following the continuous–time dynamics determined by the
vector field F until the trajectory reaches the guard G, at
which point the reset map R is applied to obtain a new
initial condition. If F is tangent to G at x ∈ G, there is
a possible ambiguity in determining a trajectory from x
since one may either follow the flow of F on D or apply
the reset map to obtain a new initial condition y = R(x).

Assumption 1. F is nowhere tangent to G.

We formalize the definition of an execution using the no-
tion of a hybrid time trajectory from Lygeros et al. (2003);
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we emphasize the natural (disjoint–union) topology to sim-
plify the subsequent definitions of execution and costate.

Definition 2. A hybrid time trajectory is a disjoint union

of intervals τ =
∐N
i=1 τi such that:

(1) N ∈ N ∪ {∞};
(2) τi ⊂ R is an interval for all i < N , and if N < ∞

then τN ⊂ R is also an interval;
(3) τi∩τi+1 = {ti} for all i < N (i.e. τi∩τi+1 is nonempty

and consists of a single element).

Definition 3. An execution of a hybrid dynamical system
(D,F,G,R) is a smooth hybrid map x : τ → D defined

over a hybrid time trajectory τ =
∐N
i=1 τi such that:

(1) ∀t ∈ τ , in coordinates: d
dtx(t) = F (x(t));

(2) ∀i < N , with {ti} = τi ∩ τi+1, x− = x|τi(ti),
x+ = x|τi+1

(ti): x
− ∈ G, R(x−) = x+.

In the next section, we compute the variation of the final
state of an execution with respect to the initial condition.

3.2 First–Order Variation of Final State Cost

We assume that a performance criteria J : D → R has
been given that we wish to extremize at a specified final
time 1 . Without loss of generality, we assume that J is a
cost that we aim to minimize. At a local minimum, the
derivative DξJ of J with respect to the initial condition
ξ ∈ D will be zero (see Sussmann (1999)). Instead we
directly compute the derivative of J by propagating a
costate backward in time along x.

Definition 4. A costate associated with an execution x :
τ → D of a hybrid dynamical system (D,F,G,R) is a
smooth hybrid map λ : τ → T ∗D defined over the hybrid

time trajectory τ =
∐N
i=1 τi such that:

(1) ∀t ∈ τ , in coordinates: d
dtλ(t) = λ(t)DxF (x(t));

(2) ∀i < N , in coordinates where 2 F is orthogonal to G,
with {ti} = τi ∩ τi+1, x− = x|τi(ti), x+ = x|τi+1

(ti),
λ− = λ|τi(ti), and λ+ = λ|τi+1(ti):

λ− = λ+DxR(x−) + F (x−)
λ+F (x+)

‖F (x−)‖2
.

If s = sup τ < ∞, then by initializing a costate with the
final value λ(s) = dJ(x(s)) ∈ T ∗x(s)D, the initial value

λ(0) ∈ T ∗x(0)D is the derivativeDx(0)J of the final cost with

respect to the initial state x(0). This enables us in the next
section to develop a scalable algorithm that iteratively
approximates local minima of the final cost.

3.3 Optimization and Optimal Control

For brevity and clarity, in the discussion above we re-
stricted our attention to optimization of the initial state
ξ ∈ D of the hybrid system H = (D,F,G,R). In practice,
only a subset of initial states are available for optimization,
and there may be a parameter θ that must be selected

1 If a running cost L : D → R is provided as well, we augment the
hybrid system with an additional state variable z ∈ R with dynamics

ż = L(x) and consider the final cost J̃((x, z)) = J(x) + z.
2 Such coordinates exist since F is nowhere tangent to G by
Assumption 1.

g m, b

k, `

h(t)

u(t)

Fig. 1. Illustration of the jumping robot from Section 4.
Left: mass moves vertically in a gravitational field.
Right: actuator and leg spring exert forces on the mass
when the leg spring is in contact with the ground.

from within a set Θ as well. So long as the continuous and
discrete dynamics depend smoothly on the parameter θ
that resides in a finite–dimensional smooth boundaryless
manifold Θ, then we may augment the state of H with
the parameter θ to obtain a new hybrid dynamical system
HΘ = (D ×Θ, FΘ, G×Θ, RΘ) where

FΘ(x, θ) = (F (x; θ), 0), RΘ(x, θ) = (R(x; θ), θ).

Note in particular that the parameters may specify a com-
bination of application–appropriate (smooth) basis func-
tions that determine an open–loop input for the system.
Optimization of a finitely–parameterized smooth control
input for H is equivalent to optimization of the initial
condition for HΘ.

Given the derivative DξJ of the final cost J : D → R with
respect to the initial condition ξ from the previous section,
we apply gradient descent with an appropriate stepsize
selection rule (see Bertsekas (1999) for more details) to
iteratively approximate an initial condition that locally
minimizes J , terminating when ‖DξJ‖ drops below a
prespecified threshold. In practice, we use the L-BFGS-B
algorithm of Zhu et al. (1997) included in the SciPy
optimization suite developed by Jones et al. (2001–). The
sourcecode used to generate the results in this paper will
be made available online upon publication of this paper.

4. EXPERIMENTS

Motivated by complex motor control systems, in this sec-
tion we identify dynamics and synthesize optimal con-
trol inputs for a jumping robot using experimental data.
Specifically, we consider the model shown in Figure 1
originally developed to approximate a physical jumping
robot built by Aguilar et al. (2012). We believe this low–
dimensional example provides a good benchmark for PWA
identification and control since the underlying physical
phenomena is well–approximated with a PWA model.
See Burden et al. (2012) for a detailed description of the
model dynamics in in the form of Section 3.1.

We use the same parameters as in Aguilar et al. (2012)
except that (a) we allow the ground height to be a
non–zero parameter (1mm in our experiments); (b) we
set the coefficient of restitution of the robot to c = 1,
corresponding to continuous state-update maps; (c) we set
the units for the output height and velocity to be mm and
mm/sec, respectively, to improve numerical conditioning
of the identification problem. The natural frequency of the
model is 11.2Hz, hence it nominally performs a jumping
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cycle in approximately 90msec. For each trial we record
the input/output data and the ground-truth discrete mode
(aerial and ground) at 200Hz sampling rate.

4.1 Identification

Given the input-output observations from multiple experi-
mental trials, we use our proposed identification algorithm
in order to learn a PWA discrete–time state–space model
for the jumping robot. We set n = 2 and s = 2 to
learn a second–order state–space model for the robot with
two discrete modes. In order to find candidate submodels,
we take each trial, divide it into overlapping segments of
length K and estimate a discrete-time state–space model
for each segment using the subspace identification algo-
rithm. We set K = 20 in our experiments, for which we
obtain reasonable results.

Figure 2 shows the results of our proposed identification
algorithm on the dataset. The plot on the left shows the
height–velocity graph for the data, where the ground–
truth data in mode 1 (ground) and mode 2 (aerial) are
shown by blue circles and red pluses, respectively. The
separating hyperplane learned by our algorithm is shown
by the black dashed line in the graph. Notice that the
learned hyperplane almost perfectly separates the data in
the two discrete modes. This can also be seen by the fact
that the true guard corresponds to the vertical line y1 = 1.
Using the ground-truth discrete-state sequence, we also
compute the misclassification error, which is 5.56%, cor-
roborating the effectiveness of our proposed method. The
plot on the right of Figure 2 shows the representation error
of all the observations {y(t),u(t)} over all trials, using the
two estimated submodels selected by our algorithm from
the set of estimated models. The indices of observations on
the horizontal axis are reordered such that the first 3079
indices correspond to the observations from mode 1, while
the next 5021 indices correspond to the observations from
mode 2. Notice that the first selected submodel represents
the data from mode 1 by a small error while it obtains a
large error for the data in mode 2. Similarly, the second
selected submodel represents the data from mode 1 by a
large error and obtains a small error for the data in mode
2. Therefore, the selected submodels are reliable models
for the two operation modes of the jumping robot.

4.2 Control

Given the state–space model for the jumping robot iden-
tified in the previous section, we seek to synthesize a
control input that achieves maximum jumping height in
the actual system model. Since the estimated model differs
from the ground truth, we do not expect the synthesized
input to improve jumping height in every trial, therefore
we synthesize controls for an ensemble of initial conditions
and evaluate the distribution of jumping height outcomes.

We divided the hopper dataset into segments starting at
maximum compression in the ground mode; there were
213 such segments in the dataset. For each segment, we

simulated both the actual β and estimated β̂ models
for 200msec using the nominal input u used during the
identification procedure; the left panel of Figure 3 shows
the mean and interquartile range of prediction error for

height (top) and velocity (bottom). We then computed an
optimal control input u∗ to achieve maximum jumping
height 100msec after maximum compression using the
estimated model, and subsequently simulated the actual
model with this input; the right panel of Figure 3 shows
a boxplot of the improvement achieved for the estimated
model (top) and actual model (bottom) over their nominal
simulations. Note that jumping height improves in the
actual model in more than 75% of the trials, with a median
improvement of 5.1mm.

5. CONCLUSION

In this paper, we proposed a novel framework for iden-
tification and control of complex motor control systems
modeled by the PieceWise Affine (PWA) subclass of hy-
brid systems. We first proposed a novel PWA identification
algorithm based on convex optimization that, given a set
of model estimates, selects a few submodels that best
represent the observations together. Using the identified
model, we considered the control of PWA systems where
we cast the two problems of trajectory tracking and perfor-
mance extremization in a scalable optimization framework.
Our results on the mechanical model of a jumping robot
demonstrate the effectiveness of our framework for the
study of complex motor control systems. In future work,
we aim to apply our identification and control framework
to data obtained from real physical systems.
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