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Abstract: In this contribution, an approach is presented for the optimal control of the
boundary-controlled heat equation, which is subject to state- and input-constraints. Thereby,
suitably chosen asymptotic saturation functions are used to reformulate the original infinite-
dimensional system in new coordinates. The new unconstrained optimal control problem can
then be solved with methods of unconstrained optimization. The method is demonstrated for a
heat-up problem where both state and input constraints become active.
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1. INTRODUCTION

Optimal control of infinite-dimensional systems described
mathematically by partial differential equations (PDEs) is
a field in control theory, which at the same time is well
established and has sparked new interest in more recent
years, in part due to the increase in computing power
(see, e.g., Lions, 1970; Fattorini, 1999; Hinze et al., 2009).
Possible applications arise in nearly every physical domain
if very accurate mathematical models are called for.

One of the basic equations for the theory of PDE control is
the heat equation, which also often arises in applications.
A principal control task is the heating up (or cooling down)
of a certain workpiece as rapidly as possible. Thereby it
is often essential to respect certain constraints concerning
both the actuators as well as the workpiece temperature
itself in order to avoid damaging either one. Since the
handling of constraints is difficult to include in most classi-
cal control design methods, optimization-based approaches
are an appropriate choice (Eppler and Troltzsch, 2001;
Steinboeck et al., 2011).

The numerical solution of constrained optimal control
problems (OCPs) — both if the underlying system dynam-
ics is infinite-dimensional or finite-dimensional — usually
follows either a direct approach by discretizing the OCP
in order to obtain a finite-dimensional constrained opti-
mization problem (Bock and Plitt, 1984; Hargraves and
Paris, 1987; Agrawal and Faiz, 1998; Betts, 1998) or alter-
natively by using an indirect approach, where the classical
optimality conditions are solved numerically (Bryson and
Ho, 1969; Pesch, 1994; Bonnans and Hermant, 2009). In
particular in the literature on optimal control for systems
governed by partial differential equations, also the notions
of first discretize then optimize and first optimize then
discretize are used, respectively (Hinze et al., 2009). In
either case, the solution of the constrained OCP typically
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requires considerable numerical effort, which makes it, for
instance, difficult to use in online applications like receding
horizon control, although dedicated algorithms are avail-
able nowadays (Diehl et al., 2002; Zavala and Biegler, 2009;
Houska et al., 2011).

One method to relax this problem consists in transform-
ing the constrained OCP into an unconstrained one and
finally to use efficient numerical methods of unconstrained
(dynamic) optimization to solve the optimal control prob-
lem. This approach was primarily developed for finite-
dimensional systems described mathematically by ordi-
nary differential equations in Graichen and Petit (2009);
Graichen et al. (2010), and has already allowed for com-
putational efficiency improvements, in particular in online
applications (Képernick and Graichen, 2013).

In this contribution, the approach as it is presented
in Graichen et al. (2010); Graichen and Petit (2009)
is transferred to the heat equation as a prototype for
parabolic PDEs. It is demonstrated how the OCP for
a heat-up process is transformed from constrained to
unconstrained coordinates. The resulting unconstrained
OCP is then solved with an optimization method using
full discretization. Motivated by the results of Kapernick
and Graichen (2013), the presented method is particularly
promising as a novel approach to online optimization and
model predictive control of systems governed by PDEs.

The paper is structured as follows: In Section 2, the
mathematical model of the heat-up problem is defined
and the transformation to unconstrained coordinates is
carried out. In Section 3, the OCP is formulated both
in constrained and in unconstrained coordinates, and the
relation of the two formulations is discussed. After some
remarks concerning the numerical solution of the optimal
control problem in Section 4, simulation results are shown
in Section 5, before the paper is concluded by a short
summary and outlook in Section 6
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2. PROBLEM STATEMENT

In this contribution, the boundary-controlled heat equa-
tion on a one-dimensional spatial domain z € [0,1] is
considered, which is given as
Orx — qdx =0 (1a)
0.x)|,_,=0, (1b
do 8Z$|z:1 =u—q m'z:l (10)
with the state z := z(t, z), the boundary control input u :=
u(t), the strictly positive constant parameters ¢, qo, and
q1, and suitable initial conditions x(0,2) = xo(z).! This
system is subject to state and control input constraints of
the form

=

vz ,z%], and we[u,ut], (2)
whereby symmetry with respect to 0 is assumed for sim-
plicity, i.e., 27 = —2T and v~ = —u™.

2.1 Saturation functions

In order to remove the explicitly formulated state and
control input constraints from the problem formulation,
asymptotic saturation functions are used as a state trans-
formation. For this, a system variable a with constraints
a® is replaced by

a=1p(a,a®) (3)
where « is the new, unconstrained system variable. Besides

guaranteeing that a is within its constraints, the saturation
functions are required to satisfy the following conditions

e The transformation has to be sufficiently smooth and
strictly monotonically increasing, i.e.,

dath(a,a™) >0 (4)

e The saturation functions have to be asymptotic in the
sense that (o, a®) — a* for a — +oo0.

e The second-order derivative in the first argument may

be expressed in terms of the first-order derivative with
respect to the first argument, i.e.,

a(?xw(a’a:t) - d(a)aaw(aa ai) ) (5)

whereby it is guaranteed that d(«) remains bounded
for all a. Note that this property can be extended
to higher-order derivatives, which, however, is not
necessary in the problem considered in this work.

A suitable choice of the saturation function is

+ _ —
w(a7ai) = CL+ - e .

4o ’
1 + exp m

as shown in Figure 1. In this case, d(«) is given as
4(exp(4a/(at —a™)) — 1)

(a* —a7)(1 + exp(da/(at —a7))) ’

which can be easily confirmed to be bounded for all .. The

saturation function furthermore designed to be scaled in

such a way that 0,v(«, aﬂt)|a:O = 1, which is beneficial

for the numerical experiments shown in the further course
of this contribution.

(6)

dla) = —

1 Except at the place of definition, arguments are dropped for
brevity of notation.

U(a,a*)

Fig. 1. Asymptotic saturation function (6) with saturation
bounds a*.

2.2 Transformation to unconstrained coordinates

In order to apply the transformation by means of sat-
uration functions to the system (1), first a saturation
function (3) is used to substitute the state variable,i.e.,
x = (¢, 2F) with the new state & := £(¢,2). Using this
substitution in all the derivatives of as they appear in (1)
and using the property (5) yields
O = Oep(&,27)DiE
Do = Detp(€, 27)0:¢
O2x = BFY(&,a7)(0:€)% + O (€, 27)D2¢
= Oew(€, ) [d(€)(9:6)" + 9%¢] (7c)
Subsequently, the infinite-dimensional system (1) may be

rewritten in the new unconstrained state £. Using the
property (4) the PDE (1a) can be written as

O (&, a%) [0€ — a (92€ + d(€) (0:)) | = 0
& 0 —q (0% +d©) (0:9°) =0

and by analogous considerations, the boundary condi-
tion (1b) becomes

(8a)

9:8l.20 =0, (8b)
Concerning the boundary condition (1c), additional con-
siderations have to be carried out. Applying the trans-
formation (3) to the state z|,_, and solving for 0.¢|,_,
yields
o u — Q1¢(§|Z:1 ami)
azﬂz:l - + (9)
(Jo85¢(f|z:1 y L )
Since u is known to be constrained, it is an obvious choice
to replace the right hand side of (9) by another satura-
tion function. The bounds of this saturation function are
determined as

U — Q1'¢)(£‘z:1 71,:‘:)
Q0 (El,—y %)

=¢~(€l.=1)

ut — (€l a*)
QO35¢(€|Z:1 azi) ’

=¢T(&l.—1)

< 0:¢],, <

(10)
and as opposed to the bounds of the state variable are
not constant but depend on the boundary state &|,_;.
Thus, the boundary condition for z = 1 of the new,
unconstrained system can be given as

0|,y = ¥(v, 0= (&]._y)) (11)

where v := wv(t) is introduced as the new and uncon-
strained control input. The control input of the con-
strained system (1) in terms of the unconstrained coor-
dinates ¢ and v can be determined using (9) and (11) as
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u = qodetp(&] .y, 2) (v, 6™ (€].y))

+ ql'll)(f‘z:l 7Ii) = X(U7 £|z:1) ) (12)
such that in summary, a transformation
x = 1€ 2*) } {5 =y~ (z,2%)
13
u=xw.do) S T lo=x el

is obtained, which is bijective between the state x and the
input u from the open intervals defined by the respective
constraints and the unbounded coordinates ¢ and v.

3. CONSTRAINED AND UNCONSTRAINED
OPTIMAL CONTROL

The optimal control task to be carried out for the infinite-
dimensional system (1) is the heat-up from an initial state
profile zy to a desired state profile x*.

3.1 Formulation of the OCP

This control task may be formulated as an OCP as follows

T
OCP, : min/ I(x,u)dt
0

u
Oyx = q0%x

azx‘z:() =0,

Q0 0:7),_y =u—qu x|,
zez,2t], weu,ut].

s.t.

Thereby, the running cost I(x,u) of the optimization
problem is chosen as a standard quadratic cost penalizing
the deviation from the desired stationary state x* and
control input u*, i.e.,

1
@) =Sl =™y +5—u)?  (15)
where ||Hz2 denotes the weighted L?-norm with the weight
Q(z) = 10 (no dependence on the spatial coordinate is

considered here) for the state and the weight » = 1 for the
control input.

In the transformed and thus unconstrained coordinates,
the OCP,, (14) is noted as follows

T
OCPs : mvin/0 (& v) + p(v)dt

or — q<8§£ () @5)2) (16)

azé‘lz:O = O
=],y = ¥(v,0%(€].21))

Thereby, the running cost is at first the transformation
of (15) to the coordinates of the unconstrained problem

1 2 T )2

1(&v) = 3 H;[;(g,xi) — a:*||Q + 3 (x(v,&n) —u™)” . (17)

but is amended with an additional penalty
€

p(v) = 507 (18)

with the (potentially small) constant parameter ¢ > 0.

This penalty can be understood as a regularization term

weighting the new control input v, which is necessary to

account for the fact that the state and input transfor-

mation (13) is only defined on the open intervals of the

s.t.

constraints.? An interpretation of the penalty term (18)
is given in terms of the constrained variables z and u in
the next Section 3.2 as well as in terms of the (discretized)
optimality conditions in Section 4.2.

3.2 Interpretation of the additional penalty p(v)

In order to show the influence of the penalty (18), OCPg
in (16) can be transformed back into the original variables
x and u via the inverse transformation in (13). This leads
to the following OCP{, with the original dynamics and the
penalized cost of the form

T
OCPs, : min/ Iz, u) +p(x,u)dt
“ Jo
Oyr = q0%x (19)
s.t. 0.x),_,=0,

q0 aZ‘KE|z:1 =u—q x'z:l N

where p(z,u) = p(x '(u, z|,_,)) is evaluated for v =

x Yu, z|,_,) and using &|__, = ¢~ Y(z|,_, ,z*) from the
transformation (13). In detail, p(z, u) becomes

p(z,u) =

€ [ <u—u> (ut—u)(zt—27)? 2
— |ln .
2 ut —u 16QO($|z:1 - .'L'_)<.'L'+ - .'II|2:1)

It is obvious from the structure of (20) that p(x,u)
becomes unbounded as soon as x|,_, or u approach their
respective bounds except for u = (u™ +u~)/2. Hence, the
inclusion of (18) in the OCP corresponds to an interior
barrier function that replaces the original constraints of
OCP, in (14).

(20)

Two aspects of this result remain to be discussed: firstly,
the fact that the barrier function does not come into
effect in the particular case p(z, (u™ +u~)/2) = 0, and
secondly, that only the state evaluated at the controlled
boundary x|,_, is considered by the use of (18). These
issues can be resolved by taking into account some of the
properties of the linear heat equation (1a). According to
the maximum principle (see, e. g., Friedman, 1964; Widder,
1975), the state = assumes its maximum value at the
controlled boundary. Thus, by assuring 2~ < z|,_; < 2™
it is guaranteed that the same applies for the complete
state x(t, z). By similar considerations and by taking into
account the symmetry of the state and input constraints
with respect to 0 as well as the boundary condition (1c),
it is clear that the state constraints z* cannot be violated
for u = 0.

4. NUMERICAL IMPLEMENTATION

In the following lines, a first discretize then optimize-
approach is pursued to solve OCPZ7 which necessitates
a suitable semi-discetization of the infinite-dimensional
system in (16).

2 In the case of ordinary differential equations it is shown in
Graichen and Petit (2009), that a constrained arc of the original
OCPE corresponds to a singular arc of the transformed OCP in the
new unconstrained variables.
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4.1 Semi-discretization

For the spatial discretization, the so-called method of lines-
approach is used with finite differences (see, e. g., Schiesser,
1991; Thomas, 1995). For this, the spatial coordinate
z is partitioned in a possibly non-equidistant grid with
the nodes z;, ¢« = 1,...,N, and element lengths h; =
Zit1 — 2i, ¢ = 1,...,N — 1. The semi-discretization of
the unconstrained infinite-dimensional system (8a), (8b),
and (11) then is formulated using central differences with
some standard assumptions concerning the discretization
of the boundary conditions (8b) and (11) as

b= 206 - 6)+ HdE) @ - )6 -&) (1)
1 1
£ = 2q i1 =& &i— &
" hi+hi h; hi1
i1 =& & — &1
+ qd(gl) hz hi—l )
i=2...,N—1  (21b)

En = hfq (hn—19(v, 65 (En)) + En1 — EN)

N-1

+ qu(gN) (En —&En—1)

h

x (2hy—19(v, 6% (En)) + En—1 — En) (21c)
which is noted briefly as & = f(&,v) and where the
state variables represent the evaluation of the infinite-
dimensional state £ at the grid nodes z;, i.e.,

E=la=¢ b =L, I
The number of nodes N is determined in the following
according to the respective needs in terms of precision.

The choice of finite differences as a means of discretization
is by no means the only one possible, see, e.g., Hinze
et al. (2009) and the references therein. However, it is
rather simple in application and sufficient for the precision
required in the subsequently shown simulation examples.

The discretized version of the OCP¢ (16) can be noted as
T
OCPs : mvin/O (& v) + p(v)dt

st. €=f(&v), €£0)=¢,

with the discretized running cost (17) according to
7 1 * A *
1(§,v) = §(¢(€,xi) — ") Q(y(€,2%) — ")

+ (v, én) —ut)? (23)

(22)

2
Thereby, the desired state is given in discretized form as
* T
==, ,.,ov=z[,_, ],

and the weight of the state variable Q = diag(Q;) has to
be chosen in order to account for the spatial discretization.

4.2 Regularization of the finite-dimensional OCP

In the finite-dimensional setting, a further justification can
be given for the inclusion of the penalty (18) considering
the first-order optimality conditions. For this, the Hamil-
tonian of the OCP¢ is defined as

H(€,X,v) =1(&v) + ATE(€,v) (24)

with the adjoint state A = [Ay,...,An]". For the time
being, it is assumed that ¥ (v,¢*(éx)) = v, i.e., no
constraint is imposed on the control input. One component
of the first-order optimality conditions is the vanishing
partial derivative of the Hamiltonian with respect to the
control input v, i.e.

O H(E,X,0) = 0,1(€,0) + AT, £(€,0) +ev=0. (25)

The respective components can be easily determined
from (21) and (23) as

8,l(&,v) = r(x(v,&n) — u)Dyx(v,En) (26)

and

XTOL(6,0) = 200(1 +den) =L

N—-1

Similar considerations to the one leading to (20) show
that 9,x(v,&n) vanishes as soon as the state constraints
x* are approached. Thus, the regularization term ev
in (25) is necessary to avoid singular arc effects and
to maintain solvability of (25) with respect to v. The
analogous computations become more involved for the
additional consideration of control input constraints and
are therefore not developed here.

(27)

5. SIMULATION RESULTS

In this section, various simulation results are presented
for the transformation approach to constraint handling in
optimal control as it was outlined in the previous sections.
Thereby, the system parameters are chosen as ¢ = 2,
g = 0.5, ¢ =1, * = £1.2, and u™ = +2. The initial
condition z¢(z) = 0 is the stationary profile for © = 0 and
the desired profile is imposed by the stationary control
input u* =1 as 2*(z) = 1. The length of the optimization
horizon is chosen as T' = 1.

In all plots of the constrained system (1), the evaluation
of the state trajectory = at z € Z = [0,0.25,0.5,0.75,1] is
shown. Note thereby, that no distinction is made in the
notation between the infinite-dimensional states z(t, z),
&(t, z) and their finite-dimensional counterparts x(t), £(t),
which can be realized by suitable interpolation and the
choice of a sufficiently fine grid. Furthermore to test the
quality of the optimization results, all obtained control
inputs are applied to a semi-discretization of the original
infinite-dimensional system (1) with N*'™ = 101 nodes,
and the resulting trajectories =™ are plotted as light
dotted lines for comparison.

As a reference, first the constrained OCPS, (14) is solved
using full discretization and an interior point method (see,
e.g., Nocedal and Wright, 2006). In Figure 2 the resulting
state x as well as the control input u are shown.It can be
observed that both the control input as well as at least
a part of the state touch the prescribed state and control
input constraints.

Turning to simulation results due to the presented trans-
formation approach, Figure 3 shows the state £ at z = 0
(dashed) and at z = 1 (solid) as well as the unconstrained
control input v for the solution of the OCPg (16) for
different weights € of the penalty expression (18). While
the trajectories of £|,_,, which in the solution of the
constrained OCP,, (cf. Figure 2) do not approach the con-
straints, are nearly identical irrespective of €, the influence
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Fig. 2. State x and control input u according to the
solution of the constrained OCP,, in (14) and resulting
simulated state z5™.

of the penalty (18) is clearly visible for &|,_,. The effect is
even more striking for the control input v, which develops
a distinct peak when the state approaches its constraint

xt.

Finally, in Figure 4 the state x = ¢(¢, 2) and the control
input u = x(v, ¢|,_,) according to the solution of the
unconstrained OCPg in (16) are shown for e = 5 x 107*
(left) and € = 5 x 107 (right). The differences in the state
trajectories are of course smaller than in the unconstrained
coordinates £ and v, and in both cases, the simulated
state 5™ is in very good agreement with the respective
optimal state. However, for ¢ = 5 x 10~* the boundary
state x|,_, is visibly further away of the solution of the
constrained OCP,, in (14) than for € = 5 x 107°. In return,
€ would have to be reduced significantly in order to reach
a desired state z*(z) which is close to a constraint. This
will entail numerical problems in the solution of the OCPg
in (16), which, however, is what is generally expected in
optimization when a regularization parameter vanishes.

6. SUMMARY AND OUTLOOK

In this contribution, a state- and control-constrained OCP
for the boundary-controlled heat equation is presented.
Asymptotic saturation functions are used to obtain a
formulation of the OCP in new, unconstrained variables.
Amended with an additional penalty for the new un-
constrained control input, this OCP is solved using full
discretization. The resulting optimal control closely ap-
proaches the results obtained by directly applying methods
of constrained optimization.

The primary benefit of the approach is expected to become
visible if it is used in online applications as model predic-

e z2=0 |
—Z:l
| |
400 :
e=5x10"3
300 e=5x10"%
—e=5x10"°
> 200 —e=5x1070 ||
100 :
0 ‘ ‘ ; ;
0 0.2 0.4 0.6 0.8 1

t

Fig. 3. State £ and control input v according to the solution
of the unconstrained OCP§ (16) for different weights

e of the penalty expression (18).

tive control, where methods of constrained optimization
are rather impractical and where numerical inaccuracies
are attenuated by the feedback control Rhein et al. (2014).
Furthermore, the property that constraints (2) are in-
trinsically satisfied by the transformed system becomes
particularly interesting if the optimization problem is to be
solved with a method that uses numerical integration such
as, e.g., the gradient method (Képernick and Graichen,
2013). This as well as the transfer of the approach to
problems described by other types of PDEs is subject to
future research.
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