
Distributed Reconstruction of Nonlinear
Networks: An ADMM Approach

Wei Pan, Aivar Sootla, and Guy-Bart Stan

Centre for Synthetic Biology and Innovation and the Department of
Bioengineering, Imperial College London, United Kingdom; e-mail:

{w.pan11, a.sootla, g.stan}@ imperial.ac.uk

Abstract: In this paper, we present a distributed algorithm for the reconstruction of large-
scale nonlinear networks. In particular, we focus on the identification from time-series data of
the nonlinear functional forms and associated parameters of large-scale nonlinear networks. In
the previous work, a nonlinear network reconstruction problem was formulated as a nonconvex
optimisation problem based on the combination of a marginal likelihood maximisation procedure
with sparsity inducing priors. In this paper, we derive an iterative reweighted lasso algorithm
to solve the initial nonconvex optimisation problem based on the concave-convex procedure
(CCCP). Moreover, by exploiting the structure of the objective function of this algorithm, a
distributed algorithm is designed. To this end, we apply the alternating direction method of
multipliers (ADMM) to decompose the original problem into several subproblems. To illustrate
the effectiveness of the proposed methods, we use our approach to identify a network of
interconnected Kuramoto oscillators with different network sizes (500∼100,000 nodes).

1. INTRODUCTION

The importance of reconstructing nonlinear systems and
associated difficulties are widely recognised. Reconstruc-
tion methods focus on specific system classes such as those
described by Wiener and Volterra series or nonlinear auto-
regressive with exogenous inputs (NARX) models to name
just a few examples. However, nonlinear systems can be
described by other functional forms. One of the most
important and challenging problems in nonlinear network
reconstruction is nonlinear structure identification (see
Ljung [1999] and references therein).

In this paper, nonlinear systems are represented in a
general state-space form. In our framework, we use some
a priori knowledge about a type of a system we want to
reconstruct, i.e., we consider a set of candidate dictionary
functions appropriate for the specific type of systems
from which the data have been collected (e.g., biological,
chemical, mechanical, or electrical system). We assume
the measured time-series data and a set of candidate
dictionary functions are given. Our main objective is
to identify the most parsimonious representation that
explains the collected time-series data at best. Generally,
we cast the reconstruction problem into a sparse signal
recovery problem (Candès and Tao [2005]). In Pan et al.
[2013], the nonlinear network reconstruction problem was
cast as a nonconvex optimisation problem which was
shown to be solvable using a centralised reweighted lasso
algorithm.

Social networks, communication networks and biological
networks are typically very large (e.g. 100,000 nodes) and
the data set collected from them is therefore quite “big”.
Typically, centralised reconstruction algorithms cannot
handle such problems due to their associated very large
memory and computational requirements. Here, we will

apply the alternating direction method of multipliers
(ADMM) to split the centralised problem into several
subproblems with each subproblem solving a weighed lasso
problem independently. This approach has the advantage
that memory and computational requirements can both be
reduced in comparison to generic centralised solvers.

ADMM is a powerful algorithm for solving structured
convex optimisation problems. The ADMM method was
introduced for optimisation in the 1970’s and is closely
related to many other optimisation algorithms including
Bregman iterative algorithms, Douglas-Rachford splitting,
and proximal point methods (see Boyd et al. [2011] and
references therein).

The paper is organised as follows. In Section 2, we for-
mulate the nonlinear network reconstruction problem. In
Section 3, we re-interpret this reconstruction problem from
a Bayesian point of view. In Section 4, we derive an
iterative reweighted `1 lasso algorithm to solve the non-
convex optimisation problem based on the concave-convex
procedure. In Section 5, we review ADMM, apply it to our
optimisation problem, and derive a distributed algorithm.
In Section 6, we apply our method to the reconstruction of
networks of interconnected Kuramoto oscillators. Finally,
in Section 7, we conclude and discuss several future prob-
lems. Some details of the algorithm are omitted due to
space limitations, the full version of the paper is available
on arXiv Pan et al. [2014].

2. PROBLEM FORMULATION

2.1 Nonlinear Dynamical Systems

We consider dynamical systems described by multi-input
multi-output (MIMO) nonlinear discrete-time equations
with additive noise:

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 3208

x(tk+1) = F(x(tk),u(tk)) + ξ(tk), (1)

where x = [x1, . . . , xnx]T ∈ Rnx denotes the state vec-
tor; u = [u1, . . . , unu]T ∈ Rnu denotes the input vec-

tor; F(·) , [F1(·), . . . ,Fnx(·)]T : Rnx+nu → Rnx , and
ξ = [ξ1, ξ2, . . . , ξnx]T ∈ Rnx is assumed to be a zero-mean
Gaussian white noise vector with constant positive covari-
ance matrix Ξ, i.e., ξ(tk) ∼ N (0,Ξ). Since this description
covers most of the discrete-time nonlinear dynamical sys-
tems with infinite number of possible functional forms for
F(·), we confine the scope and assume system (1) satisfies
the following assumptions:

Assumption 1. System (1) is fully measurable, i.e., all the
state variables xi can be measured and there are no hidden
variables.

Assumption 2. The function terms F(x(tk),u(tk)) in (1)
are smooth and can be represented as a linear combina-
tions of several dictionary functions, (see Sec. 5.4 in Ljung
[1999]).

2.2 Construction of Dictionary Functions

Depending on the field for which the dynamical model
needs to be built, only a few typical nonlinearities specific
to this field need to be considered. For example, the class of
models that arise from genetic regulatory networks (GRN)
typically involves nonlinearities that capture fundamental
biochemical kinetic laws, which are confined to either poly-
nomial or rational functions. In what follows we gather the
set of all candidate/possible dictionary functions that we
want to consider for reconstruction. Consider state vari-
able xi, i = 1, . . . , nx. Under Assumption 2, the function
terms for state i can be written as: Fi(x(tk),u(tk)) =∑Ni

s=1 wisfis(x(tk),u(tk)) = wT
i fi(x(tk),u(tk)), where w ∈

RNi and fi : Rnx+nu → RNi are dictionary functions that
are assumed to govern the dynamics. fi(x(tk),u(tk)) can
be monomial, polynomial, constant or any other functional
form such as rational, exponential, trigonometric etc.

Under the assumptions above, the dynamics of state i can
be described by:

xi(tk+1) = fTi (x(tk),u(tk))wi + ξi(tk), i = 1, . . . , nx,
(2)

where ξi(tk) is assumed to be i.i.d. Gaussian distributed:
ξi(tk) ∼ N (0, λi). If M +1 data samples satisfying (2) can
be obtained from the system of interest, the system in (2)
can be written as

yi = Aiwi + ξi, i = 1, . . . , nx. (3)

with
yi , [xi(t1), . . . , xi(tM)]T ∈ RM ,

Ai ,

 fi1(x(t0),u(t0)) . . . fiNi
(x(t0),u(t0))

...
...

...
fi1(x(tM−1),u(tM−1)) . . . fiNi

(x(tM−1),u(tM−1))


∈ RM×Ni ,

wi ,
[
wi1, . . . , wiNi

]T
∈ RNi ,

ξi , [ξi(t0), . . . , ξi(tM−1)]
T ∈ RM .

(4)

Since the nx linear regression problems in (3) are indepen-
dent, for simplicity of notation, we omit the subscript i in
(3) and write

y = Aw + ξ. (5)

The problem is thus to find w given the measured noisy
data stored in y.

2.3 Discussion on relaxations of solutions

Considering the network reconstruction problem in prac-
tice, several problems arise with respect to (5). Firstly, a
low number of time-series measurements will render the
linear regression in (5) under-determined. Secondly, the
number of columns of the dictionary matrix might be very
large, due to the potential introduction of non-relevant
and/or non-independent dictionary functions in A. How-
ever, finding the sparsest solution is NP-hard. Classically,
a lasso algorithm is typically used as a relaxation to this
NP-hard optimisation problem (Tibshirani [1996]). Lasso
usually works well when the dictionary matrix has certain
properties such as the restricted isometry property (RIP),
(Candès and Tao [2005]) or the incoherence property,
(Donoho and Elad [2003]). These properties basically state
that two or more of the columns of dictionary matrix
cannot be co-linear or close to co-linear. Unfortunately,
such properties are hardly guaranteed in typical network
reconstruction problems. In order to relax the RIP or
incoherence requirements, we employ a probabilistic view-
point, that is we treat the problem as a Bayesian inference
one as prescribed in Tipping [2001].

3. BAYESIAN VIEWPOINT

Bayesian modelling treats all unknowns as stochastic vari-
ables with certain probability distributions, Bishop [2006].
For y = Aw+ξ, it is assumed that the stochastic variables
in ξ are i.i.d. Gaussian distributed with ξ ∼ N (0, λI). In
this case, the likelihood of the data given w is

P(y|w) = N (y|Aw, λI) ∝ exp

[
− 1

2λ
‖Aw − y‖22

]
.

However, what we really need to estimate is P(w|y).
In order to do so, we first specify the prior distribution
as P(w) =

∏
j P(wj). To enforce sparsity on w, we

may consider super-Gaussian priors, which yield a lower
bound for the priors P(wj) (Palmer et al. [2005]). More

specifically, if we define γ , [γ1, . . . , γN]
T ∈ RN+ , we can

represent the prior in the following relaxed (variational)
form:

P(w) =

n∏
j=1

P(wj), P(wj) = max
γj>0

N (wj |0, γj)ϕ(γj),

where ϕ(γj) is a nonnegative function which is treated as a
hyperprior with γj being its associated hyperparameters.
Throughout, we call ϕ(γj) the “potential function”. This
Gaussian relaxation is possible if and only if logP(

√
wj)

is concave on (0,∞).

Note that, if the parameters γ are known, we can estimate
P(w|y, γ) instead of computing P(w|y). Therefore, the
problem should be recast in terms of finding the most ap-
propriate hyperparameters of the priors γ̂ = [γ̂1, . . . , γ̂N].

A good way of selecting γ̂ is to choose it as the minimiser
of the sum of the misaligned probability mass, e.g.,

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3209

γ̂ = argmin
γ≥0

∫
P(y|w) |P(w)− P(w;γ)| dw

= arg max
γ≥0

∫
P(y|w)

n∏
j=1

N (wj |0, γj)ϕ(γj)dw.
(6)

The procedure in (6) is referred to as evidence/marginal
likelihood maximisation or type-II maximum likelihood,
(Tipping [2001], Wipf et al. [2011]). It means that the
marginal likelihood can be maximised by selecting the
most probable hyperparameters able to explain the ob-
served data. To get an estimate to γ and w, we can
formulate the following optimisation problem

min
γ≥0,w

‖Aw − y‖22 + λwTΓ−1w + log |λI + AΓAT|. (7)

More details and derivations can be found in, e.g. Wipf
et al. [2011], Pan et al. [2013]. It should be noted that such
formulation allows to incorporate convex constraints on w,
which are typically very useful in network reconstruction
problems. To ease notation and avoid interrupting the
logical flow of this paper, we will derive the algorithm
without considering convex constraints in what follows.

4. CONCAVE-CONVEX PROCEDURE

The cost function in (7) is convex in w but nonconvex in Γ.
In this section, we show how this nonconvex optimisation
problem can be solved by a concave-convex procedure
(CCCP). CCCP is another interpretation of the iterative
reweighted lasso algorithm (Wipf and Nagarajan [2010]).
Let

u(w,γ) , ‖Aw − y‖22 + λ
∑
j

w2
j

γj
,

v(γ) , − log |λI + AΓAT|.
(8)

Note that u(w,γ) is jointly convex in w and γ, and v(γ)
is convex in γ. The minimisation of the cost function (7)
can thus be formulated as a concave-convex procedure

min
γ≥0,w

(u(w,γ)− v(γ)) (9)

Since v(γ) is differentiable over γ, the problem in (9)
can be transformed into the following iterative convex
optimisation problem[

wk+1,γk+1
]

= argmin
γ≥0,w

(
u(w,γ)−∇γv(γk)Tγ

)
. (10)

Using basic principles in convex analysis, we then obtain
the following analytic form for the negative gradient of
v(γ) at γ:

αk = −∇γv(γk)T

= −∇γ

(
− log |λI + AΓAT|

)
|γ=γk

= diag
[
AT

(
λI + AΓkAT

)−1
A
]
.

(11)

The iterative procedure (10) can then be formulated as[
wk+1,γk+1

]
=

argmin
γ≥0,w

‖Aw − y‖22 + λ
∑
j

(
w2
j

γj
+ αkj γj

) .
(12)

The objective function in (12) is jointly convex in w and γ
and can be globally minimised by solving over γ and then
w. If w is fixed, it gives

γk+1 = argmin
γ≥0

‖Aw − y‖22 + λ
∑
j

(
w2
j

γj
+ αkj γj

) .

(13)
We notice that in (13), γk+1 has the closed form solution

γk+1
j = |wj |/

√
αkj . If γk+1

j = |wj |/
√
αkj is substituted into

(13), we get

wk+1 = argmin
w

‖Aw − y‖22 + λ
∑
j

(
w2
j

γk+1
j

+ αkj γ
k+1
j

)
= argmin

w

‖Aw − y‖22 + 2λ

N∑
j=1

√
αkj |wj |

 .

(14)

We can then set γk+1
j = |wk+1

j |/
√
αkj , ∀j. Then we update

αk+1 by (11). However, some of the estimated weights
will be several orders of magnitude lower than the average
“energy”, e.g., w2

j � ‖w‖22. Thus a threshold needs to be
defined a priori to prune “small” weights at each iteration.

We can now explain how the update of the parameters can
be performed based on the above. Set the iteration count
k to zero and θ0j = 1, ∀j. At this stage, the optimisation

is a typical lasso algorithm. Then at the kth iteration,

let θ
(k)
j =

√
αkj , ∀j. The above described procedure is

summarised in Algorithm 1.

In the next section, we will reformulate the centralised op-
timisation in Algorithm 1 into a distributed optimisation
problem using ADMM.

Algorithm 1 Reweighted lasso on w

1: Initialise θ0j = 1, ∀j
2: for k = 0, . . . , kmax do
3: Solve the weighted lasso problem

wk+1 = argmin
w

(
1

2
‖Aw − y‖22 + λ‖Θkw‖1

)
; (15)

4: Set Θ(k) , diag
[
θ(k)

]
, W(k) , diag

[
|w(k)|

]
and

θk+1
j =

[
(Aj)

T
(
λI + A(Θk)−1Wk+1(A)T

)−1
Aj

]− 1
2

5: if a stopping criterion is satisfied then
6: Break;
7: end if
8: end for

5. ALTERNATING DIRECTION METHOD OF
MULTIPLIERS (ADMM)

ADMM is a numerical algorithm for solving optimisation
problems such as

min
w

f(w) + g(z),

subject to Pw +Qz = c,
(16)

with variable w ∈ Rn and z ∈ Rm, where P ∈ Rp×n,
Q ∈ Rp×m, and c ∈ Rp (Boyd et al. [2011]). We will
assume that f(·) and g(·) are convex. As for the method
of multipliers, we form the augmented Lagrangian

Lρ =f(w) + g(z) + vT (Pw +Qz− c)
+ ρ/2‖Pw +Qz− c‖22.

(17)

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3210

Defining the residual r = Pw + Qz − c and u = (1/ρ)v
as the scaled dual variable, we can express the ADMM
problem as

wk+1 := argmin
w

(
f(w) +

ρ

2
‖Pw +Qzk − c + uk‖22

)
zk+1 := argmin

z

(
g(z) +

ρ

2
‖Pwk+1 +Qz− c + uk‖22

)
uk+1 := uk + Pwk+1 +Qzk+1 − c.

(18)
More details on stopping criteria, such as the absolute
tolerance εabs and the relative tolerance εrel can be found
in (Boyd et al. [2011]).

In our setting, the number of candidate functions will
be very large. Therefore we partition across the candi-
date functions. Each subsystem can deal with its split of
candidate functions independently then update the shared
variables. The following are direct consequences of the so-
called sharing problem in (Boyd et al. [2011]).

We partition the parameter vector w as w = (w1, . . . ,wn),
with wi ∈ RNi , where

∑n
i=1Ni = N . We similarly parti-

tion the dictionary matrix A as A = [A1, . . . ,An], with
Ai ∈ RM×Ni . Thus Aw =

∑n
i=1 Aiwi, i.e., Aiwi can be

thought of as a ‘partial’ prediction of y using only the
candidate functions referenced in wi. Then the reweighted
lasso problem (15) minw

(
1
2‖Aw − y‖22 + λ‖Θw‖1

)
be-

comes minw

(
1
2‖
∑N
i=1 Aiwi − y‖22 + λ

∑N
i=1 ‖Θiwi‖1

)
.

Following the approach used for the sharing problem, we
express the problem as

min

(
1

2
‖
N∑
i=1

zi − y‖22 + λ

N∑
i=1

‖Θiwi‖1

)
,

subject to Aiwi − zi = 0, i = 1, . . . , N,

with new variables z ∈ Rm. The derivation and simplifica-
tion of ADMM also follows that for the sharing problem.
The scaled form of ADMM is

wk+1
i := argmin

wi

(
ρ

2
‖Aiwi − zk + uk‖22 + λ‖Θiwi‖1

)
zk+1 := argmin

z

(
1

2
‖

N∑
i=1

zi − y‖22 +

N∑
i=1

ρ

2
‖Awk+1 − zk + uk‖22

)
uk+1 := uk + Awk+1 − zk+1. (19)

As in the discussion for the sharing problem, we carry out
the z-update by first solving for the average

zk+1 := argmin
z

(
‖Nz− y‖22 +

N∑
i=1

Nρ

2
‖z−Aw

k+1 − uk‖22

)
zk+1 := zk+1 + Aiw

k+1
i + uk −Aw

k+1 − uk, (20)

where Aw
k+1

= (1/N)
∑N
i=1 Aiw

k+1
i . Substituting the

last expression into the update for ui, we find that

uk+1
i = Aw

k+1
+ uk − zk+1,

which shows that, as in the sharing problem, all the dual
variables are equal. Using a single dual variable uk ∈ Rm,
eliminating zi, and defining

b = Aiw
k
i + zk −Aw

k − uk,

we arrive at Algorithm 2.

Algorithm 2 ADMM for splitting across candidate func-
tions

1: for k = 0, . . . , kmax do
2: Solve

wk+1
i = argmin

wi

(ρ
2
‖Aiwi − b‖22 + λ‖Θiwi‖1

)
;

3: Compute zk+1 = 1
N+ρ

(
y + ρAw

k+1
+ ρuk

)
;

4: Update uk+1 = uk + Aw
k+1 − zk+1;

5: if a stopping criterion is satisfied then
6: Break;
7: end if
8: end for

Each wi-update is a lasso problem with ni variables, which
can be solved using any weighted lasso method. In the
wi-update, we have wk+1

i = 0 (meaning that none of
the features in the i-th block are used) if and only if
‖AT

i b‖2 ≤ λ
ρ .

The weighted lasso problem can be solved using ADMM
as well, as we now explain briefly:

min
1

2
‖Aiwi − b‖22 +

λ

ρ
‖Θiwi‖1,

subject to Θiwi − ẑi = 0, i = 1, . . . , N.

Defining λ̂ = λ/ρ yields the following ADMM algorithm
(Algorithm 3):

Algorithm 3 ADMM for weighted lasso

1: for k = 0, . . . , kmax do
2: Update wk+1

i = (AT
i Ai + ρ̂ΘT

i Θi)
−1(AT

i b +
ρ̂ΘT

i (ẑi − ûi));

3: Update ẑk+1
i = Sλ̂/ρ̂(Θiw

k+1
i + ûki);

4: Update ûk+1
i = ûki + Θiw

k+1
i − ẑk+1

i ;
5: if a stopping criterion is satisfied or when k reaches

a predefined iteration number kmax then
6: Break;
7: end if
8: end for

where ρ̂ is the penalty parameter and the soft thresholding
operator Sλ̂/ρ̂ is defined as

Sλ̂/ρ̂(x) = max(0, x− λ̂/ρ̂)−max(0,−x− λ̂/ρ̂).

We are now ready to summarise the procedure for nonlin-
ear network reconstruction in Algorithm 4.

6. AN EXAMPLE OF RECONSTRUCTION OF A
NETWORK OF KURAMOTO OSCILLATORS

A classical example in physics, engineering and biology
is the Kuramoto oscillator network (Strogatz [2000]). We
consider a network where the Kuramoto oscillators are
nonidentical (each has its own natural oscillation fre-
quency ωi) and the coupling strengths between nodes
are not the same. The corresponding discrete-time dy-
namics can be described by φi(tk+1) = φi(tk) + (tk+1 −
tk)
[
ωi +

∑n
j=1 wijgij(φj(tk)− φi(tk)) + ξi(tk)

]
, where i =

1, . . . , n, φi ∈ [0, 2π) is the phase of oscillator i, ωi is its

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3211

Algorithm 4 ADMM on w

1: Initialisation
(1) Collect the time-series data, specify the candidate

functions and construct the dictionary matrix;
(2) Partition the dictionary matrix A as A =

[A1, . . . ,AP], with Ai ∈ RM×Pi ;
(3) Initialise the weight Θ0 as Θ0 = [Θ0

1, . . . ,Θ
0
P],

Θ0
i = [θ0i1, . . . , θ

0
iPi

], with θ0ij = 0.
2: for k = 0, . . . , kmax do
3: Apply Algorithm 2 and 3 to to get an estimate on

wk+1 according to (15);

4: Set Θ(k) , diag
[
θk
]
, Wk , diag

[
|wk|

]
;

5: Update θk+1
j for the next iteration using:

θ
(k+1)
j =

[
AT
j

(
λI + A(Θk)−1Wk+1AT

)−1
Aj)

]− 1
2

;

6: if a stopping criterion is satisfied then
7: Break;
8: end if
9: end for

natural frequency, and the coupling function gij is usually
taken as sine for all i, j. wij represent the coupling strength
between oscillators i and j, and thus [wij]n×n defines
the topology of the oscillator network. Here, assuming we
don’t know the exact form of gij , we reconstruct from time-
series data of the individual phases φi a dynamical network
consisting of n Kuramoto oscillators, i.e., we identify the
coupling functions gij(·) as well as the model parameters,
i.e., ωi and wij , i, j = 1, . . . , n.

To define the dictionary matrix A, we assume that all
the dictionary functions are functions of a pair of state
variables only and consider 2 candidate coupling func-
tions gij : sin(xj − xi) and cos(xj − xi). Based on this,

we define the dictionary matrix as Aij(xj(tk), xi(tk)) ,
[sin(xj(tk) − xi(tk)), cos(xj(tk) − xi(tk))] ∈ R2. To also
take into account the natural frequencies, we add to
the last column of Ai a unit vector. Following the
procedure in (4), this leads to a dictionary matrix

Ai ∈ RM×(2n+1). The output is then defined as yi ,[
φi(t1)−φi(t0)

t1−t0 , . . . , φi(tM)−φi(tM−1)
tM−tM−1

]T
∈ RM .

To generate the time-series data, we simulated a Kuramoto
oscillator network for which 10% of the non-diagonal en-
tries of the weight matrix [wij]n×n are nonzero (assuming
gii and wii are zeros), and the non-zero wij values are
drawn from a standard uniform distribution on the interval
[−10, 10]. The natural frequencies ωi are drawn from a
normal distribution with mean 0 and variance 10. In order
to create simulated data, we simulated the discrete-time
model and took ‘measurements data points’ every tk+1 −
tk = 0.1 between t = 0 and t = 100 (in arbitrary units)
from random initial conditions which are drawn from a
standard uniform distribution on the open interval (0, 2π).
Thus a total of 1001 measurements for each oscillator
phase φi are collected (including the initial value). Once
again, it should be noted that the the number of rows of
the dictionary matrix is less than that of columns.

We compare the centralised algorithm using CVX (Grant
et al. [2008]), the centralised algorithm using ADMM,
and the distributed algorithm using ADMM. We fixed

the number of measurements M to be 1001 and varied
the network size n between 500 and 100, 000. For the
distributed algorithm, we split the problem into 1000
subproblems where each one has the same dimension. The
algorithm was implemented in MATLAB R2012b. The
calculations were performed on a HP workstation with two
8 core Intelr Xeon(R) CPU E5-2650 2.00GHz and 64 GB
RAM.

Since the reconstruction problem in (3) for each node is
independent, we therefore consider the performance of a
single node for illustration. We first investigate the per-
formance for different signal-to-noise ratios of the data
generated for this example. We define the signal-to-noise
ratio (SNR) by SNR(dB) , 20 log(‖Awtrue‖2/‖ξ‖2). We
considered SNR ranging from 5 dB to 25 dB for each gener-
ated weight. To characterise the accuracy of a reconstruc-
tion, we use the normalised mean square error (NMSE)
as a performance index, defined by ‖ŵ −w‖/‖w‖, where
ŵ is the estimate of the true weight w. For each SNR,
we generated 50 independent experiments (with different
initial conditions and parameters) and calculated the av-
erage NMSE for each SNR over these 10 experiments. The
results are shown in Fig. 1.

For all the experiments, we set the penalty parameter
ρ = 1 in the augmented Lagrangian and the scalar regular-
isation parameter λ = 0.05‖ATy‖∞. We also considered
termination tolerances εabs = 10−4 and εrel = 10−2 and set
the ADMM iteration number to be 200 and the reweighted
iteration number to be 10 throughout all algorithms.

We compared the computation time for different network
sizes for each method. These methods were tested with the
different SNRs considered in Figure 1 . In the implementa-
tion of the distributed algorithm, we used the Matlab com-
mand parfor to parallelise the wk-update in Algorithm
2. We used the Matlab command matlabpool(‘size’) to
start a worker pool. The size varied from 2 to 10. For each
method, we found that the computation time over each
SNR varied slightly (at least within the same magnitude).
We calculated the average computation time from a total
250 (=5×50) independent experiments for each method.
The computation times in seconds are shown in Table 1.
For larger problem, with network size larger than 50, 000,
CVX-based reweighted lasso runs into memory difficulties.
Thus there are no results reported in the table for these
network sizes. For the distributed reweighted lasso algo-
rithm, the computation time decreases when the problem
is split between an increasing number of processors. It
should be noted that the computation time for distributed
reweighted lasso is small partially because Matlab per-
forms some matrix computations in parallel. On the other
hand, CVX exploits only one core.

7. CONCLUSION AND DISCUSSION

In this paper, a new distributed reconstruction method
for nonlinear dynamical network is presented. The pro-
posed method only requires time-series data and some
prior knowledge about the class of systems for which a
dynamical model needs to be built. The network recon-
struction problem is cast as a sparse linear regression
problem. Using a Bayesian interpretation, this problem is
solved using a reweighed `1 algorithm, which can further

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3212

5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

SNR (dB)

N
M

S
E

NMSE for network size n=5000

CVX−lasso
CVX−reweighted lasso
ADMM−lasso
ADMM−reweighted lasso

5 10 15 20 25
0

0.05

0.1

0.15

0.2

SNR (dB)

N
M

S
E

NMSE for network size n=10000

CVX−lasso
CVX−reweighted lasso
ADMM−lasso
ADMM−reweighted lasso

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SNR (dB)

N
M

S
E

NMSE for network size n=50000

Distributed−lasso
Distributed−reweighted lasso

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SNR (dB)

N
M

S
E

NMSE for network size n=100000

Distributed−lasso
Distributed−reweighted lasso

Fig. 1. Normalised Mean Square Error (NMSE) averaged over 50 independent experiments for the signal-to-noise ratios
5dB, 10 dB, 15 dB, 20 dB, and 25 dB, with different network dimensions 5000, 10000, 50000 and 100000.

Table 1.

Methods 500 5000 10000 50000 100000

CVX-reweighted lasso 81.9 428.4 1218.3 N/A N/A

Distributed reweighted lasso with 2 cores 24.7 84.3 156.5 587.1 1341.5

Distributed reweighted lasso with 4 cores 16.4 64.1 91.5 411.8 868.7

Distributed reweighted lasso with 10 cores 15.5 46.9 62.9 345.2 788.3
Computation times in seconds

reduce the Normalised Mean Square Error in comparison
with classic lasso algorithms. Furthermore, our distributed
algorithm can deal with networks comprising more than
50, 000 nodes, which centralised algorithms typically can-
not handle.

8. ACKNOWLEDGEMENT

W. Pan gratefully acknowledge the support of Microsoft
Research through the PhD Scholarship Program. A. Sootla
and G.-B. Stan acknowledge the support of EPSRC
through the project EP/J014214/1 and the EPSRC Sci-
ence and Innovation Award EP/G036004/1.

REFERENCES

C.M. Bishop. Pattern recognition and machine learning,
volume 4. springer New York, 2006.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein.
Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations
and Trends in Machine Learning, 3(1):1–122, 2011.

E.J. Candès and T. Tao. Decoding by linear programming.
Information Theory, IEEE Transactions on, 51(12):
4203–4215, 2005.

D.L. Donoho and M. Elad. Optimally sparse represen-
tation in general (nonorthogonal) dictionaries via `1
minimization. Proceedings of the National Academy of
Sciences, 100(5):2197–2202, 2003.

M. Grant, S. Boyd, and Y. Ye. Cvx: Matlab software
for disciplined convex programming. Online accessiable:
http://stanford. edu/b̃oyd/cvx, 2008.

L. Ljung. System Identification: Theory for the User.
Prentice Hall, 1999.

J. Palmer, K. Kreutz-Delgado, B. D. Rao, and D. P.
Wipf. Variational em algorithms for non-gaussian latent
variable models. In Advances in neural information
processing systems, pages 1059–1066, 2005.

W. Pan, Y. Yuan, J. Gonçalves, and G.-B. Stan. Bayesian
approaches to nonlinear network reconstruction. sub-
mitted, 2013.

W. Pan, A. Sootla, and G.-B. Stan. Distributed Recon-
struction of Nonlinear Networks: An ADMM Approach.
ArXiv e-prints, 2014. arXiv 1403.7429.

S.H. Strogatz. From kuramoto to crawford: exploring
the onset of synchronisation in populations of coupled
oscillators. Physica D: Nonlinear Phenomena, 143(1):
1–20, 2000.

R. Tibshirani. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society. Series B
(Methodological), pages 267–288, 1996.

M.E. Tipping. Sparse bayesian learning and the relevance
vector machine. The Journal of Machine Learning
Research, 1:211–244, 2001.

D. Wipf and S. Nagarajan. Iterative reweighted l1 and l2
methods for finding sparse solutions. IEEE Journal of
Selected Topics in Signal Processing, 4(2):317–329, 2010.

D.P. Wipf, B.D. Rao, and S. Nagarajan. Latent variable
bayesian models for promoting sparsity. Information
Theory, IEEE Transactions on, 57(9):6236–6255, 2011.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

3213

