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1. INTRODUCTION

Model predictive control (MPC), refers to a kind of con-
trol algorithms that measure the current dynamic state
and output of the process; solve a finite horizon optimal
control problem online iteratively; only implement the
first input signal onto the plant and repeat the process on
the next iteration. It has attracted much attention from
industrial and academic community since 1970s [Richalet
et al. (1978), Kwon et al. (1983), Poubelle et al. (1988),
and Garcia et al. (1989)].

The unique “receding horizon optimization” of MPC,
albeit a great success in industrial application [Qin et al.
(1997), Garcia et al. (1989), Maciejowski (2002) and
Zheng et al. (2009)], has imposed arduous difficulties on
stability and performance analysis of closed-loop systems
[Mayne et al. (1990), Mayne et al. (2000), Palma et al.
(2007), and Grüne et al. (2008)].

Performance of closed-loop MPC systems has been inves-
tigated in a number of papers. For example, [Poubelle
et al. (1988)] considers moving-horizon approximation of
an infinite horizon optimal control problem of a con-
strained discrete-time nonlinear systems and shows that
the infinite-horizon cost of MPC approaches the infi-
nite horizon optimal cost as the moving horizon ex-
tends. [Shamma et al. (1997)] investigates linear non-
quadratic optimal control problem of discrete-time linear
systems and proposes a receding horizon optimal control
law which guarantees the total performance is within a
specified bound of infinite-horizon performance. [Palma

et al. (2007)] shows a counter-intuitive fact on optimality
property of MPC by means of a counterexample that
increasing the optimization horizon may not lead to the
optimality improvement. Notably, [Grüne et al. (2008)]
studies the infinite horizon performance of MPC and
provides an upper bound compared with infinite horizon
optimal cost. But the performance analysis of closed-loop
MPC system is far from thoroughly solved.

The fact that MPC essentially evolves from finite horizon
optimal control problem determines that the performance
of both controllers are closed-related. However, MPC
solves this finite horizon optimal control problem in a
completely different way, i.e. “receding horizon optimiza-
tion”, which blurs the relationship between the perfor-
mance of both controllers.

The main contributions of the present work are the ex-
plicit expressions of both an upper and a lower bound of
the ratio between performance of MPC and finite horizon
optimal controllers in terms of the optimization horizon.
Firstly, based on the Principle of Optimality, evolutionary
convergent properties of optimal cost sequence are ex-
ploited; secondly, quantitative relationships between per-
formance of MPC and finite horizon optimal controller-
s are revealed; finally, detailed performance analysis of
closed-loop MPC systems are given.

This paper is organized as follows. Section 2 provides
some preliminaries and problem formulation. Formula-
tion includes value-iteration-based finite horizon optimal
control problem, MPC design and objective of this paper
while preliminaries list some properties of finite horizon
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optimal control. Section 3 presents a sufficient condition
such that stability of closed-loop MPC systems is guar-
anteed, followed by the main results on the relationship
between infinite time performance of MPC systems and
finite horizon optimal cost. Section 4 concludes this paper.

Terminology: The set of real numbers and positive, non-
negative real numbers are denoted as R, R+ and R+

0
respectively. The set of positive integers is denoted asN+.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1 Problem formulation

Let X and U be arbitrary sets. Given f : X × U → X ,
consider the nonlinear discrete time system

x(t+ 1) = f(x(t),u(t)), x(0) = x0 6= 0, (1)

where x(t) ∈ X , u(t) ∈ U are the state and control
variables, respectively, with t = 0, 1, 2, · · ·. It is assumed
that (0, 0) is the equilibrium of system. Denote the control
law by µ : X → U , which yields the closed-loop dynamics

x(t+ 1) = f(x(t),µ(x(t))). (2)

In essence, MPC design shares many properties with the
problem of finite horizon optimal control. In the following
subsections, value-iteration based description on design
process of finite horizon optimal controllers and MPC
controllers with the same performance objective function
are stated respectively.

Finite horizon optimal control problem The following
finite horizon value function is introduced to evaluate
performance of the system

V
µ

N (x0) = V0(x(N)) +

N−1
∑

t=0

l(x(t),µ(x(t))), (3)

where x(t), µ(x(t)) come from system (2); N ∈ N+ is
the optimization horizon; V0(x(N)) > 0 is the terminal
cost and l : X ×U → R+

0 is the running cost function and
l(x,µ) = 0 only if (x,µ) = (0, 0).

The optimal cost function is thus defined as

V ∗
N (x0) := inf

µ∈U
V
µ

N (x0). (4)

A well-known method to get this optimal cost function is
value iteration

V ∗
k+1(x) = min

µ∈U
{V ∗

k (f(x,µ)) + l(x,µ)}, (5)

which starts from initial condition V0(x(N)) and updates
iteratively with k = 0, 1, 2 · · ·N − 1.

For simplicity, it is assumed that throughout this paper
the minimum with respect to µ ∈ U is attained, denoted
by µk, k = 1, 2 · · ·N , which can be described as follows

µk(x) = argmin
µ∈U

{Vk−1(f(x,µ)) + l(x,µ)}. (6)

Thus the finite optimal control sequence for fixed opti-
mization horizon N is constituted by µk arranged in the
reversed order µ∗ = {µN ,µN−1, · · ·µ1}. Substituting (6)
into value iteration equation (5) yields

V ∗
k+1(x) = V ∗

k (f(x,µk+1(x))) + l(x,µk+1(x)), (7)

where k = 0, 1, 2 · · ·N − 1.

Assume the following inequalities hold throughout this
paper

l(x,µk(x)) > 0, k = 1, 2, · · · , N. (8)

Remark 1. According to [Lincoln et al. (2006)], value it-
eration equation (7) is convergent under mild conditions
with l(x,µN (x)) → 0 as N → ∞. For the finite opti-
mization horizon N , the above assumption make sense.
Further convergent properties are exploited in this paper.

Model predictive controller design Now consider the M-
PC design for the receding horizon optimization problem
which has the same optimization horizonN with the same
system and objective function as in finite optimal control
problem mentioned above.

At each time instant t ∈ N+, MPC solves the finite
horizon optimal problem with a receding horizon

V̄
µ

N (x0) = V0(x(t+N)) +

t+N−1
∑

k=t

l(x(k),µ(x(k))),

subject to system (2) where V0(x) and l(x,µ) are the
same as in (3).

It is well-known that MPC only implement the first
control signal of optimal control sequence onto the system.
According to the value iteration approach, MPC law for
the fixed receding horizon N is constructed as

µN (x) = argmin
µ∈U

{VN−1(f(x,µ)) + l(x,µ)}. (9)

The closed-loop MPC systems turn into

xµ
N
(t+ 1) = f(xµ

N
(t),µN (xµ

N
(t))), xµ

N
(0) = x0,(10)

where xµ
N

denotes the solution of the closed-loop MPC
system.

The infinite time cost of nonlinear model predictive con-
trollers with receding horizon N is defined as

V
µ

N

∞ (x0) :=

∞
∑

k=0

l(xµ
N
(k),µN (xµ

N
(k))). (11)

Note that the definition make sense only when the closed-
loop system is stable.

Objective The objective of this paper is focused on
derivation of explicit upper and lower bounds of compar-
ing infinite time performance of closed-loop MPC system

V
µ

N

∞ defined as (11) with the finite horizon optimal value
function V ∗

N described as in (4).
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2.2 Preliminaries

The following assumption is introduced for V ∗
1 (x), V

∗
2 (x) >

0 which come from value iteration (7):

Assumption 1. There exist constants c1, c2 > 0 such that
the following inequality

c1V
∗
1 (x) ≤ V ∗

2 (x) ≤ c2V
∗
1 (x) (12)

holds for all x ∈ X .

The following proposition is needed in the proof of main
results.

Proposition 1. Let γ > 1 be arbitrary, V ∗
1 (x), V

∗
2 (x) come

from value iteration equation (7) for dynamic system
(2) with objective function (3) satisfying Assumption
1. There exists nonnegative constants c = c(γ, c1) and
c = c(γ, c2) such that the following inequality holds for
all x ∈ X

γ − 1

γ − 1 + c
V ∗
1 (x) ≤ V ∗

2 (x) ≤
γ − 1 + c

γ − 1
V ∗
1 (x). (13)

Proof: By selecting c and c as follows

c = max{l1, 0}, l1 = (c−1
1 − 1)(γ − 1),

c = max{l2, 0}, l2 = (c2 − 1)(γ − 1),

it can be verified that

γ − 1

γ − 1 + l1
= c1 > 0,

γ − 1 + l2

γ − 1
= c2 > 0.

Thus, the following inequalities hold for all x ∈ X

γ − 1

γ − 1 + c
V ∗
1 (x) ≤

γ − 1

γ − 1 + l1
V ∗
1 (x) = c1V

∗
1 (x),

γ − 1 + c

γ − 1
V ∗
1 (x) ≥

γ − 1 + l2

γ − 1
V ∗
1 (x) = c2V

∗
1 (x),

which completes the proof from Assumption 1. 2

Remark 2. Proposition 1 is to introduce nonnegative con-
stants c and c, which is related to γ > 1, lower bound c1
and the upper bound c2, such that the equation (13) holds.
The equation (13) is necessary to start proof of the main
results. The γ is an index quantifying the convergence
speed of value iteration process.

As MPC is close-related to finite horizon optimal control
problem, some properties are listed in the following part,
which will be utilized in the main results.

Proposition 2. Let V ∗
1 (x) and V ∗

2 (x) come from the value
iteration equation (7) for the dynamic system (2) with
the objective function (3) satisfying Assumption 1. There
exist a constant γ > 1 and two constants c = c(γ, c1) and
c = c(γ, c2) from Proposition 1 such that for any given
finite horizon N ∈ N+ the following inequality holds for
all x ∈ X and k = 1, . . . , N − 1:

τkV
∗
k (x) ≤ V ∗

k+1(x) ≤ τkV
∗
k (x), (14)

where

τk :=
γk−1(γ − 1)

γk−1(γ − 1) + c
; τk :=

γk−1(γ − 1) + c

γk−1(γ − 1)
. (15)

Proof: The proof is divided into the following three steps:

Step 1 shows the existence of γ

From (7), the following inequality holds for all k =
0, · · · , N − 1

V ∗
k+1(x) − V ∗

k (f(x,µk+1(x))) = l(x,µk+1(x)) > 0.

Thus there exists constants γk > 1 such that inequalities

V ∗
k+1(x) ≥ γkV

∗
k (f(x,µk+1(x))) (16)

holds for all x ∈ X and k = 0, · · ·N − 1.

Denote γ := min{γ0, · · · γN−1}. It follows that there exists
γ > 1 such that inequality

V ∗
k+1(x) ≥ γV ∗

k (f(x,µk+1(x))) (17)

holds uniformly, which proves the existence of γ.

Step 2 shows inequality V ∗
k+1(x) ≥ τkV

∗
k (x) holds

According to Proposition 1, for any fixed γ > 1, there are
two positive constants c = c(γ, c1), c = c(γ, c2) such that
the inequality (13) holds. Combining (7) and (17) yields
the following inequality

(γ − 1)V ∗
k (f(x,µk+1(x))) − l(x,µk+1) ≤ 0 (18)

holds for all x ∈ X with k = 1, · · · , N − 1.
On the other hand, a simple calculation shows that 0 <
τk ≤ 1 and τk ≥ 1. Moreover they satisfy the following
relationships

γ

τk + γ − 1
=

1

τk+1
,

γτk
1 + (γ − 1)τk

= τk+1. (19)

The remainder part of proof is completed by induction.

The choice of parameter (γ, c, c) and Proposition 1 show
that the inequality (14) holds for k = 1.

Assume that for any fixed N , the inequality (14) holds
when k = m, where m = 1, 2, · · · , N − 2. The following
two steps shows that the inequality holds when k = m+1.

At k = m+ 1, there holds

V ∗
m+2(x) = V ∗

m+1(f(x,µm+2(x))) + l(x,µm+2(x)). (20)

Noting the fact that
1−τ

m

1+(γ−1)τ
m

≥ 0, multiplying both

sides of the inequality (18) by
1−τ

m

1+(γ−1)τ
m

and adding it to

the equality (20) yields

V ∗
m+2(x)≥ V ∗

m+1(f(x,µm+2(x))) + l(x,µm+2(x))

+
(1− τm)(γ − 1)

1 + (γ − 1)τm
V ∗
m+1(f(x,µm+2(x)))

−
(1− τm)

1 + (γ − 1)τm
l(x,µm+2(x))
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=
γ

1 + (γ − 1)τm
V ∗
m+1(f(x,µm+2(x)))

+
γτm

1 + (γ − 1)τm
l(x,µm+2(x)) (21)

Noting that V ∗
m+1(x) ≥ τmV ∗

m(x) holds for all x ∈ X , it
follows that

V ∗

m+2(x) ≥
γτ

m

1+(γ−1)τ
m

[

V ∗

m+1(f(x,µm+2(x))) + l(x,µ
m+2(x))

]

Using the Principle of Optimality, it follows

V ∗
m+1 = min

µ

{

V ∗
m(f(x,µm+1(x))) + l(x,µm+1(x))

}

Using equalities (19) leads to

V ∗
m+2(x) ≥

γτm
1 + (γ − 1)τm

V ∗
m+1(x) = τm+1V

∗
m+1(x),

which implies that inequality V ∗
k+1(x) ≥ τkV

∗
k (x) holds

when k = m+ 1. This completes the proof of Step 2.

Step 3 shows inequality V ∗
k+1(x) ≤ τkV

∗
k (x) holds

Noting that the equality (7), the inequality (18) as well

as the fact τm−1
τm+γ−1 > 0, it leads to

V ∗
m+1(x) = V ∗

m(f(x,µm+1(x))) + l(x,µm+1(x))

≥ V ∗
m(f(x,µm+1(x))) + l(x,µm+1(x))

+
(τm − 1)(γ − 1)

τm + γ − 1
V ∗
m(f(x,µm+1(x)))

−
τm − 1

τm + γ − 1
l(x,µm+1(x)

=
γτm

τm + γ − 1
V ∗
m(f(x,µm+1(x)))

+
γ

τm + γ − 1
l(x,µm+1(x). (22)

Since the inequality (14) holds at k = m, it follows that

V ∗
m+1(x) ≤ τmV ∗

m(x),

holds for all x ∈ X , which implies

τmV ∗
m(f(x,µm+1(x))) ≥ V ∗

m+1(f(x,µm+1(x))).

Substituting above inequality into (22) yields

V ∗

m+1(x) ≥
γ

τm+γ−1

[

V ∗

m+1(f(x,µm+1(x))) + l(x,µ
m+1(x))

]

.

Using the Principle of Optimality, it follows

V ∗
m+2(x) = min

µ

{

V ∗
m+1(f(x,µm+2(x))) + l(x,µm+2(x))

}

.

Using equalities (19), inequality (22) can be simplified into
the following inequality

V ∗
m+1(x) ≥

γ

τm + γ − 1
V ∗
m+2(x) =

1

τm+1
V ∗
m+2(x),

which implies that inequality V ∗
k+1(x) ≤ τkV

∗
k (x) holds

when k = m+ 1. This completes the proof of Step 3.

The proof is completed by combining the results of Step
1-3. 2

Remark 3. Proposition 2 shows quantitative properties of
the sequence {V ∗

1 (x), V
∗
2 (x), · · ·V

∗
N (x)}. Both upper and

lower bounds of the ratio between two adjacent optimal
cost are provided. The results are useful in analyzing
the performance limits of closed-loop MPC systems since
MPC shares some properties with finite horizon optimal
controller.

As a affiliated result, monotonicity of the optimal cost
sequence is derived.

Proposition 3. Let V ∗
1 (x) and V ∗

2 (x) come from the value
iteration equation (7) for the dynamic system (2) with
the objective function (3). For any given finite horizon
N ∈ N+,

(1) if V ∗
1 (x) ≤ V ∗

2 (x) holds for all x ∈ X , then V ∗
k (x) ≤

V ∗
k+1(x) holds for all x ∈ X and k = 1, · · · , N − 1;

(2) if V ∗
1 (x) ≥ V ∗

2 (x) holds for all x ∈ X , then V ∗
k (x) ≥

V ∗
k+1(x) holds for all x ∈ X and k = 1, · · · , N − 1.

Proof: The proof is straightforward.

If V ∗
1 (x) ≤ V ∗

2 (x) holds, it follows from Proposition 1 that
c=0. Substituting c into Proposition 2 yields V ∗

k (x) ≤
V ∗
k+1(x) holds for all x ∈ X and k = 1, · · · , N − 1.

The proof of (2) is similar and thus has been omitted. 2

Remark 4. Proposition 3 provide monotonic properties of
the optimal cost sequence, which has included the mono-
tonic properties of Riccati Difference Equation [Poubelle
et al. (1988)] as a special case corresponding to linear
quadratic control of linear-time-invariant (LTI) systems.

3. MAIN RESULTS

This section provides main results of the relationship
between infinite time performance of nonlinear MPC sys-
tems and finite horizon optimal cost. At first, a sufficient
condition is given to ensure the stability of the closed-loop
system.

Proposition 4. Let N ≥ 2 be a fixed integer, γ, c come
from Proposition 2, V ∗

1 (x) and V ∗
2 (x) come from the value

iteration equation (7) for the dynamic system (2) with the
objective function (3) satisfying Assumption 1. If for the
given N , the following holds

γN−2(γ − 1)2 − c > 0, (23)

then the closed-loop MPC system (10) is stable.

Proof: If γN−2(γ−1)2−c > 0 holds, applying Proposition
2 leads to

V ∗
N (x(t))≤

γN−2(γ − 1) + c

γN−2(γ − 1)
V ∗
N−1(x(t))

<
γN−2(γ − 1) + γN−2(γ − 1)2

γN−2(γ − 1)
V ∗
N−1(x(t))

= γV ∗
N−1(x(t)). (24)

On the other hand, from (17) the following inequality
holds for t ∈ N+
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V ∗
N (x(t)) ≥ γV ∗

N−1(x(t + 1)). (25)

Combining the two inequalities yields

V ∗
N−1(x(t)) − V ∗

N−1(x(t+ 1)) > 0 (26)

holds for all t ∈ N+, which prove the stability of closed-
loop MPC system (10) by Lyapunov direct method. 2

Remark 5. Proposition 4 presents a sufficient condition to
the stability of closed-loop systems, which is a prerequisite
in calculating the infinite time performance of closed-loop
systems. The stability condition (23) is closely related to
the selection of γ and N . The larger γ, the shorter N is
needed to ensure the stability.

The relationships between infinite time performance of
closed-loop MPC system and finite optimal cost is re-
vealed in the following theorem.

Theorem 1. Let the optimization horizon N be fixed, γ,
c, c come from Proposition 2 respectively, V ∗

1 (x) and
V ∗
2 (x) come from the value iteration equation (7) for

the dynamic system (2) with the objective function (3)
satisfying Assumption 1. If condition (23) holds for the
given N , the following inequality holds

ζV ∗
N (x) ≤ V

µ
N

∞ (x) ≤ ζV ∗
N (x)

ζ =
γN−2(γ − 1)2 + c(γ − 1)

γN−2(γ − 1)2 + c(γ − 1) + c

ζ =
γN−2(γ − 1)2

γN−2(γ − 1)2 − c
(27)

for all x ∈ X .

Proof: The proof is divided into two parts.

Part 1 shows that V
µ

N

∞ (x) ≤ ζV ∗
N (x) holds

By applying Proposition 2, the following inequality holds

V ∗
N (f(x,µN (x))) − V ∗

N−1(f(x,µN (x)))

≤
c

γN−2(γ − 1)
V ∗
N−1(f(x,µN (x))). (28)

Rearranging inequality (18) yields V ∗
N−1(f(x,µN (x))) ≤

1
γ−1 l(x,µN (x)). Thus,

V ∗
N (f(x,µN (x))) − V ∗

N−1(f(x,µN (x)))

≤
c

γN−2(γ − 1)2
l(x,µN (x)).

Noting that V ∗
N−1(f(x,µN (x))) = V ∗

N (x) − l(x,µN (x)),
it has

V ∗
N (f(x,µN (x)))− (V ∗

N (x) − l(x,µN (x)))

≤
c

γN−2(γ − 1)2
l(x,µN (x)).

Thus, it follows that the following inequality holds for all
x ∈ X

l(x,µN (x)) ≤
γN−2(γ − 1)2

γN−2(γ − 1)2 − c
(V ∗

N (x)− V ∗
N (f(x,µN (x)))) .

According to the dynamics of closed-loop MPC system
(10) and definition on the infinite time performance of
the nonlinear model predictive controllers and noting the
stability of the closed-loop system is guaranteed under
condition (23),

V
µ

N

∞ (x0) =

∞
∑

k=0

l(xµ
N
(k),µN (xµ

N
(k)))

≤
γN−2(γ − 1)2

γN−2(γ − 1)2 − c

∞
∑

k=0

[

V ∗
N (xµ

N
(k))

−V ∗
N (f(xµ

N
(k),µN (xµ

N
(k))))

]

≤
γN−2(γ − 1)2

γN−2(γ − 1)2 − c
V ∗
N (x0) (29)

Let ζ = γN−2(γ−1)2

γN−2(γ−1)2−c
, which completes proof of Part 1.

Part 2 shows that V
µ

N

∞ (x) ≥ ζV ∗
N (x) holds

Similar to the proof of Part 1, noting inequality (18) and
applying Proposition 2 yields

V ∗
N (f(x,µN (x))) − V ∗

N−1(f(x,µN (x)))

≥ −
c

γN−2(γ − 1) + c
V ∗
N−1(f(x,µN (x)))

≥ −
c

(γN−2(γ − 1) + c)(γ − 1)
l(x,µN (x)). (30)

Substituting V ∗
N−1(f(x,µN (x))) = V ∗

N (x) − l(x,µN (x))
into the above inequality, it follows that

l(x,µN (x))≥
γN−2(γ − 1)2 + c(γ − 1)

γN−2(γ − 1)2 + c(γ − 1) + c

· (V ∗
N (x)− V ∗

N (f(x,µN (x)))) (31)

holds for all x ∈ X . Thus the infinite time performance of
nonlinear MPC controllers

V
µ

N

∞ (x0) =

∞
∑

k=0

l(xµ
N
(k),µN (xµ

N
(k)))

≥
γN−2(γ − 1)2 + c(γ − 1)

γN−2(γ − 1)2 + c(γ − 1) + c

∞
∑

k=0

[

V ∗
N (xµ

N
(k))

−V ∗
N (f(xµ

N
(k),µN (xµ

N
(k))))

]

=
γN−2(γ − 1)2 + c(γ − 1)

γN−2(γ − 1)2 + c(γ − 1) + c
(V ∗

N (x0)− V ∗
N (x(∞)))

=
γN−2(γ − 1)2 + c(γ − 1)

γN−2(γ − 1)2 + c(γ − 1) + c
V ∗
N (x0).

Let ζ =
γN−2(γ−1)2+c(γ−1)

γN−2(γ−1)2+c(γ−1)+c
, which completes proof of

Part 2.

The proof is finished by combining Part 1 and 2. 2

Remark 6. Theorem 1 provides quantitative relationship
between infinite time performance of closed-loop MPC
system and finite horizon optimal cost with both upper
and lower bound. Since γ > 1, these bounds are proved
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to converge to 1 as the optimization horizon increases to
infinity.

Remark 7. In the extent literature, only upper bounds are
constantly investigated. Theorem 1 provides both upper
and lower bounds, which are novel compared with existent
literature to the authors’ best knowledge.

Corollary 1. Let the optimization horizon N ∈ N+ be
fixed, V ∗

1 (x) and V ∗
2 (x) come from the value iteration

equation (7) for the dynamic system (2) with the objective
function (3). If condition (23) holds for the given N and

(1) if V ∗
1 (x) ≤ V ∗

2 (x) holds for all x ∈ X , then V ∗
N (x) ≤

V
µ

N

∞ (x) holds for all x ∈ X ;
(2) if V ∗

1 (x) ≥ V ∗
2 (x) holds for all x ∈ X , then V ∗

N (x) ≥

V
µ

N

∞ (x) holds for all x ∈ X .

Proof: The proof is straightforward.

If V ∗
1 (x) ≤ V ∗

2 (x) holds, it follows from Proposition
1 that c=0. Substituting c into Theorem 1 yields that

V ∗
N (x) ≤ V

µ
N

∞ (x) holds for all x ∈ X and k = 1, · · · , N−1.

The proof of (2) is similar and thus has been omitted. 2

Remark 8. Corollary 1 shows some interesting results,
that is, selection of different terminal costs might result
in different relationships between performance of both
controllers. The effect of terminal cost in adjusting per-
formance of MPC systems is thus revealed.

4. CONCLUSION AND FUTURE WORK

Quantitative relationships between performance of MPC
and finite horizon optimal controllers have been investi-
gated for constrained nonlinear systems. Upper and lower
bounds of the ratio between both controllers have been
derived. The proposed bounds have been shown to be
convergent as the optimization horizon increases to in-
finity. Detailed performance analysis of closed-loop MPC
systems has been provided.

Future research includes the following topics:

(1) Adaptive MPC controller design which satisfies
both stability and performance requirements for the
closed-loop system will be considered based on the
obtained results.

(2) Model uncertainty will be take into account to reveal
the quantitative relationships between performance
of robust MPC and robust optimal controllers.
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