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Abstract: The paper deals with a comparison of two possible approaches to the performance
portrait method application for an optimal nominal tuning of an integral plus dead time (IPDT)
plant. The first one relies on a more compact 2D approach used by Huba et al. [2009] inspired by
the triple real dominant pole method [Vitecek and Viteckova, 2008]. The second approach is a
simpler but, at the same time, in some aspects a computationally more demanding 3D method.
Pros and cons of both approaches are analyzed and discussed.

1. INTRODUCTION

Tuning of the PI controller for the integral plus dead time
(IPDT) plant described by transfer function F'(s) with a
gain K, dead time Ty, an input u and output y
Y(s) K _g
F e = — as 1
()= 75 = e 1)

is frequently treated in control areas, because with ap-
propriate model reduction techniques it enables us to ap-
proximate a broad range of processes (Skogestad [2003],
Astrom and Higglund [2006]). Recently, two papers deal-
ing with an optimal controller tuning for this plant by the
performance method appeared. The performance portrait
(PP) method is a relatively new approach for designing an
optimal nominal or robust controller tuning. It has been
described e.g. in Huba et al. [2009], Huba [2013a,b] and was
recently shown to be also able to provide closed-loop plant
identification [Soés and Huba, 2014]. The method searches
for an optimal point by sweeping a matrix of output related
data based on user defined parameters. It can take into
account output monotonicity, actuator wear (represented
by a measure for integral deviations from an ideal plant
input shape) and speed of transients. It complies to the
requirements given in Skogestad [2006] by achieving a user
defined trade-off between:

e fast speed of responses and disturbance rejection
e stability and robustness, less input usage
e less sensitivity to measurement noise.

Whereas the paper Huba [2013b] deals with an optimal
disturbance observer based PI control in a 2D parameter
space, Huba [2013a] considers an equivalent problem of
an optimal two-degree-of-freedom (2DOF) PI control in
a much more demanding 3D parameter space. What is
behind this difference? A 2D approach to the 2DOF PI
control has been already applied in Huba et al. [2009],
where the PP had two normalized parameters x and 7.
The 2DOF control law corresponds to a PI controller with
setpoint weighing b resulting in the control algorithm

* This work has been partially supported by grants APVV-0343-
12 Computer aided robust nonlinear control design, and VEGA
1/0276/14 Application of Algebraic Methods to Nonlinear Control
Systems.

Copyright © 2014 IFAC

K.
sT;

U(s) = KbW(s) =Y (s)] + = [W(s) =Y (s)] (2

that can be shown to be equivalent to using prefilter Fj,
and controller C'
F . bT;s +1 )
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with 7; being the integral time constant and K. the
controller gain. The parameter b was calculated to cancel
one of the real roots of the characteristic equation.

This approach was inspired by the triple real domi-
nant pole method (TRDPM) proposed in Vitetek and
Viteckovd [2008]. Calculating the roots of the transcen-
dent characteristic equation is not so trivial. Especially
because the existence of a triple real pole does not allow
the use of methods based on the first and second order
derivatives. With respect to this they used a fourth order
Householder’s method with quadratic convergence [Huba
et al., 2009]. However, this method only finds one root,
which is the ”slowest” one—the first root found when
searching from 0. The equation, however, can have up
to three different real roots, which causes the question to
arise, which one of them to cancel with parameter b.

The other concern is, that when looking for a robust con-
troller, we can only assign a single value to the parameter
b. But the uncertainty curve segment (UCS) defined for an
interval of Ks € [Ks,mi'ru Ks,maa:] or Td € [Td,min; Td,maz]
passes through several points, all with a different calcu-
lated value for b. Huba et al. [2009] proposed to choose
the smallest value given by these points as the optimal
one, but the PP might change if we set b to a single
value, possibly causing some points to no longer respect
the defined shape constraints. To determine the effect of
b on the PP this paper also considers a 3D approach for
both nominal and robust controller tuning with b as the
new parameter dimension. It is shown that although this
approach might be computationally more complex, the
achieved results are better than those of the 2D approach
for both tunings.

2. DESCRIPTION OF THE PP

First we introduce normalized parameters
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T;
E; o=sTy (4)

so that the characteristic polynomial can be written as

k=K. KTy 7=

A(o) = 0%e” + ko + g (5)

This way we can move a given system to a specific point
of the PP by choosing the appropriate control values
K, and T;. Theorem 2 in Huba [2013a] states that it is
sufficient to generate the PP for the IPDT plant given
by Ks = 1,74 = 1 over a chosen grid of points K., T;,b
by simulating setpoint responses with w = 1 and input
disturbance responses with w = 0, d; = 1. The normalized
time and shape related quantitative measures can then be
used to calculate the real values of these measures for a
given IPDT plant.

The PP first creates a data matrix consisting of output
and input shape and speed related values corresponding
to normalized parameters x and 7. Then we search for a
point (or in case of a robust controller a segment or a more
dimensional subspace) that provides the fastest transient
while satisfying the user defined constraints on the output
and/or input deviation from a preferred transient shape
(in our case given by monotonic output and one-pulse
input). The controller values are gained after substituting
the plant parameters K, and Ty into (4).

2.1 Time and shape related performance measures

The speed of transients will be characterized by the
Integral of Absolute Error (IAE) performance index

IAE:/|w—y(t)|dtm2\w—y(i)|*ts (6)
o i=0

with sampling time .

To evaluate required control effort and to express the
smoothness of a given signal, one can use the total variance

(TV) measure from Skogestad [2003] defined as

v - |
0

The plant output is frequently required to have a smooth
monotonic (MO) transient preserving the direction of
change. To evaluate the deviation of the plant output y
having an initial value yo and a final value yo, from a MO
shape we can use the TVy(y) criterion defined in Huba
[2010] as

du >

=0

TVo(y) =D lyis1 — vil — [yoo — 0l (8)
=0

where |y — yo| represents the minimal required output
change. TV, (y) equals zero only for strictly MO responses,
otherwise TV;(y) > 0.

When dealing with the disturbance response, it is to note
that each feedback loop needs some time to identify the
acting disturbance. This delay causes an output error be-
fore the (ideally MO) compensation starts. Thus the out-
put will have an extreme point separating two monotonic

intervals - an increasing and a decreasing one, denoted
in Huba [2010] as a one-pulse (1P) transient. Therefore
to evaluate the shape properties of the output y corre-
sponding to the disturbance step we should use the TV} (y)
criterion that describes deviation from a 1P transient. It
is calculated as

TVi(y) = i1 — il = 129m — Yoo — %ol (9)
=0

with ym ¢ (Y0, Yoo) being the dominant extreme value of
y(t). TVi(y) equals zero only for strictly 1P responses,
otherwise TV4(y) > 0.

MO transients at the output of the IPDT plant generally
correspond to a 1P input, since the number of signifi-
cant control pulses cannot decrease below the number of
unstable poles Huba [2013a]. Therefore, to evaluate the
shape properties of the plant input u we use the TV;
criterion for both the setpoint and disturbance steps. All
these values are computed by simulation after appropriate
discretization with sampling period as small as possible.

To find an optimal tuning corresponding to a 1P input and
MO/1P output one may search the PP for areas where
TVi(u) = 0 and TVy(ys) = 0 or TVi(yq) = 0. However,
to respect the always limited precision of both control
and computer simulation, it is meaningful to define some
tolerable deviations from ideal input and output shapes.
These represent a trade-off between practical usability and
computational effort. They may be given as

T%(ys) S 6ys;T“/l (us) S €us; (10)

TVl (yd) < €yd; T‘/l (ud) < €ud-

These parameters are adjustable and greatly influence the
resulting transients. In this paper we chose for both the
2D and 3D approach the simplest setup

(11)

which represents a 0.1% deviation from the desired value
change.

€= €ys = €yd = €ys = €4q = 0.001

2.2 Servo-requlatory trade-off

The defined tolerable shape deviations (10) restrict the
search area of the PP, but they do not change the TAE
values. Even if we set all € to the same value, we still
have to deal with the servo-regulatory trade-off. The min-
imal setpoint TAE values usually do not correspond to
the minimal disturbance TAE values. Thus we can find
an optimal controller for a setpoint step and a different
optimal controller for a disturbance step. To find a con-
troller tuning that is appropriate for both setpoint and
disturbance steps, the following cost function was proposed
in Grimholt and Skogestad [2012]

sTAFE TAFE
J=2 Wl (12)
IAEs,min IAEd,min
with wy = wg = 0.5 representing weighing between

the setpoint and disturbance responses, (IAFE, IAE,)
representing the IAE values of a given point in the PP, and
(IAE;s pmin, LAEj min) representing the optimal setpoint
and disturbance IAE values. The optimal controller tuning
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with a given setpoint and disturbance weighing is gained
by minimizing the cost function J.

3. PP: 2D APPROACH

A 2D approach to PP calculation was described in Huba
et al. [2009]. The PP is created in two dimensions &
and 7. Inspired by the TRDPM proposed in Vitecek
and Viteckovd [2008] the setpoint weighing (prefilter)
coefficient b can be calculated as

1
b =
50| T

(13)

where sq is a real pole of the characteristic equation. Thus
the prefilter nominator cancels a closed loop pole, which
accelerates the transient responses. However, the root of
the characteristic equation (5) changes for every point
of the PP. Furthermore, up to three different real roots
may exist. The method described in Huba et al. [2009]
always finds the same root, which turns out to be the
slowest one. The values of b corresponding to such roots
are displayed in Fig. 1. The PP is shown in Figs 2- 3. The
cross indicates the found optimal point for the minimal
cost function J. The PP was calculated for 131x131 points
providing a reasonably high precision.

Found values of the setpoint weighting b

4 L
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Fig. 1. Values of b calculated by the 2D approach

3.1 The second and third real pole

If starting to evaluate step by step from initial conditions
chosen from 0 towards —oo, we could obviously find all
real roots of the characteristic equation. This would be,
however, computationally not efficient, so we should sim-
plify the task. The equation can have three different real
poles only at a local maximum and minimum. Whether
there are any local extremes present we can find out from
the derivative of the characteristic polynomial

Alo) = (6% 4 20)e” + K (14)
For local extremes to exist, this must take zero values. This
is only possible if

k<2(vV2—1)eV? 2 ~0.4611 (15)
which corresponds to A(c) = 0; A(o) = 0. Furthermore,
the poles of (14) must lie within the interval < —2,0 >

so it is rather easy to find them. These poles correspond
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Fig. 2. Setpoint step PP values with found optimal param-
eters (cross)
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Fig. 3. Disturbance step PP values with found optimal
parameters (cross)

to the local extremes of the characteristic equation. If we
evaluate the characteristic equation in these points we
get the values of the local maximum and minimum. For
three different real poles to appear, the local maximum
must have a positive value (> 0) and the local minimum
must have a negative value (< 0). If any of them equals
zero, we only have two different poles. These mathemati-
cal constraints considerably reduce computations. Several
different real poles actually appear only in a relatively
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small part of the PP. The computed setpoint weighing and
respective I AFE values for the second and third real pole
are plotted in Figs 4-5.

Setpoint weighing of the second real pale
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Fig. 4. Setpoint weighing b and I AE, values calculated for
the second root

Setpoint weighing of the third real pole
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Fig. 5. Setpoint weighing b and I AFE; values calculated for
the third root

These setpoint weighings, however, provide higher TAE
values than the values gained from the first pole. The
lowest achievable TAE value for the second pole is 4.0883
and for the third pole 4.7394, whereas, for the first pole,
the corresponding TAE value is 3.9094. Every TAE value of
the second and third pole is greater than the IAE values
calculated for the first pole. They also show a growing
tendency, whereas the values of the first pole decrease.
This means that even if we consider several possible real
poles of the characteristic equation, it is enough to find
the slowest one.

4. PP: 3D APPROACH

If we consider the setpoint weighing b as an independent
parameter that needs to be tuned, then the computed
problem receives a new dimension. This avoids calculation
of the characteristic polynomial roots, but, at the same
time, considerably increases computational time and ef-
fort. We also need to consider an appropriate value range
and resolution for the new dimension. While the range of
the setpoint weighing is usually considered to be < 0,1 >,
the resolution is entirely up to us. Due to computational
constraints, the 3D PP was calculated over a grid of
21x21x100 points, with a resolution in b axis set to 0.01.
Since the number of points used for « and 7 are lower
than in the 2D approach, there might be disparities in
some values due to difference in sampling. Table 1 shows a
comparison of the tuned values for the 2D and 3D method
while table 2 shows the calculated controller parameters.
It is to note that all these points respect the shape related
constraint with e = 0.001.

Table 1. Comparison of achieved TAE values

PP optimal TAE tuned optimum

€ =0.001 | TAFE; TAE, TAE; TAE, J
2D 2.7623 | 11.4241 | 3.3129 | 12.1824 | 1.3677
3D 2.783 7.931 3.491 7.931 1.1319

Table 2. Comparison of computed controller

parameters
PP controller parameters
e = 0.001 K. T; b
2D 0.4723 | 5.7538 | 0.4239
3D 0.58 4.6 0.24

We can see that the found optimal setpoint step controller
is nearly the same for both approaches, with slight numer-
ical disparities caused by the different grid quantization.
The optimal disturbance step controller, however, displays
a rather significant difference for the two approaches. This
is caused by the different shapes of the setpoint TV value
sets. Because we require the input and output signals to
respect our given shape restraint ¢ = 0.001 for both the
setpoint and disturbance step, our valid search area of the
2D PP is limited by the TVi(us) = € and TVy(ys) = €
contours to a triangular shape. This does not allow the
disturbance tuning of the 2D approach to reach a smaller
TAE value than the found TAE; = 11.4241.

However, the shape of the TV;(us) and TVy(ys) contours
changes in the 3D approach according to the value of b. As
can be seen in figures A.1 and A.2 the area given by the
TVi(us) <= € and TVy(ys) <= € contours is considerably
larger for smaller values of b. As b increases, the area
becomes smaller and moves towards the upper left corner
of the PP—to lower x and higher 7 values. The value of
b has no effect on the shape of the TV;(uq) and TV1(yq)
contours, as the disturbance step simulation is defined for
w = 0;d; = 1. But the restraint ¢ on the TVj(us) and
TVo(ys) value sets reduces the admissible area to a subset
of the areas defined by the € contours over the T'V; (uq) and
TVi(yq) values. Therefore, the found optimal disturbance
step tuning depends on the value of b, even though the
disturbance input and output do not. This causes the main
difference in the two approaches.
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Thus, the setpoint weighting also infuences the time re-
lated measure of the disturbance responses. This property
of the PP can be observed in figures A.1 and A.2. As
b increases, the TAFE,(ys) values decrease. But since the
recession of the TV;(uy) and TVy(ys) areas is faster than
the TAE value decrease, the optimal setpoint controller
can be found for b = 0.66. After this point all values
of TAE,(ys) situated within the restrained T'V;(us) and
TVy(ys) areas are greater than the setpoint optimum.
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Fig. 6. Optimal nominal controller calculated by the 3D
PP
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Fig. 7. Comparison of the 2D and 3D controller perfor-
mance.

5. CONCLUSION

The performance portrait is an exceptional tool for both
nominal and robust controller tuning. But it is still a
relatively new approach and some its algorithms might
not be entirely optimized. Therefore it is worth to con-
front, analyze and evaluate its application results. In a
2D approach we started with an assumption that when

choosing the setpoint weighing b to cancel the ”slowest”
real pole of the characteristic equation, i.e. the slowest
transient mode, one gets the fastest transients. Our re-
sults indicate that such a pole-zero cancellation, that in
different modifications represents the core of many control
design approaches, does not necessarily lead to the best
achievable performance.

The larger search areas of the 3D method provide us
with broader acceptable controller parameter combina-
tions than the 2D approach does. It is important to no-
tice this fact, since some of these combinations achieve
better performance than the optimal 2D one. Therefore,
even though the 3D approach is computationally more
demanding, it is recommended to treat b as an indepen-
dently tuned parameter for both the nominal and robust
controller tuning. It not only provides a controller with
better disturbance rejection, but the generated PP is si-
multaneously appropriate for a robust tuning. Similar 3D
approach will also be required for a robust tuning of the
disturbance observer based filtered PI control introduced
in Huba [2013b].
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Appendix A. SAMPLE WINDOWS OF THE 3D PP
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Fig. A.1. Some windows of the 3D PP (a)
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Fig. A.2. Some windows of the 3D PP (b)
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