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Abstract: Integrated Emission Management (IEM) is a supervisory control strategy that
aims at minimizing the operational costs of diesel engines with an aftertreatment system,
while satisfying emission constraints imposed by legislation. In previous work on IEM, a
suboptimal real-time implementable solution was proposed, which was based on Pontryagin’s
Minimum Principle (PMP). In this paper, we compute the optimal solution using Dynamic
Programming (DP). As the emission legislation imposes a terminal state constraint, standard
DP algorithms are sensitive to numerical errors that appear close to the boundary of the
backward reachable sets. To avoid these numerical errors, we propose Boundary Surface Dynamic
Programming (BSDP), which is an extension to Boundary Line Dynamic Programming and
uses an approximation of the backward reachable sets. We also make an approximation of the
forward reachable sets to reduce the grid size over time. Using a simulation study of a cold-
start World Harmonized Transient Cycle for a Euro VI engine, we show that BSDP results
in the best approximation of the optimal cost, when compared to existing DP methods, and
that the real-time implementable solution only deviates 0.16 [%] from the optimal cost obtained
using BSDP.

1. INTRODUCTION

To meet modern emission legislation limits, several new
technologies were introduced in heavy-duty trucks in the
last two decades. This has led to an increased complexity of
the truck’s engine and aftertreatment system. As a result,
fuel consumption has remained almost constant over this
period of time [ACEA, 2011]. Traditional supervisory
control strategies are often based on heuristic rules, which
do not lead to optimal solutions. Integrated Emission
Management (IEM) is a supervisory control strategy that
can increase fuel efficiency by using ideas from optimal
control theory to maximize the synergy between the engine
and the Engine Aftertreatment System (EAS).

Some results on emission management can be found in
the literature [Serrao et al., 2013]. In IEM as described
in [Cloudt and Willems, 2011], the objective is to mini-
mize operational costs, while satisfying emission legisla-
tion constraints. This is achieved by finding a balance
between using Exhaust Gas Recirculation (EGR) to reduce
engine-out emissions and using the EAS. The IEM strategy
proposed in [Cloudt and Willems, 2011] uses ideas from
Energy Management Systems (EMS) for hybrid electric
vehicles, see, e.g., [de Jager et al., 2013] and references
therein. In the work on EMS, Dynamic Programming (DP)
is often used to find the optimal solution. As this optimal
solution is inherently noncausal and requires the drive
cycle to be known a priori, suboptimal real-time imple-
mentable solutions have been proposed in the form of an
Equivalent Cost Minimization Strategy (ECMS). ECMS
is based on Pontryagin’s Minimum Principle (PMP) and

aims at approximating the optimal solution. Although the
real-time implementable solution to the IEM problem of
[Cloudt and Willems, 2011] is based on PMP and has
a resemblance to ECMS, a comparison of this real-time
solution with the optimal solution obtained through DP
has never been made before.

This paper presents the optimal solution to the IEM
problem for the diesel engine of a Euro VI heavy-duty
truck completing a cold-start World Harmonized Transient
Cycle (WHTC). A cold start is considered, since this cycle
is more challenging from a thermal management and emis-
sions point of view. The main contribution of this paper is
a comparison of the suboptimal real-time implementable
strategy with the optimal solutions obtained through DP.
As emission legislation poses a constraint on the terminal
state, the standard DP algorithm is sensitive to numerical
errors [Sundström et al., 2010]. These numerical errors are
caused by interpolating between finite and infinite costs
and can be resolved by including an approximation of the
backward reachable sets in the DP algorithm. As the work
of [Sundström et al., 2010] can only be applied to scalar-
state systems, the second contribution of this paper is the
extension of the aforecited work towards the particular
higher-order system of IEM. Moreover, we will include an
approximation of the forward reachable sets in the newly
proposed DP method to reduce the grid size over time.
The contributions of this paper will be demonstrated by
a simulation study of a cold-start WHTC. This provides
insight into how the heuristic and optimal solutions to the
IEM problem cope with the drive cycle and shows that
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the novel extension to the DP algorithm outperforms the
existing DP algorithms.

2. PROBLEM DESCRIPTION

The objective of this paper is, loosely speaking, to mini-
mize engine operational costs over a drive cycle while satis-
fying emission constraints imposed by legislation. Before
being able to formalize the objective of IEM, which we
will do at the end of this section, we will first discuss the
controller structure and present the necessary models.

2.1 System Description and Control Structure

In this paper, we consider a typical Euro VI heavy-duty
powertrain, consisting of a 6 cylinder, 12.9 liter, 375 kW
engine and an Engine Aftertreatment System (EAS). The
engine is equipped with a cooled high pressure Exhaust
Gas Recirculation (EGR) system and a Variable Turbine
Geometry (VTG) with charge air cooler. The EAS consists
of a Diesel Oxidation Catalyst (DOC), a Diesel Particulate
Filter (DPF), a Selective Catalytic Reduction catalyst
(SCR) and an Ammonia Oxidation catalyst (AMOX).

A block diagram of the control structure can be found in
Fig. 1. The amount of fuel fed to the engine is taken so that
the requested power is delivered. The autonomous AdBlue
dosing strategy, which controls the SCR system, aims at
maximising NOx conversion given a certain amount of
NH3-slip. The air management controls the position of the
EGR valve and the geometry of the VTG. The supervisory
control strategy determines the desired EGR and VTG
mass flows, which result in a tradeoff between emissions
and fuel economy. We focus on tailpipe NOx emissions,
because present technology is capable of reducing other
emissions such that they comply with the Euro VI legisla-
tion.

2.2 Engine and Aftertreatment Models

The engine model is static and based on [Wahlström
and Eriksson, 2011]. It uses mass and energy balances
combined with empirical relations. The model predicts
the fuel mass flow ṁf , the total exhaust gas mass flow
ṁexh, the engine-out NOx mass flow ṁNOx,eo and the
exhaust gas temperature Texh as function of desired torque
τd [Nm] for a specific desired rotation speed ωd [rads−1],
and as function of the mass flow through the EGR and
VTG, denoted by u1 [kgs−1] and u2 [kgs−1], respectively.
The supervisory controller determines u1 [kgs−1] and
u2 [kgs−1], where the allowable u1 and u2 depends on
the combination of τd and ωd. It is assumed that the
air management and the fuel control perfectly track their
setpoints given by the IEM strategy. The experimental
results of [Willems et al., 2013] suggest that this is a valid
assumption.

In earlier work on IEM, the EAS is modelled using a
third-order dynamic model. In this paper, we reduce this
model to a second-order model, because it simplifies the
computations for DP later, while still allowing us to
compare the real-time implementable strategy with the
optimal solution obtained through DP. Note that the
methods presented below can just as well be applied
to the third-order model, albeit at the cost of a higher
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Fig. 1. Block diagram of the powertrain.

computational complexity. To obtain the second-order
model, we describe the temperatures for the DOC and
SCR in [Willems et al., 2013] by one single temperature
TEAS [K] that represents both catalytic converters. To
achieve this, the heat capacity of the entire system is
taken as the sum of the heat capacities of the individual
components, resulting in

ẋ=f(x, u, t) :=

[
k1ṁexh(Texh− x1) + k2(Tamb− x1)
ṁNOx,eo(1− ηSCR(x1, ṁexh))

]
, (1)

where x = [x1 x2]> = [TEAS mNOx,tp]>, Texh [K] and
Tamb [K] are the temperature of the engine-out exhaust
gas and the ambient, respectively, ṁexh [kgs−1] is the total
mass flow of the engine-out exhaust gas, and mNOx,tp [kg]
is the cumulative amount of tailpipe NOx emissions. The
SCR efficiency ηSCR is a nonlinear function that depends
on the EAS temperature and the exhaust gas mass flow
ṁexh. The heat transfer coefficients of the EAS are k1 =
3.56 · 10−2 [kg−1] and k2 = 5.34 · 10−4 [s−1].

2.3 Optimal Control Problem Formulation

We can now formulate IEM as an optimal control problem,
in which the objective is to minimize the total fluid
costs, while staying within the constraints on tailpipe NOx

emissions. This problem can be expressed as:

Jc(x(ts)) = min
u1,u2

∫ tf

ts

πfṁf (u, t) + πAṁA(x1, u, t) dt, (2)

subject to (1) and

x2 ≤ x2(tf ) ≤ x2, (3)

where πf = 1.34 [€/kg] and πA = 0.50 [€/kg] are the
price of fuel and AdBlue, respectively, ṁf is the fuel mass
flow of the engine model, and x2 [kg] and x2 [kg] are
the terminal state constraints on tailpipe NOx emissions,
where typically x2 = 0 [kg].

The AdBlue mass flow ṁA in (2) results from the as-
sumption that the reaction with NOx is stoichiometric
and that the SCR control system aims at maximizing NOx

conversion. It is given by ṁA = k3ṁNOx,eoηSCR(x1, ṁexh),
in which k3 = 2.007 [-] is the stoichiometric ratio between
AdBlue and NOx, and ṁNOx,eo and ηSCR are given as
before.

3. DYNAMIC PROGRAMMING

Dynamic Programming (DP) is a way to find the optimal
solution to an optimal control problem [Bertsekas, 2005].
To solve the optimal control problem given by (2) subject
to (1) and (3) using DP, we first approximate the problem
in discrete time using the forward Euler method with step
size h = 1 [s], resulting in

J(x[0]) = min
{u[k]}N−1

k=0
∈Ut

N−1∑
k=0

G(x[k], u[k], k)+G(x[N ], N), (4)
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subject to

x[k + 1] = F (x[k], u[k], k) := x[k] + f(x[k], u[k], k), (5)

with f(x, u, k) as in (1), and

L(x[N ]) ≤ 0. (6)

We use the forward Euler method because of its simplicity
and because of the fact that we have relatively slow
dynamics. In (4), the running cost is given by

G(x, u, k) = πfṁf (u, k) + πAṁA(x1, u, k), (7)

for k = {0, 1, . . . , N−1}, the terminal cost by G(x,N) = 0,
the terminal constraint by

L(x) = [x2 − x2 x2 − x2]>, (8)

and U t = U [0]× . . .× U [N − 1].

The DP solution to the discrete-time optimal control
problem (4)-(6) can be found, see, e.g., [Bertsekas, 2005],
by solving the backwards recursion

J(x, k) = min
u∈U [k]

{G(x, u, k) + J(F (x, u, k), k + 1)}, (9)

subject to J(x,N) = G(x,N) for all k ∈ {0, 1, . . . , N − 1},
and for all x ∈ X b[N ], where

X b[N ] = {x ∈ Rn | L(x) ≤ 0}. (10)

The function J(x, k) is often called the cost-to-go function.

We will now discuss two DP methods, in which we per-
form a spatial discretization to produce finite sets X o[k]
and Uo[k], where X o[k] ⊂ X [k], Uo[k] ⊂ U [k]. We use
linear interpolation and extrapolation to obtain values for
x[k] ∈ X [k] that are not contained in X o[k]. The accuracy
of the solution of the DP problem can be increased by
increasing the number of elements in X o[k] and Uo[k] in
a well-distributed way, albeit at the cost of a higher com-
putational complexity. An important difference between
the DP methods discussed below is how the set X [k],
k ∈ {0, 1, . . . , N}, is chosen.

3.1 Conventional Dynamic Programming

In Conventional DP (CDP), the terminal state constraint
(6) is taken into account by making the terminal cost of
the infeasible area, i.e., where L(x(N)) > 0, large. This
means that we can solve the DP problem by initializing

J(x,N) =

{
G(x,N), if L(x) ≤ 0,

α, if L(x) > 0,
(11)

for x ∈ X o[N ], where α ∈ R is chosen sufficiently large.
Then, for k = N − 1 to 0, x ∈ X o[k], we compute

J(x, k) = min
u∈Uo[k]

{G(x, u, k) + J(F (x, u, k), k + 1)} . (12)

In CDP, a time-invariant set X I is chosen that has its
points well distributed over a sufficiently large part of the
state space Rn, so that all relevant points are included. We
take X [k] := X I for all k ∈ {0, 1, . . . , N − 1}.
CDP is the most straightforward way to solve a DP
problem with terminal state constraints. However, the fact
that we grid and approximate infeasible points in the state
space by a large but finite number α causes the algorithm
to suffer from numerical errors due to interpolation at
the boundary [Sundström et al., 2010]. As illustrated
in Fig. 2, the true minimal cost is achieved somewhere
in between xi−1 and xi, but due to interpolation, the
minimum appears to occur at xi. In this figure, the dotted

J(x, k + 1)

x

Infeasible Feasible

xi xi+1xi−1

α

Fig. 2. Possible interpolation error at the boundary in 1D.

line illustrates the interpolation when doing conventional
DP, while the dashed line illustrates the real cost-to-go and
could be captured by a grid point (cross) on the boundary
of the feasible area. To minimize the numerical errors using
CDP, we have to make sure that α is not too high, yet high
enough to avoid it from affecting the solution to (12).

A way to find a proper (and possibly time and position
dependant) value for this parameter α, thereby reducing
the interpolation errors, is proposed in the Level-Set
Dynamic Programming (LSDP) method of [Elbert et al.,
2013]. In this method, the feasible sets are described by a
function I(x, k) that satisfies I(x, k) ≤ 0 if x is backward
reachable at time step k and I(x, k) > 0 if it is not. In
doing so, a smooth transition between the optimal costs of
feasible and infeasible points is achieved. This leads to an
implicit (and approximate) solution to the interpolation
errors near the boundary of the backward reachable sets
(i.e., the feasible regions), as was shown in Fig. 2. We
will propose an explicit (and approximate) solution to this
problem by extending [Sundström et al., 2010] towards the
higher-order system of the previous section.

3.2 Boundary-Surface Dynamic Programming

We will now propose Boundary-Surface Dynamic Pro-
gramming (BSDP), which can be seen as an extension
to Boundary-Line Dynamic Programming (BLDP) [Sund-
ström et al., 2010] and which can only be applied to scalar-
state systems. The main idea of BSDP, as well as BLDP of
[Sundström et al., 2010], is to include grid points that are
on the boundary of the backward reachable sets to avoid
the aforementioned interpolation errors. In this context,
the backwards reachable set X b[k] is, loosely speaking,
defined as the set of x[k] at time k ∈ {0, 1, . . . , N −
1} for which there exist a solution to (5) that satisfies
x[N ] ∈ X b[N ], with X b[N ] as in (10). In the BSDP method
that we propose, we also compute the forward reachable
sets X f [k], which can be defined as the set of x[k] at time
k ∈ {1, 2, . . . , N} which can be reached from the set of
initial conditions X f [0]. Computations of these two sets
will, in principle, allow us to place grid points x ∈ X o[k],
k ∈ {0, 1, . . . , N − 1}, exactly on the boundary of the
intersection of the forward and backward reachable sets,
thereby having no grid points x outside the reachable sets.

To compute the forward and backward reachable sets, we
propose a heuristic algorithm that takes into account the
specific structure of the IEM problem in R2, i.e., n = 2, of
Section 2. We assume that the dynamics (5) are boundary
preserving in the sense that the boundary of a set that is
mapped using the dynamics (5) is equal to the mapping
of the boundary of that same set. This can be guaranteed
under certain homeomorphism conditions on F as in (5).
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To compute approximations X f [k], k ∈ {0, 1, . . . , N},
of the forward reachable sets for a given convex set of
initial conditions X f [0] ⊂ R2, the boundary of the forward
reachable set ∂X f [k] is approximated by computing

x1[k] = min
{
x1 ∈ R | x ∈ X f [k]

}
, (13a)

x1[k] = max
{
x1 ∈ R | x ∈ X f [k]

}
, (13b)

and defining

x̃i1[k] = i−1
s−1 x1[k] + s−i

s−1 x1[k], (14)

for i ∈ {1, . . . , s}, with some s ∈ N, allowing us to compute

xi2[k] = min
{
x2 ∈ R

∣∣ [x̃i
1[k]

x2

]
∈ X f [k]

}
, (15a)

xi2[k] = max
{
x2 ∈ R

∣∣ [x̃i
1[k]

x2

]
∈ X f [k]

}
, (15b)

to obtain the following approximation of the set ∂X f [k]

X̂ f [k] :=

s⋃
i=1

{[
x̃
i
1[k]

x
i
2
[k]

]
,
[
x̃
i
1[k]

x
i
2[k]

]}
. (16)

The final step is to compute

X f [k+1] :=co{F (x, u, k)∈ Rn|x∈ X̂ f [k], u∈ Uo[k]}, (17)

where the notation coX denotes the convex hull of a set
X . Indeed, (17) computes an approximation of the forward
reachable set as it maps all the values x can attain at time
k to all the values x can attain at time k + 1. Note that
the points on the boundary of the set X f [k] are found in
a simple way by using the convex hull operation in (17)
and that by increasing s ∈ N, we are able to obtain a more
accurate approximation of the true forward reachable set.
Note also that by taking the convex hull we will typically
create an overapproximation of the forward reachable set,
meaning that we capture at least all forward reachable
points, but possibly some points that are not forward
reachable. However, the convex hull operation significantly
reduces the computational complexity and, as it turns
out, will lead, for the system under study, to a good
approximation of the true forward reachable sets. To find
all forward reachable sets, we solve (13)-(17) recursively
for k ∈ {0, 1, . . . , N − 1}.
To compute the backward reachable sets, we discuss an
extension to [Sundström et al., 2010] towards a second-
order system with a special structure. The extension of
the ideas presented in this paper to more general sys-
tems are currently under investigation. A requirement in
this paper is that the terminal state constraint X b[N ]
given by the mapping L as in (8) can be written as
X b[N ] = {x ∈ R2 | r(x1) ≤ x2 ≤ r(x1)} for some functions
r, r : R→ R. To avoid unnecessary computations, we di-
rectly incorporate the overapproximation X f [k] of the
forward reachable sets. Therefore we use (14), so that for
a given X b[N ], the boundary of the backward reachable
set ∂X b[k] is recursively approximated by computing for
i ∈ {1, . . . , s}
xi2[k]= max

u∈Uo[k]
{x2 ∈ R

∣∣F ([x̃i1[k] x2]>, u, k) ∈ X̃ b[k + 1]},

(18a)

xi2[k]= min
u∈Uo[k]

{x2 ∈ R
∣∣F ([x̃i1[k] x2]>, u, k) ∈ X̃ b[k + 1]}.

(18b)

The approximation of the backward reachable set is then
computed with

X b[k] :=
⋃s−1

i=1 co
(
{x̃i1[k]}×[xi2[k], xi2[k]]⋃
{x̃i+1

1 [k]} × [xi+1
2 [k], xi+1

2 [k]]
)
. (19)

To find all backward reachable sets, we solve (18)-(19)
recursively for k ∈ {0, 1, . . . , N − 1}.
The approximations of the forward and backward reach-
able sets can be used to place all grid points on the
boundary and in the interior of the intersection of these
two sets, i.e., x ∈ X o[k] ⊂ X [k] := X̃ f [k] ∩ X̃ b[k] for all
k ∈ {0, 1, . . . , N − 1}. For our system, we can find these
sets with relatively low computational effort, which gives
increased accuracy for only a slightly increased computa-
tional time.

4. REAL-TIME IMPLEMENTABLE STRATEGY

Let us now present a suboptimal real-time implementable
strategy that is based on [Cloudt and Willems, 2011]. This
methodology has resemblance to ECMS and is based on
Pontryagin’s Minimum Principle (PMP). PMP says that
the optimal solution u∗[k] along an optimal trajectory
x∗[k] necessarily satisfies

u∗[k] = arg min
u∈Uo[k]

H(x∗[k], u, k), (20a)

λ[k] =∂H(x∗[k],u∗[k],k)
∂x∗[k] , (20b)

k ∈ {0, 1, . . . , N−1}, subject to some boundary values, see,
e.g., [Bertsekas, 2005]. In this expression, the Hamiltonian
is given by H(x, u, k) = G(x, u, k) + λ>[k + 1]F (x, u, k),
where G(x, u, k) is the running cost as in (7), λ[k], k ∈
{0, 1, . . . , N}, are the costates and F (x, u, k) are the state
dynamics as in (5).

In principle, the solution to the IEM problem can be
obtained by numerically solving (20), but we will not
pursue this solution strategy in this paper. Instead, we only
use PMP to obtain a real-time implementable solution.
This real-time suboptimal solution, denoted by RT-PMP,
is based on the observation in [Willems et al., 2013] that
λ1 has little influence on the minimal cost over a drive
cycle. It is obtained by solving (20a), with λ1[k] = 0 and
λ2[k] = λ2 for some λ2 ∈ R and for all k ∈ {0, 1, . . . , N}.
This allows the IEM problem to be solved using a simple
shooting method to search for λ2, or by simply taking a
fixed value that is tuned over a representative cycle, as was
done in [Willems et al., 2013].

5. SIMULATION STUDY

We will now demonstrate and compare the proposed solu-
tion strategies to the optimal control problem using a case
study of a typical type approval drive cycle. In particular,
we compare CDP, LSDP as in [Elbert et al., 2013], the
newly proposed BSDP, and the real-time implementable
solution from Section 4. This will allow us to both assess
the performance of the newly proposed DP method, as well
as the amount of performance degradation of the real-time
implementable solution.

5.1 Case Description

In this simulation study, a cold-start World Harmonized
Transient Cycle (WHTC) will be used. We consider a cold
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Fig. 3. Computation time vs accuracy.

start, which corresponds to TEAS[0] = x1[0] = 298 [K]
and Tamb = 298 [K], as this case is more challenging
from a thermal management and emissions point of view.
From [Cloudt and Willems, 2011], we find that we can
achieve the legislation limit when we choose a NOx tailpipe
emission limit of 0.8 [g/kWh] for the cold-start WHTC.
Note that engine heat-up is not incorporated in the mod-
elling and that we use the same models for computing the
solutions to the control problem and for doing simulations.

5.2 Implementation Details

Before showing the results of the simulation study, let us
discuss some of the implementation details for each of
the applied methods. For the number of grid points of
Uo[k] ⊂ U [k], we take q = 212 equidistantly spaced points
for all k ∈ {0, 1, . . . , N − 1} for all methods.

For CDP and LSDP of [Elbert et al., 2013], we have
to specify grid points X I := [x1, x1] × [x2, x2] ⊂ R2.
We choose in this example the grid points xi ∈ X I ,
i ∈ {1, . . . , p}, to be on a regularly-spaced rectangular grid
with an equal number of quantization levels for both states
x1 and x2 and we will vary the number of grid points p ∈ N
to obtain more accurate solutions. We select x1 = 298 [K],
as the temperature of the EAS will never drop below
the ambient temperature, and x1 = 900 [K], as larger
temperatures are not forward reachable. Furthermore, we
take x2 = 0 [kg], as the cumulative tailpipe NOx cannot
decrease, and x2 = 28.7 · 10−3 [kg], which corresponds to
the emission constraint. The parameter α as in (11), is
chosen based on maximizing the operational costs in (2),
subject to no emission constraints, which yields α = 11.67.

For BSDP, we use the method as outlined in Section 3.4
with s =

√
p for some p ∈ N and take X f [0] := {298}×{0}

and X b[N ] = {x ∈ R2 | x2 ≤ x2 ≤ x2}. We distinguish two
cases, denoted by BSDP-I and BSDP-II. For BSDP-I, we
take x2 = 0 [kg] and x2 = 28.7 · 10−3 [kg] and, for BSDP-
II, we take x2 = x2 = 28.7 · 10−3 [kg]. Hence, we force the
solution of the latter case to be exactly on the emission
legislation limit. The reason for doing so is that engineering
insight tells us that the cost optimal solution has to be on
the emission legislation target and it allows us to place the
grid points as closely together as possible.

5.3 Optimality of Solutions

Our main objective is to minimize the operational costs
over the drive cycle. As mentioned earlier, the accuracy

Table 1. Results of the cold-start WHTC.

Definition Unit BSDP-II RT-PMP

Total fluid costs [-] 1 1.0016
AdBlue costs [-] 0.0181 0.0170
Tailpipe emissions mNOx,tp/Wtot [g/kWh] 0.800 0.800
Engine-out emissions mNOx,eo/Wtot [g/kWh] 6.160 5.816

of this cost for each DP method depends on the number
of grid points p. Therefore, the algorithms of the different
DP methods are simulated for different numbers of grid
points, i.e., we take p ∈ {102, 202, 302, 502, 1002}.
The results of the simulation study are shown in Fig. 3.
As BSDP-II with p = 1002 yields to most accurate
approximation of the optimal solution, i.e., has the lowest
cost, we normalize all results with respect to BSDP-II
with p = 1002 for both cost and computation time. All
computations are done on a 2.53GHz (quadcore) PC, with
4 GB RAM running Matlab 2010b and the computation
time for BSDP-II with p = 1002 equals 19 hours.

As expected, the computation time and the accuracy
increases as p increases. To quantify our results, let us
look along the dashed line in Fig. 3. We can observe
that for this computation time, the normalized costs
for CDP, LSDP and BSDP-I are 1.0013, 1.0012, 1.0003,
respectively. This shows that BSDP as proposed in this
paper is useful in achieving accurate results, while keeping
the computational efficiency manageable. Finally, we can
conclude that RT-PMP achieves a good approximation of
the real optimal solution, as the corresponding cost only
deviates 0.16 [%] from BSDP-II with p = 1002.

5.4 Optimal Trajectory

We will now discuss the optimal trajectories of the most
accurate DP approach, which is BSDP-II with p = 1002,
and the real-time implementable method (RT-PMP). For
these two approaches, the states x1 = TEAS, x2 = mNOx,tp

and the engine-out emissions mNOx,eo are shown as a
function of time in Figs. 4a-4c. Note that Wtot is the total
work delivered over the cycle in Fig. 4b and Fig. 4c. The
grey lines in Fig. 4a and Fig. 4b show the intersection of the
reachable sets calculated with BSDP-II. The black lines
in Fig. 4c show the cumulative minimum and maximum
possible mNOx,eo, which correspond to the maximum and
the no-EGR case, respectively. In Table 1, the values for
the trajectories at time step k = N are given, as well as
the total fluid cost and the AdBlue costs (both normalized
with respect to the total fluid cost of BSDP-II).

From the simulation results, it can be seen that both
solutions aim at increasing the EAS temperature almost
as fast as possible, see Fig. 4a, while keeping engine-out
emissions low (which can be done by using EGR), see
Fig. 4c. From 400 to 600 seconds, TEAS increases from
425 [K] to 525 [K], see Fig. 4a. This is the range of
temperatures for TEAS where the maximum possible SCR
efficiency changes from 58 [%] to 99 [%], which means
that less EGR is required and thus a higher ṁNOx,eo is
allowed. This results in lower fluid costs, since (a part of
the) expensive fuel associated with EGR is replaced by
cheaper AdBlue. In other words, the choice for the inputs
is a weighted decision between keeping the SCR efficiency
sufficiently high by keeping TEAS sufficiently high, while
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Fig. 4. Results of the Cold-Start WHTC.

consuming the least amount of fuel in doing so. Note
that we need EGR at the beginning of a cold-start cycle,
since the EAS temperature is too low to convert NOx

emissions adequately. Note also that EGR is used over the
complete cycle, which implies that a delicate combination
of EGR and SCR results in the lowest possible cost, while
satisfying the emission constraints.

When we compare the different solutions, we can observe
in Fig. 4c that the trajectory for RT-PMP stays near
the minimal engine-out emissions during the first 500
seconds and in Fig. 4b that it also stays near the minimal
tailpipe emissions. The latter implies that more EGR is
used in the RT-PMP strategy with respect to the BSDP-II
strategy. We can also see in Fig. 4a that, for RT-PMP,
TEAS is about 6 [K] higher in this period than TEAS

for BSDP-II. However, at these low temperatures, this
has no influence on the SCR’s maximum efficiency. At
500 seconds, the difference in cumulative tailpipe emissions
is maximal and is equal to 0.060 [g/kWh]. It can be seen
that after 500 seconds, TEAS for RT-PMP is about 8 [K]
lower than TEAS for BSDP-II. This implies that the SCR
efficiency for RT-PMP is slightly lower than the SCR
efficiency for BSDP-II, meaning that less AdBlue is used
than in the case of BSDP-II and also implies that EGR
is mainly used to stay within emission limits. This can
also be concluded from Table 1. To summarize, to be able
to satisfy the emission constraints, RT-PMP uses, when
compared to BSDP-II, more of the relatively expensive
fuel associated with EGR instead of the cheaper AdBlue.
Another explanation for the difference between RT-PMP
and BSDP-II is that λ1[k] = 0 in RT-PMP, as λ1[k]
corresponds to stimulate heating of the EAS in the optimal
control problem. However, the result of this effect is
marginal, as can also be seen in Table 1.

6. CONCLUSIONS

In this paper, the optimal solution to the Integrated Emis-
sion Management (IEM) problem was determined over a
cold-start World Harmonized Transient Cycle (WHTC).
This optimal solution was determined using Dynamic Pro-
gramming (DP) and was compared to the suboptimal real-
time implementable strategy that was proposed before and
is based on Pontryagin’s Minimum Principle. Additionally,
we compared different DP methods of which one was a
novel extension of an existing approach. The solutions were
obtained for a combination of a static engine model and a
dynamic engine aftertreatment model.

All proposed methods successfully minimize fuel and Ad-
Blue costs up to a certain numerical accuracy. We found
that DP suffers from interpolation errors, but by using the
Boundary-Surface Dynamic Programming (BSDP) in the
form proposed in this paper, we can increase accuracy of
the solution at the cost of only a small amount increase of
computational time. The solution obtained through BSDP,
where p = 1002 and the terminal constraint is chosen such
that the emission legislation is exactly satisfied, delivers
the most cost efficient trajectory over the cycle. The real-
time implementable strategy based on Pontryagin’s mini-
mal principle (RT-PMP) deviates only 0.16 [%] from the
most accurate optimal solution.
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