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Abstract: Synchronization is a ubiquitous phenomenon in nature. Over the last two decades,
the synchronization of complex networks receives an increasing attention. This paper aims
at developing a new pinning synchronization approach for complex networks by using the
heterogeneous information of different nodes cooperatively. Heterogeneous information means
the different observation of the reference signal. In detail, different from the traditional pinning
control idea, this paper utilizes different feedback gains to cope with the corresponding
personalized observations of a specific static reference signal for each node to realize network
synchronization. Based on our proposed method, this paper obtains three fundamental pinning
synchronization theorems with necessary and sufficient conditions for undirected connected
networks, strongly connected networks, and networks with a spanning tree, respectively.
Following the above theorems, this paper also designs the feedback gains and coupling strength
for networks to achieve synchronization. Finally, the numerical simulations are given to validate
the proposed approach.

Keywords: Complex networks, synchronization, pinning control, heterogeneous information,
multi-agent systems.

1. INTRODUCTION

Nowadays, complex networks are ubiquitous in nature and
our daily life. A complex network is composed of a large set
of autonomous nodes which are governed by some simple
local rules. Over the last two decades, complex networks
have developed very fast due to its wide applications in
various disciplines, including physics (Czirok and Vicsek,
2000), biology (Reynolds, 1987; Toner and Tu, 1998),
distributed optimization (Nedic and Ozdaglar, 2009), and
unmanned air vehicles (Beard et al., 2002; Fax and Murray,
2004). Synchronization, as a typical collective behavior,
is a fundamental phenomenon in nature (Lu and Chen,
2005). Recently, the synchronization of complex networks
receives an increasing attention in both theoretical re-
search and real-world applications. A fundamental ques-
tion is to how the network synchronization or consensus
can be generated by merging the local interactions of all
nodes. In detail, the essential problem lies in how to design
the suitable protocols (Jadbabaie et al., 2003; Ren and
Beard, 2005; Olfati-Saber et al., 2007).

Over the last few years, numerous efforts has been focused
on analyzing and understanding the inherent mechanism
of network synchronization. Follow this line, Chen et al.
⋆ This work was supported by the National Natural Science Foun-
dation of China under Grants 61025017, 11072254, and 61203148.

developed some new convex analysis tools to deal with
the consensus of discrete-time multi-agent systems (Chen
et al., 2013a,b). Arcak proposed the design approach of
controller based on passivity for the group coordination
(Arcak, 2007). Li et al. introduced a output feedback con-
trol method based on state observers for network synchro-
nization (Li et al., 2010). Most of the above approaches
realize network synchronization by driving all nodes to a
specific reference signal. In particular, pinning control is
a useful technique for network synchronization (Li et al.,
2004; Zhou et al., 2008; Yu et al., 2009).

It is well known that the basis idea of traditional pinning
control is to design some suitable feedback controllers to
guide the node dynamics to a specific reference signal.
In detail, the pinning controllers utilizes some so-called
“supernodes”, each of which acquire all the necessary
information of reference signal. However, it is often difficult
or even impossible to obtain all the necessary information
of reference signal for a single node because of the limit
of observability, or the high dimensionality of reference
signal. To overcome the above limits, this paper aims at
developing an effective pinning synchronization method
for complex networks by using the heterogeneous infor-
mation of each node cooperatively. Heterogeneous infor-
mation means the different observation of the reference
signal. Compared with the traditional pinning control idea,
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this paper utilizes different feedback gains to integrate
the corresponding personalized observations of a specific
static reference signal for each node to reach network
synchronization. Based on the above approach, this paper
introduces three pinning synchronization theorems with
necessary and sufficient conditions. And some numerical
simulations are also given to verify the effectiveness of the
proposed theorems.

The rest of this paper is organized as follows. In Section
2, some preliminaries and the main problem are briefly
outlined. The three fundamental pinning synchronization
theorems are deduced in Section 3 for the undirected
connected networks, strongly connected networks, and
networks with a spanning tree, respectively. In Section
4, the numerical simulations are given to validate the
effectiveness of the proposed method, main theorems, and
the design of feedback gains and coupling strength. Finally,
conclusions are drawn in Section 5.

2. PRELIMINARIES AND PROBLEM STATEMENT

Let RN×N be the set of all real matrices. Denote 1N be
the vector in RN with all its entries 1. The notation M > 0
indicates matrixM ∈ RN×N is positive definite whileM <
0 indicates M is negative definite. Let diag(G1, · · · , GN )
be the block-diagonal matrix with matrices Gi on its ith
diagonal, i = 1, · · · , N . The Kronecker product of matrices
G = [Gij ] ∈ RN×N and H ∈ Rn×n is defined as

G⊗H =

G11H · · · G1NH
...

. . .
...

GN1H · · · GNNH

 .

A (directed) graph G = (V, E) consists of two sets, the
set of nodes V = {1, 2, · · · , N} and the set of edges
E ⊆ V × V. A graph with the property that (i, j) ∈ E
if and only if (j, i) ∈ E is called undirected graph. There
exists a path from node i to node j if there exist k different
nodes {is}, 1 ≤ s ≤ k, for some integer k ≥ 1, with
i1 = i, ik = j, and (ip, ip+1) ∈ E for any 1 ≤ p ≤ s−1.
In this paper, all the graphs discussed are assumed with
no self-loop, that is (i, i) /∈ E for any i.

A graph G contains a spanning tree if there exists a node
i from which there is a path to any other node on the
graph, and the node i is called the root of the spanning
tree. Furthermore, if there exists a path connecting any
pair of nodes i, j ∈ V with i ̸= j, then the graph G
is strongly connected. Clearly, a strongly connected graph
contains a spanning tree. A strongly connected undirected
graph is usually called connected.

The adjacency matrix A = [aij ] ∈ RN×N of a graph G
is defined as follows: aij = 1 if (j, i) ∈ E and aij = 0
otherwise. The graph G corresponding to a matrix G ∈
RN×N is defined as follows: G has N nodes and (i, j) is an
edge iff Gji ̸= 0. The Laplacian matrix L = [Lij ] ∈ RN×N

is a matrix, whose diagonal entries Lii =
∑

j ̸=i aij for
any i and off-diagonal entries Lij = −aij . If a graph G is
undirected, then its adjacency matrix A and Laplacian L
are symmetric.

This paper aims to design a cooperative method for pin-
ning control under heterogeneous observation. The net-

work is described as a graph G with N nodes. Let A = [aij ]
be the adjacency matrix of the network G. The static
reference signal x(t), which means x(t) ≡ x for a constant
x ∈ Rn, is used as the ultimate synchronization state for
all nodes. However, due to observation or configuration of
each node, node i can only obtain the partial information
static reference signal: yi = Cix, where Ci ∈ Rmi×n and
yi ∈ Rmi for some mi. This is called the heterogeneous
information.

The dynamics of the network is as follows:

˙̂xi = ν
N∑
j=1

aij(x̂j − x̂i)−Hi(Cix̂i − yi) , (1)

where x̂i ∈ Rn, Hi ∈ Rn×mi for i = 1, · · · , N . ν > 0 is
called coupling strength. The feedback gains Hi and the
coupling strength ν are the parameters to design for the
fulfillment of cooperative pinning.

The goal of pinning control is to make all the state
of nodes in the network converge to reference signal x
asymptotically, i.e.

lim
t→∞

∥x̂i(t)− x∥ = 0, i = 1, · · · , N (2)

for any initial value x̂i(0), i = 1, · · · , N . It is said that the
cooperative pinning synchronization is fulfilled in a graph
with observation matrices Ci if (2) holds for some suitable
ν > 0 and Hi ∈ Rn×mi .

3. ON COOPERATIVE PINNING
SYNCHRONIZATION OF NETWORKS WITH

STATIC REFERENCE SIGNAL

This section shows the results of cooperative pinning
synchronization of networks, which suggest that the co-
operative pinning synchronization can be fulfilled under
the hypothesis of connected topology, strongly connected
topology, and topology with a spanning tree, respectively.

3.1 Cooperative Pinning Synchronization in Connected
Networks

This subsection focuses on the synchronization of con-
nected networks G. At first, some properties on the Lapla-
cian of undirected graph are given as follows.

Lemma 1. ((Godsil and Royle, 2001)). For a matrix G

which satisfy
∑N

j=1 Gij = 0 and Gij ≤ 0 for all i ̸= j,
all the eigenvalue of G have no nonnegative real parts.
Zero is an eigenvalue of G, with 1N as the corresponding
right eigenvector.

It is known the Laplacian of a graph satisfies the condition
of Lemma 1. So all of its eigenvalues have no nonnegative
real parts. The following lemma indicates that, for a
graph with a spanning tree, there is only one simple zero
eigenvalue of its Laplacian.

Lemma 2. ((Ren and Beard, 2005)). For a matrix G sat-

isfying
∑N

j=1 Gij = 0 and Gij ≤ 0 for all i ̸= j, zero is a
simple eigenvalue if the graph G corresponding to matrix
G contains a spanning tree.

To deal with the problem of synchronization of a connected
network under cooperative pinning control, one needs the
following hypothesis.
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Hypothesis 3. Matrix C = [CT
1 , · · · , CT

N ]T has full row-
rank.

This hypothesis indicates that the all information of x
can be acquired by combining the partial information
of different nodes. If such hypothesis is violated, some
information of x can not be achieved, resulting the non-
fulfillment of the cooperative pinning synchronization.

Theorem 4. For a connected network G, the cooperative
pinning synchronization is fulfilled if and only if the
Hypothesis 3 holds.

Proof. (Necessity) With loss of generality, choose ν = 1
and Hi = CT

i , And each node has the following form:

˙̂xi =
N∑
j=1

aij(x̂j − x̂i)−Qi(x̂i − x),

where Qi = CT
i Ci. Denote zi = x̂i − x and concatenated

vectors Z = [zT1 , · · · , zTN ]T , then the above equation can
be rewritten as follows

Ż = −(L ⊗ In)Z − diag(Q1, · · · , QN )Z. (3)

If the asymptotic stability of (3) can be guaranteed, then
clearly the cooperative pinning synchronization is fulfilled.

Consider the Lyapunov function candidate V =
1

2
ZTZ.

Since L is symmetric, the derivative of V is

V̇ (Z) = ZT (−L⊗ In − diag(Q1, · · · , QN ))Z. (4)

Let S0 be the eigenspace corresponding to zero eigenvector
of L ⊗ In. From Lemma 1 and Lemma 2, S0 = {Z =
[zT , · · · , zT ]T |z ∈ Rn}. Notice that the block diagonal
matrix diag(Q1, · · · , QN ) is positive semi-definite because
all of its blocks are positive semi-definite.

For any vector Z /∈ S0, V̇ can be estimated as

V̇ (Z) = −ZT (L ⊗ In)Z − ZTdiag(Q1, · · · , QN ))Z

≤ −ZT (L ⊗ In)Z < 0. (5)

For any Z ∈ S0, one can find a z ∈ Rn such that
Z = [zT , · · · , zT ]T . Then

V̇ (Z) = −ZT (L ⊗ In)Z − ZTdiag(Q1, · · · , QN ))Z

= −ZTdiag(Q1, · · · , QN ))Z

= −
N∑
i=1

zTQiz = −
N∑
i=1

(Ciz)
T (Ciz) ≤ 0. (6)

If −
∑N

i=1(Ciz)
T (Ciz) = 0, then Ciz = 0 for all i =

1, · · · , N , implying Cz = 0. From Hypothesis 3, it can
be concluded that z = 0. Together with (5), V̇ (Z) < 0

when Z ̸= 0 and V̇ (Z) = 0 when Z = 0, that implies the
negative definition of the Lyapunov function V . So (3) is
asymptotically stable.

(Sufficiency) Suppose Hypothesis 3 is violated, then C does
not have full row-rank. Choose a w ∈ Rn, which satisfies
w ̸= 0 and w is orthogonal to row space of C. By the
definition of C, Ciw = 0 holds for i = 1, · · · , N . For any
static reference signal x, choose x̂i(0) = x+w, i = 1, · · · , N
as initial value of each node. From (1), it is clear that
x̂i(t) ≡ x+w for all t > 0 and i = 1, · · · , N . Thus (2) can

not hold and cooperative pinning synchronization can not
be fulfilled.

Based on the proof of above theorem, the following corol-
lary summarizes the design of feedback gains and coupling
strength under which the network can achieve cooperative
pinning synchronization.

Corollary 5. Suppose the network is connected. If Hypoth-

esis 3 holds and Hi are chosen such that
∑N

i=1 HiCi > 0,
then the network synchronizes to the reference signal x
when ν > 0.

Remark 6. The theorem and corollary above can be easily
extended to general undirected networks. Define a con-
nected component of an undirected graph to be a subgraph
which is connected while adding any nodes else will vi-
olate the connectedness of this subgraph. Let Ii be the
index of nodes in ith connected component of the graph,
i = 1, · · · , k. A necessity and sufficiency condition for
fulfillment of cooperative pinning synchronization is all the
matrices Ci = [CT

j1
, · · · , CT

jmi
]T , Ii = {j1, · · · , jmi} have

full row-rank. One can arrive at this result by applying the
above analysis in each connected component of G. What
is more, if one choose Hi such that

∑
j∈Ii

HjCj > 0 for
i = 1, · · · k, state of all nodes in the network synchronizes
to the reference signal.

3.2 Cooperative Pinning !Synchronization in Strongly
Connected Networks

This subsection discusses the cooperative pinning synchro-
nization of strongly connected networks G. It will be shown
that Theorem 4 can be extended to such network. The
main difference between undirected and directed graph
is the Laplacian of directed graph is not symmetric. The
analysis of Theorem 4 can not be directly applied to the
directed graph. In order to derive the same result in the
case of directed graph, we need the following lemmas.

Definition 7. ((Horn and Johnson, 1990)). A matrix G ∈
RN×N is reducible if there is a permutation matrix P ∈
RN×N and an integer 1 ≤ m ≤ N − 1, such that

PTGP =

[
G̃11 0

G̃21 G̃22

]
,

where G̃11 ∈ Rm×m, G̃21 ∈ R(N−m)×m and G̃22 ∈
R(N−m)×(N−m). If G is not reducible, then G is called
irreducible.

An intuitive view of irreducible matrix is that the graph
corresponding to the matrix is strongly connected. Other-

wise, the nodes of subgraph corresponding to G̃11 have no

path leads to the subgraph corresponding to G̃22.

Lemma 8. ((Horn and Johnson, 1990)). The matrix G is
irreducible if and only if graph G corresponding to a
matrix G is strongly connected.

Lemma 9. ((Yu et al., 2013)). Suppose that Laplicain L a
directed graph is irreducible. Then there exists a posi-
tive definite diagonal matrix Ξ = diag(ξ1, · · · , ξN ) such

that L̂ =
1

2
(ΞL + LTΞ) is symmetric and

∑N
j=1 L̂ij =∑N

j=1 L̂ji = 0 for all i = 1, · · · , N .
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It should be noticed that L̂ satisfies the condition of
Lemma 1 and Lemma 2.

Theorem 10. For a directed and strong connected network
G, the cooperative pinning synchronization is fulfilled if
and only if the Hypothesis 3 holds.

Proof. (Necessity) Choose the sameHi and ν in Theorem
4 and apply the same reasoning. One can have equation (3)
and cast the cooperative pinning synchronization problem
into the asymptotically stable analysis of (3).

For Laplacian L, one can find a Ξ in Lemma 9. Use

V =
1

2
ZT (Ξ ⊗ In)Z as a Lyapunov function candidate,

and then:

V̇ (Z) = ZT (−L̂ ⊗ In − diag(ξ1Q1, · · · , ξNQN ))Z (7)

It should be noticed that L̂ satisfy the requirements in
Lemma 1 and Lemma 2 and ξi > 0 for i = 1, · · · , N . The
rest proof is similar to Theorem 4.

(Sufficiency) It is totally the same as Theorem 4, thus we
omit is here.

Corollary 11. Suppose the network is strongly connected.
If Hypothesis 3 holds and Hi are chosen such that∑N

i=1 HiCi > 0, then the network synchronizes to the
reference signal x when ν > 0.

3.3 Cooperative Pinning Synchronization in Networks
with Spanning Tree

This subsection copes with the cooperative pinning syn-
chronization where the graph G contains a spanning tree.
Since Lemma 9 does not hold for such graph, the proof of
Theorem 4 or Theorem 10 can not be extended to such case
directly. To overcome this difficulty, some lemmas must be
established first.

Lemma 12. ((Wu, 2005)). If a graph G contains a span-
ning tree, then with proper permutation, L can be reduced
to the Frobenius normal form

L =


L11 L12 · · · L1k

0 L22 · · · L2k

...
...

. . .
...

0 0 · · · Lkk

 , (8)

where Lii, i = 1, · · · , k−1, are irreducible, each Lii has at
least one row with positive row sum and Lkk are irreducible
or is a zero matrix of dimension one.

A graph theory view of the above lemma is that a graph
which contains a spanning tree can be decomposed into
some strongly connected components. If one contracts each
strongly connected component to a single supernode, the
resulting graph is a directed tree with root corresponding
to the subgraph of Lkk. By (8), no node other that ones
corresponding to Lkk links to nodes in Lkk. So a nature
idea to fulfill the cooperative pinning synchronization is
letting the nodes corresponding to Lkk track the reference
signal x cooperatively and letting other nodes synchronize
to nodes in Lkk. The former are shown in Theorem 10 since
the subgraph corresponding to Lkk are strongly connected.
Then, the following lemma are presented to cope with the
synchronization of nodes other than Lkk.

Lemma 13. For the matrix L in Lemma 12, all the eigen-
values of matrix

L̄ =


L11 L12 · · · L1 k−1

0 L22 · · · L2 k−1

...
...

. . .
...

0 0 · · · Lk−1 k−1


have positive real part.

The above lemma is a slight modification of the Lemma 5
in (Li et al., 2010). The proof of this lemma is trivial and
omitted here. Without loss of generality, we assume that
the index of nodes are already permuted in a way such that
its Laplacian L is in form (8). Let M be the dimension of
L̄ in Lemma 13. So the nodes corresponding to Lkk are
indexed M + 1, · · · , N .

To guarantee the fulfillment of the cooperative pinning
synchronization, we introduce the following assumption.

Hypothesis 14. The matrix C̃ = [CT
M+1, · · · , CT

N ]T has full
row-rank.

Theorem 15. For a network G contains a directed spanning
tree, the cooperative pinning synchronization is fulfilled if
and only if the Hypothesis 14 holds.

Proof. (Necessity) Choose Hi = 0 for i = 1, · · ·M and
Hi = CT

i for i = M + 1, · · · , N . Let ν = 1. Denote
zi = x̂i − x, Z1 = [zT1 , · · · , zTM ]T , Z2 = [zTM+1, · · · , zTN ]T ,

and Z = [zT1 , · · · , zTN ]T . Since Laplacian L is in form (8),
the dynamics of Z2 is

Ż2 = −(Lkk ⊗ In)Z2 + diag(QM+1, · · · , QN )Z2, (9)

where Qi = CT
i Ci, i = M + 1, · · · , N . Clearly, the

subgraph corresponding to Lkk is strongly connected.
From Theorem 10, one has

lim
t→∞

Z2 = 0 (10)

for all initial value of Z2. Now we consider the dynamics
of Z1:

Ż1 = −(L̄ ⊗ In)Z1 +BZ2, (11)

where B = [LT
1k, L

T
2k, · · · , LT

k k−1]
T . From Lemma 13,

−(L̄⊗ In) is Hurwitz. Thus Z1 approaches zero asymptot-
ically and cooperative pinning synchronization is fulfilled.

(Sufficiency) If Hypothesis 14 was violated, the dynamics
of nodes corresponding to Lkk is

˙̂xi = ν
N∑

j=M+1

aij(x̂j−x̂i)−Hi(Cix̂i−yi), i = M+1, · · · , N.

(12)
Apply the same reasoning in Theorem 4 for above equa-
tion. It is trivial to see that the cooperative pinning syn-
chronization problem can not be fulfilled.

Corollary 16. Suppose the network contains a spanning
tree. If Hypothesis 3 holds, let Hi = 0 for i = 1, · · · ,M
and choose Hi, where i = M + 1, · · · , N , such that∑N

i=M+1 HiCi > 0, then the network synchronizes to the
reference signal x when ν > 0.

Remark 17. For a general directed graph, one can apply
the strongly connected component decomposition to the
graph and contract each component to a single supernode.
For all the subgraph Gi corresponding to the supernode
with no in-degree, let Ii be the set of index of nodes in
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Gi, i = 1, · · · , k. A necessity and sufficiency condition
under which the cooperative pinning synchronization can
be fulfilled is all matrices Ci = [CT

j1
, · · · , CT

jmi
]T , Ii =

{j1, · · · , jmi} have full row-rank. One can arrive this
result by applying the above analysis in each connected
component of graph G. What is more, if one chooseHi such
that

∑
j∈Ii

HjCj > 0 for i = 1, · · · k and Hj = 0 if j /∈
∪iIi, then state of all nodes in the network synchronizes
to reference signal.

4. SIMULATION EXAMPLES

In this section, some simulation examples are given to
verify the theorem above.

4.1 Cooperative Pinning Control in a Connected Network

We choose a reference signal x = [1 1 1 1 1 1]T and a ring-
shape networks G1 described in Fig. 1(a). The observation
matrices Ci are:

C1 = [1 1 1 1 1 1], C2 = [0 1 1 1 1 1], C3 = [0 0 1 1 1 1],

C4 = [0 0 0 1 1 1], C5 = [0 0 0 0 1 1], C6 = [0 0 0 0 0 1].

For better perform in convergence, let ν = 5 and Hi =
10CT

i , i = 1, · · · , n. Here, we define x̄i(t) = ∥x̂i(t) − x∥
as synchronization error. Fig. 2 shows the synchronization
error with random generated initial values. It is clear that
the cooperative pinning synchronization is fulfilled.

1

6

2

3

5 4

(a) The network G1

1

6

2

3

5 4

(b) The network G2

1

6

2

3

5 4

7

(c) The network G3

Fig. 1. Topology of networks G1, G2 and G3, which are used
in simulation examples.

4.2 Cooperative Pinning Control in a Strongly Connected
Network

Choose the same reference signal and observation matrices
in subsection 4.1 except the network topology. In this
simulation example, a directed ring-shape network G2 is
used, which is shown in Fig. 1(b). Again Fig. 3 indicates
the fulfillment of the cooperative pinning synchronization.

4.3 Cooperative Pinning Control in a Network with a
Spanning Tree

Again we choose the same reference signal x and ob-
servation matrices. But in this case the graph G3 is a
modification of G2 and shown in Fig. 1(c). The observation
matrix for node 7 is C7 = [0 0 0 0 0 0].
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Agent 1
Agent 2
Agent 3
Agent 4
Agent 5
Agent 6

Fig. 2. Synchronization error of the ring-shape network G1

under cooperative pinning control.
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Fig. 3. Synchronization error of the directed ring-shape
network G2 under cooperative pinning control.

Use the same ν and Hi, i = 1, · · · , 6 in subsection 4.1 and
let H7 = [0 0 0 0 0 0]T . The synchronization error in Fig. 4
suggests the network synchronizes.
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Fig. 4. Synchronization error of the network G3 under
cooperative pinning control.
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5. CONCLUSION

This paper has developed a new pinning synchronization
method for complex networks via heterogeneous informa-
tion. In particular, when the reference signal is static, three
necessary and sufficient conditions are deduced on existing
parameters for the cooperative pinning synchronization of
undirected connected networks, strongly connected net-
works, and networks with a spanning tree, respectively.
By merging information each node received together, this
proposed approach overcomes the limitation that none of
individual node can access all the necessary information
of reference signal. Based on the above theoretical re-
sults, this paper also develops the corresponding design
of feedback gains for the cooperative pinning controllers
and coupling strength of networks for cooperative pinning
synchronization. Numerical simulation results illustrated
the theoretical results at last.

However, for the general reference signals, it is also a
challenging problem to design the optimal cooperative pin-
ning controllers for network synchronization. Nevertheless,
these theoretical results shed some light on the future real-
world engineering applications, such as smart grid and
networked location-based services.
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Yu, W., Chen, G., Lü, J., and Kurths, J. (2013). Syn-
chronization via pinning control on general complex
networks. SIAM J. Contr. Optim., 51(2), 1395–1416.
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