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Abstract: Blind system identification is known to be an ill-posed problem and without further
assumptions, no unique solution is at hand. In this contribution, we are concerned with the task
of identifying an ARX model from only output measurements. We phrase this as a constrained
rank minimization problem and present a relaxed convex formulation to approximate its
solution. To make the problem well posed we assume that the sought input lies in some known

linear subspace.
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1. INTRODUCTION

Consider an auto-regressive exogenous input (ARX) model

y(t)faly(t - 1) - anay(t - na)
=bju(t —ng — 1)+ -+ + by, u(t — ng — np) (1)
with input v« € R and output y € R. Estimation of
this type of model is one of the most common tasks in

system identification and a very well studied problem, see
for instance Ljung [1999]. The common setting is that

{(y(t),u(t))}, is given and the summed residuals

N ng Mg 2
Z (y(t) - b, u(t — k1 —ng) — Z ag, y(t — k2)>

t=n ky=1 ko=1

where n = max(ng, ng +np) + 1, is minimized to obtain an
estimate for a1,...,an,,b1,...,by,,. This estimate is often
referred to as the least squares (LS) estimate.

In this paper we study the more complicated problem of
estimating an ARX model from solely outputs {y(t)} ;.
This is an ill-posed problem and it is easy to see that under
no further assumptions, it would be impossible to uniquely
determine ay,...,an,,,b1,...,b,,. We will here therefore
study this problem under the assumption that the stacked
inputs belong to some known subspace. The input could
for example be:

e known to change only at a set of discrete times due
to a discrete controller and therefore constrained to a
subspace of the input space or
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e known to be band-limited and therefore well repre-
sented by the projection on the first discrete Fourier
transform basis vectors. The subspace would then be
spanned by the first discrete Fourier transform basis
vectors.

It should be noticed that this assumption is not enough
to uniquely determine the input or the ARX model.
Specifically, we will not be able to decide the input
or the ARX coefficients by,...,b,, more than up to a
multiplicative scalar. It should be stressed that this is not a
limitation of the method that we propose but an inherent
limitation of the system identification problem since the
sought quantities always appear as products. To uniquely
determine the input and the ARX coefficients by, . ..
further knowledge is needed.

I’ bnb 9’

The main contribution of the paper is a novel method for
ARX model identification from only output measurements.
The method takes the form of a convex optimization
problem and gives a computationally flexible framework
for handling different types of measurement noises, con-
straints, etc.

2. BACKGROUND

Blind system identification (BSI) has a broad application
area and has been applied in fields such as data communi-
cations, speech recognition and seismic signal processing,
see for instance Abed-Meraim et al. [1997]. Common for
the type of modeling problems that BSI has been applied
to is that the input is difficult, costly or impossible to
measure. In for example exploration seismology, the phys-
ical properties of the earth are explored by studying the
response of an excitation (often a charge of dynamite). The
excitation is often difficult to measure and the modeling
problem therefore a BSI problem, see e.g., Zerva et al.
[1999].
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Many methods have been proposed to solve the BSI
problem throughout the years. We give a short overview
here but refer the interested reader to Abed-Meraim et al.
[1997], Hua [2002], for a more extensive and complete
review.

The maximum likelihood (ML) approach to BSI aims
at finding the ML estimate of the model and input.
The resulting non-convex optimization problem is often
treated by alternating between optimizing with respect
to the input and the system model. See Abed-Meraim
and Moulines [1994]. The channel subspace (CS) methods
to BSI indirectly determine the sought finite impulse
response (FIR) model by estimating the nullspace of the
Sylvester matrix associated with the FIR model to be
identified. This is done by an eigen decomposition of a
matrix derived from the outputs. See for instance Abed-
Meraim et al. [2006]. The method proposed in Zerva
et al. [2000] works under the assumption that two or
more output series are available and that these were
generated by the same input. See also Van Vaerenbergh
et al. [2013]. The methods proposed in Sato [1975], Tong
et al. [1991] assume that the input consists of independent
and identically (iid) distributed random variables and
considers the autocorrelation of the output to decide a
FIR model and the unknown input.

A number of approaches consider the blind identification
problem of Hammerstein systems under the assumption
that the input is piecewise constant. Sun et al. [1999],
Bai et al. [2010], Bai and Fu [2002], Wang et al. [2007,
2009, 2010]. Our approach assumes that the input belongs
to some known subspace. Piecewise constant signal can
be represented using the subspace assumption used here.
However, we note that we are not restricted to piecewise
constant signals, and our approach is significantly differ-
ent. Also, we consider the blind identification of ARX mod-
els while the blind identification problem of Hammerstein
systems is considered in Sun et al. [1999], Bai et al. [2010],
Bai and Fu [2002], Wang et al. [2007, 2009, 2010].

The related problem of blind deconvolution have been
studied in a number of contributions. In particular, see
the very interesting paper by Ahmed et al. [2012] for a
solution where the signals to be recovered are assumed to
be in some known subspaces. The development presented
in Ahmed et al. [2012] has similarities to the approach
presented in this paper and was done in parellel to our
work. Note that only FIR models are discussed in Ahmed
et al. [2012] and that the analysis does not apply.

3. PROBLEM FORMULATION

Given the sequence of outputs {y(t)}; € R, find an
estimate for ay,...,an,,b1,...,b,, € R and u(t) € R,t =
1,..., N, such that

y(t)—ary(t —1) — - — an, y(t — na)
=bju(t —ng — 1) + - + by, u(t — ng — np) +w(t),

for t = n,..., N, where n = max(ng,n; + np) + 1, and
w(t), t = n,..., N, some unknown zero mean noise. We
will for simplicity assume that n,,np,ng, are known. To
make the problem well posed, we will seek an input in a
given subspace of RY.

4. NOTATION AND ASSUMPTIONS

We will use y to denote the output and u the input. We
will for simplicity only consider single input single output
(SISO) systems, however with some extra bookkeeping
also MIMO systems could be treated. We will assume that
N measurements of y are available and stack them in the
vector y, i.e.,

y =) ...y (2)
We also introduce u, 1, a and b as

u=u(l) ... udN)", (3)

n=m1) ... n(N)]", (4)

a=la ... an]", (5)

b=1[b ... by,]". (6)

We will use y () to denote the ith element of y. To pick out
a subvector of y consisting of the i¢th to the jth element we
will use the notation y (i : j) and similarly for picking out a
subvector of u, a and b. To pick out a submatrix consisting
of the ith to the jth rows of X we use the notation
X(i : j,:). We will use normal font to represent scalars
and bold for vectors and matrices. || - ||o is the zero (quasi)
norm which returns the number of nonzero elements of its
argument and || - ||« the nuclear norm returning the sum
of the singular values.

We will assume that it is known that the sought input, u,
lies in some known subspace. We can hence write

u=Dx (7)

for some known N x m-matrix D and an unknown vector
x € R™. It is assumed that m < N.

5. BLIND IDENTIFICATION VIA LIFTING

Consider the noise free setting where w(t) = 0,¢t =
n, ..., N. We can formulate the problem of finding an input
and the ARX coeflicients as the feasibility problem

find gy s =1, N, (8a)
a17"'7ana7b17"'abnb
subj. to  y(t)— Z ar,y(t — k2)
Ea=1
ny
:Zbklu(t_nk_kl), t=n,...,N.
Ei=1
(8b)

Note that the {ax}pe,, {bx}r2,, and {u(t)}, are un-
known. The problem is therefore non-convex.

Introduce X = xb" € R™*™ and note that (7) gives that
DX = Dxb" = ub’. Since ub' contains all products
u(i)bj,i=1,...,N, j=1,...,n, the sum

Zb bklu(t — Nk — kl) (9)

ki1=1

can be realized by summing appropriate entries of DX.
Problem (8) can now be reformulated as
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findx a (10a)
Na
subj. to y(t) = Y ak,y(t — ko)
k2:1
ny
=Y (DX)(t—ng — ki, k1), t=mn,...,N,
k71:1
(10Db)
rank(X) = 1. (10c)

Note that we need to require that rank(X) = 1 to not lose
the possibility to decompose X as X = xb'. The problem
(10) is equivalent to (8) in the following sense. Assume
that (10), has a unique solution X*, then X* must satisfy
X* = x*(b*)T, with x* and b* solving (8). Extracting
the rank 1 component of X*  using e.g., singular value
decomposition, we can hence decide both x* (and u* =
Dx*) and b* up to a multiplicative scalar (note that we
can never do better with the information at hand, not even
if we could solve (8)). The estimates of a will be identical
for both problems (if the estimates are unique).

The technique of introducing the matrix X to avoid
products between x and b is well known in optimization
and referred to as lifting [Shor, 1987, Lovasz and Schrijver,
1991, Nesterov, 1998, Goemans and Williamson, 1995].

Problem (10) is a non-convex optimization problem and
not easier to solve than (8). To get an optimization
problem we can solve, we remove the rank constraint and
instead minimize the rank. Since the rank of a matrix is
not a convex function, we replace the rank with a convex
heuristic. Here we choose the nuclear norm, but other
heuristics are also available (see for instance Fazel et al.
[2001]). We then obtain the convex program

i X[« 11
min | X]| (11a)
subj. to  y(t)— Z ak,y(t — k2)
ko=1

ny
= Z(DX)(t_nk _klakl)v t:na"'va
k=1
(11b)

which we refer to as blind identification via lifting (BIL).

Last, in the noisy setting we have to tolerate some nonzero
modeling error. If the noise e is known to be bounded, say
that |e(t)| < e, we suggest to use

min Xl (12a)
subj. to y(H)— 3 aryylt — k)
ko=1
= S DX - — k) +nfe), (12b)
0] <6 t—n...,N, (12¢)

and if the noise is Gaussian,

min || X +A|l9]3 (13a)
subj. to  y(t)— Z ap,y(t — k2)
ko=1
ny
=Y (DX)(t —ny — ki, k1) +n(t), (13b)
k=1
t=n,...,N. (13c)

In the latter case, we see A > 0 as a design parameter and
seek the largest A such that X is rank 1.

6. ANALYSIS

The number of optimization variables in (8) is essentially
ng + Ny + m, under the assumption that u = Dx. We
can hence not expect a reliable identification result from
fewer than n, + ny + m measurements. One may wonder
how many measurements needed. As the constraint (11b)
of BIL is linear in X, we have the following result:

Theorem 1. (Guaranteed Recovery using BIL).

Consider the noise free blind ARX identification prob-
lem (8) and assume that it has a unique solution (up to a

multiplicative scalar). Let the row vector d; € R™ be the
i:throw of D. If A =

d d

n—np—1 n—np—2 - dn—ng—ny y(n—1) y(n—na)
dn—ny, dn—np—1 - dn—ng—ny+1 y(n) y(n—na+1)
dp—np —24ny dp—np—1  Y(ntnp=2) ... y(n—na+n,—1)

dN—np—n,  Y(N—=1) y(N—naq)

has full column rank, then the ARX model and input
solving (8) are recovered, up to a multiplicative scalar,
by BIL.

AN—np—1 AN—np—2 -

Proof. Problem (8) has a unique solution by assumption.
Form X* by multiplying the solutions, x* and b*, of (8).
That is, X* = x*(b*)7. Let a},...,a’ denote the values

for ay,...,an, that solve (8) and define 6* as

0" = [X*(, )T X*(,2)7 .. X Con)T —al .. —al ]
We must have that

[y(n) y(n+1) ... y(N)]" = Ap". (14)
Note that all solutions of (11) also must satisfy (14). Since

A has full column rank the solution of (14) is unique and
we must have that BIL gives 6*. O

Note that if the linear constraints of (11) alone give the
solution of BIL, no optimization is necessary. Seeking
the matrix X that gives the minimum nuclear norm is
only of interest if we have too few measurements for
the constraints to uniquely define the solution but more
measurements than n, + n, + m.

The noisy case is harder to analyze and we leave the
analysis as future work.

7. COMPUTING A\min

In the noisy version (13) of BIL, the design parameter A
has to be chosen. Since A regulates the tradeoff between the
nuclear norm and the squared norm of the estimated noise
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7, it is natural to seek the largest A such that the estimate
X is rank 1. In seeking this A, the value for A™" may come
in handy. A™" is defined as the largest A such that X = 0
in BIL. Since the estimate for X will stay the same for all
A < A™n - we should limit our search of A to be within
[A™in ool One may for example start with A = \™" and
then successively increase A as long as rank(X) = 1.

Theorem 2. (Computing A™in).
Consider the optimization problem given in (13). There

exists a A, denoted \™", such that whenever A < Amin
solving (13) results in X = 0. A™™" is given by:

L/A™® = argmin || V]| (15a)
VeRmXm
N
subj. to 0=V (i,j)— 22 (y(t)
t=n
Ng
S IUREES) LI
ko=1
(15b)
i=1,....m,j=1,...,m, (15c)

with

N Ng 2
{a1,...,an,} = arg:ninz (y(t) - Z ar,y(t — k‘g)) .

ko=1
(16)

Proof. The noisy version of BIL can be rewritten to take
the form

N
g X +2) (0

Na ny 2
= > ary(t—ky) = > (DX)(t - ny, — kl,k1)> .
k‘2:1 k}1:1

(17)

The nuclear norm is not differentiable and it follows that
for X = 0 to be a valid solution, zero needs to be in the
subdifferential of the objective with respect to X evaluated
at X = 0 (see e.g., Bertsekas et al. [2003, Prop. 4.7.2]).
The subdifferential of the objective of (17) at X = 0 and
a = a with respect to the (i,7)th element of X can be
shown equal to

N na
Vi, j) = 22) (y(t) — )yl — k‘z))D(t —ng = J, ).

ko=1
(18)

We further have that [|[V|| < 1 from the subdifferential
of the nuclear norm (see for instance Watson [1992] or
Recht et al. [2010]). || - || is here the operator norm (the
largest singular value). To find Ay, we now consider the
optimization problem

max A (19a)
VER™Xmb X
N
subj. to 0=V(i,j) =2\ <y(t)
t=n
= >t~ k) Dl - =), (1)
kgil
i=1,....m,j=1,... ny, (19¢)
VI <1, (19d)

which can be shown equivalent to (15). O

A™ was also numerically verified.

8. SOLUTION ALGORITHMS AND SOFTWARE

Many standard methods of convex optimization can be
used to solve problem (11), (12) and (13). Systems such as
CVX [Grant and Boyd, 2010, 2008] or YALMIP [Lfberg,
2004] can readily handle the nuclear norm. For large scale
problems, the alternating direction method of multipliers
(ADMM, see e.g., Bertsekas and Tsitsiklis [1997], Boyd
et al. [2011]) is an attractive choice and we have previ-
ously shown that ADMM can be very efficient on similar
problems Ohlsson et al. [2013]. Code for solving (11), (12)
and (13) will be made available on http://www.rt.isy.
liu.se/~ohlsson/code.html

9. NUMERICAL ILLUSTRATION

Consider the system given in the diagram below.

e

|

y(t)—ary(t — 1) = bru(t — 1) Yy
+bou(t — 2) + bau(t — 3) + e(t)

Here the values = were generated by independently sam-
pling from a unit Gaussian and the noise e by indepen-
dently sampling from a uniform distribution between —e/2
and €/2. The ZOH (zero-order hold) block holds the input
to the ARX system constant for 6 consecutive samples. We
can therefore express u in terms of x as
16x1 Osx1 Osx1 O6x1
Oﬁxl 16><1 06x1 s 06x1
u= . . : X.

(20)

L6x1 Osx1
O6x1 1ex1

06x1
06x1

We identify the matrix in the relation between u and x as
D. The ARX coefficients used were

a; = 703, b3 = 1, b2 = 2, bl =3.
Figure 1 shows the output y for e = 5.

(21)

If the noisy version of BIL (12) is used to estimate u and
an ARX model, we get the input-estimate given in Figure 2
and the ARX coefficients:

a1 = —0.21, bs = 0.91, by = 1.80, b; = 2.7. (22)

It is interesting to notice that if we instead would be given
the true input u and only estimated the ARX coefficients
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50 100 150 200

Fig. 1. The noise free (solid line) and noisy outputs
(circles).

3

0 50 100 150 200
t

Fig. 2. The estimated (dashed line) and the true input u
(solid line).

by minimizing the squared residuals between the output y
and the predicted output, we would have got the estimates:

a1 = —0.30, b3 = 0.88, by = 2.39, b; = 2.85.  (23)

As seen, these estimates are not that much better than
what BIL is providing (see (22)). Remember that BIL is
only given the y-measurements and not the inputs u. It
is therefore quite remarkable that the estimates of BIL is
comparable to those given in (23).

To further study the robustness of BIL we carried out a
Monte Carlo simulation. In the simulation, the noise level e
was varied between 0 and 5. For each noise level, 100 trials
were carried out with different noise and input realizations.
The true ARX model was kept fixed (the same as above).
The results are summarized in Figure 3.

The setup of above example does not give that A has full
column rank. Nevertheless, a perfect result was obtained
in the noise free case. It can however be verified that if
D is instead generated by independently sampling each

0.5

0.4r

0.2r

0.114

~S-[|Ab|l /bl

P ~©-llaall/llall

B ‘ ‘ ‘ llA ul /] ull
0 1 2 3 4 5

Fig. 3. The relative errors along with their 0.5 standard
deviation error bounds for varying noise levels.

element from a unit Gaussian distribution (everything else
unchanged), the resulting A has full column rank.

10. CONCLUSION

This paper presented a novel framework for blind system
identification of ARX model. The framework uses the fact
that the problem can be rewritten as a rank minimization
problem. A convex relaxation is presented to approximate
the sought ARX parameters and the unknown inputs.
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