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Abstract:

In this paper a modelling of a hybrid actuator is proposed. The hybrid actuator consists of a
piezo, a mechanical and a hydraulic ratio displacement. This paper deals with a hybrid actuator
composed by a piezo, and a hydraulic part controlled using a regulator for camless engine motor
applications. The discrete control law is derived using the well-known Backward Euler method.
An analysis of the Backward and Forward Euler method is also presented. Simulations with real
data are shown.

Keywords: Actuators, Digital control, Lyapunov methods, Engine control.

1. INTRODUCTION

In the variegated scenario of the possible actuator to be
used it is always difficult to be able to choose the best one
for a given application. Possible solutions are very often
found just considering hybrid actuators as a combination
of different ones. Concerning the electromagnetic actua-
tors, there is a new general orientation to use them such
as recently described in Mercorelli (2012a). In Mercorelli
(2012a) a U-magnet structure is considered in which the
Maxwell attracting force is quadratic to the current and in-
versely quadratic to the distance between the valve arma-
ture and the electromagnets. Using the topology presented
in Mercorelli (2012a), it is possible to have the availability
of a very big force with a small current. Nevertheless,
difficulties connected with the control structure and in
particular with the control for high cycles of the motor
encouraged us to test other topologies. In this phase of the
research two kinds of actuators are considered. The first
one is a geometric rotational actuator as shown in Mer-
corelli (2012c), Mercorelli (2012b) and in Fabbrini et al.

⋆ This work was financially supported by Bundesministerium für
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(2012) in which some fundamental aspects concerning its
functionality starting from the optimization of its move-
ment to the control algorithm design are considered. This
kind of actuators presents a high value of inductance which
can generate some problems of the electromagnetic com-
patibility with the environment. Moreover, a high value
of inductance represents an inertial aspect in the control
system. Therefore, innovative and alternative concepts are
required to reduce the losses and drawbacks while keeping
a high actuator dynamics which are characterized by a
high value of velocity and generated force. The idea which
this paper presents is to use a hybrid actuator composed by
a piezo, a mechanical and a hydraulic part in order to take
advantages of all of them. In fact, the piezo electric actua-
tor (PA) has been used in precise positioning applications
such as, for instance, atomic force microscopy Croft et al.
(2001). The main advantages of PA are nanometer scale,
high stiffness, and fast response. However, since PA has
nonlinear property which is called hysteresis effect, it leads
to inaccuracy in positioning control with a high precise
performance. The paper is organised in the following way.
In Section 2 an introduction on the general structure of the
aggregate actuator is given. Section 3 shows the model of
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the actuator. After that, in Section 4, the control laws are
derived. The paper ends with Section 5 in which simulation
results of the proposed valve using real data are presented.
After that, the conclusions follow.

2. GENERAL STRUCTURE OF THE AGGREGATE
ACTUATOR

In the diagram of Fig. 1 the T-A connection links the
couple of valves with the tank and the P-B connection
links the couple of valves with the pump. In the position
of Fig. 1 connections T-A and P-B are maximally open
and the couple of valves are closed because point B
is under pressure. When the piezo acts its force, the
mechanical servo valve moves and begins to close these
connections. When the mechanical servo valve is in the
middle position, both connections (T-A and P-B) are
closed and connections A-P and B-T begin to open. At
this position also both motor valves begin to open because
point A is under pressure. Figure 1 shows in detail a part

Fig. 1. Scheme of the whole actuator

of the hybrid structure which consists of a piezo actuator
combined with a mechanical part. These two parts are
connected by a stroke ratio to adapt the stroke length.
The proposed nonlinearity model for PEA is quite similar
to these presented in Adriaens et al. (2000) and in Yu and
Lee (2005) which show a sandwich model for a PEA. Fig.
3 shows the equivalent circuitry for a PEA with the I-layer
nonlinearities of hysteresis and creep, in which two I-layers
are combined together as Ca and Ra. The I-layer capacitor,
Ca, is an ordinary one, which might be varied slightly with
some factors, but here it would be assumed constant first
for simplicity. The I-layer resistor, Ra , however, is really
an extraordinary one with a significant nonlinearity. The
resistance is either fairly large, say Ra > 106 Ω, when the
voltage ‖Va‖ < Vh, or is fairly small, say Ra < 1000, when
‖Va‖ > Vh. In Yu and Lee (2005), the threshold voltage,
Vh, is defined as the hysteresis voltage of a PEA. The
authors in Yu and Lee (2005) gave this definition due to
the observation that there is a significant difference and an

Fig. 2. Detailed scheme of the whole actuator

Fig. 3. Electrical part of the model

abrupt change in resistance across this threshold voltage
and it is this resistance difference and change across Vh

that introduces the nonlinearities of hysteresis and creep
in a PEA. The hysteresis effect could be seen as a function
of input Vin(t) and output y(t) as follows: H(y(t), Vin(t)).
According to this model, if Vh = 0, then the hysteresis
will disappear, and if Ra = ∞ when ‖Va‖ < Vh, then the
creep will also disappear. Based on this proposed sandwich
model and the equivalent circuitry as shown in Fig. 3, we
can further derive the state model as follows:

V̇a(t) =−
( 1

Ra

+
1

Ro

)Va(t)

Ca

−
Vz(t)

CaRo

+
Vin(t)

CaRo

(1)

V̇z(t) =
Q̇b

Cz

+
1

Cz

(

−
Va(t)

Ro

−
Vz(t)

Ro

+
Vin(t)

Ro

)

,

(2)
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where Qb = DyFz(t) is the ”back electric charge force”
(back-ecf) in a PEA, see Yu and Lee (2005). According to
Yu and Lee (2005) and the notation of Fig. 2, it is possible
to write:

Fz(t) = Mp/3ẍ(t) + Dẋ(t) + Kx(t) + Kxx(t). (3)

K and D are the elasticity and the friction constant of
the spring which is antagonist to the piezo effect and is
incorporated in the PEA. Cz is the total capacitance of
the PEA and Ro is the contact resistance. For further
details on this model see Yu and Lee (2005). Considering
the whole system described in Fig. 2 with the assumptions
of incompressibility of the oil, the whole mechanical system
can be represented by a spring mass structure as shown
in the conceptual scheme of Fig. 2. In this system the
following notation is adopted: Kx is the elasticity constant
factor of the PEA. In the technical literature, factor
DxKx = Tem is known with the name ”transformer
ratio” and states the most important characteristic of the
electromechanical transducer. Mp/3 is, in our case, the
moving mass of the piezo structure which is a fraction of
whole piezo mass, MSK is the sum of the mass of the piston
with the oil and the moving actuator and Mv is the mass
of the valve. It is possible to notice that the moving mass
of the piezo structure is just a fraction of the whole piezo
mass. The value of this fraction is given by the constructer
of the piezo device and it is determined by experimental
measurements. KSK and DSK are the characteristics of
the antagonist spring to the mechanical servo valve, see
Fig. 2. Doil is the friction constant of the oil. Moreover,
according to Yu and Lee (2005), motion xp(t) is:

xp(t) = DxVz(t). (4)

According to the diagram of Fig. 3, it is possible to write
as follows:

Vz = Vin(t) − R0i(t) − H(xp(t), Vin(t)), (5)

where R0 is the connection resistance and i(t) is the input
current as shown in Fig. 3.

3. MODEL OF THE HYBRID ACTUATOR

For a piezo actuator, in the technical literature, factor
DxKx = Tem is known with the name ”transformer
ratio” and states the most important characteristic of the
electromechanical transducer in which Kx is the elasticity
constant factor of the PEA and Dx is the parameter which
is responsible to transform voltage into movement. In fact,
another well-known physical relation is = F1 = DxKxVz

which represents the piezo force in which Vz is the internal
voltage. In the ideal case we have that Vz = Vin where
Vin states the input voltage. If the model in Fig. 4 is
considered, then:

MP · ẍ1(t) = Vz(t)DxKx − KFL1 · (x1(t) − xc(t))−

(Kx + K) ·x1(t) − Dẋ1(t), (6)

together with

0 = 0−KFL1 · (xc(t)−x1(t))−KFL2 · (xc(t)−x2(t)), (7)

and

MSK · ẍ2(t) = 0−KFL2 · (x2(t)− xc(t))−KSK ·x2(t)−

DSK · ẋ2(t). (8)

Considering Eq. (7) the following expression is obtained:

xc(t) =
KFL1 ·x1(t) + KFL2 ·x2(t)

KFL1 + KFL2

, (9)

Fig. 4. Model of the piezo mechanical part of the actuator

and substituting Eq. (9) into Eq. (8) the following expres-
sion is obtained:

MSK · ẍ2(t) = −KFL2 ·x2(t)−KSK ·x2(t)−DSK · ẋ2(t)

+ KFL2 ·
KFL1 ·x1(t) + KFL2 ·x2(t)

KFL1 + KFL2

. (10)

With the help of Laplace transformation it is obtained
that:

s2MSK ·X2(s) = −KFL2 ·X2(s) − KSK ·

X2(s) − sDSK ·X2(s)+

KFL1 ·KFL2 ·X1(s) + K2
FL2 ·X2(s)

KFL1 + KFL2

, (11)

s2MSK · (KFL1 + KFL2) ·X2(s) = −KFL1 ·KFL2 ·

X2(s) − K2
FL2 ·X2(s) − KSK · (KFL1 + KFL2) ·X2(s)−

s ·DSK · (KFL1 + KFL2) ·X2(s) + KFL1 ·KFL2 ·X1(s)+

K2
FL2 ·X2(s), (12)

X2(s) · (s
2MSK · (KFL1 + KFL2) + s ·DSK ·

(KFL1+KFL2)+(KFL1 ·KFL2+KSK · (KFL1+KFL2)) =

X1(s) ·KFL1 ·KFL2, (13)

and
X2(s)

X1(s)
=

KF L1 ·KF L2

(s2MSK + s · DSK + KSK) · (KF L1 + KF L2) + KF L1 ·KF L2

(14)

and thus:

X2(s)

X1(s)
=

KF L1 ·KF L2

KF L1+KF L2

s2MSK + s ·DSK + KSK + KF L1 ·KF L2

KF L1+KF L2

. (15)

Considering A1 and A2 of the hydraulic position ratio with
the two hydraulic springs:

X2(s)

X1(s)
=

A1

A2

·

KF L1 · KF L2
KF L1+KF L2

s2MSK + s ·DSK + KSK +
KF L1 · KF L2
KF L1+KF L2

, (16)

with the help of Eq. (6) the following expression is ob-
tained:
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s2 ·MP ·X1(s) = Vz(s)DxKx−KFL1 · (X1(s)−Xc(s))−

(Kx + K) ·X1(s) − s ·D ·X1(s), (17)

and from (9) it follows that:

Xc(s) =
KFL1 ·X1(s) + KFL2 ·X2(s)

KFL1 + KFL2

. (18)

Using (18) together with (17) the following final expression
is obtained:

s2 ·MP ·X1(s) = Vz(s)DxKx − KFL1 · (X1(s)−

KFL1 ·X1(s) + KFL2 ·X2(s)

KFL1 + KFL2

)

− (Kx + K) ·X1(s) − s ·D ·X1(s). (19)

In the range of frequency between 0 and 60 Hz the transfer
function of such an actuator can be considered, in the first
approximation, as a constant. From Eq. 19 the following
expression is obtained:

s2 ·MP ·X1(s) = Vz(s)DxKx − KFL1 ·X1(s)+

K2
FL1

KFL1 + KFL2

·X1(s) + b1 ·X2(s)

− (Kx + K) ·X1(s) − s ·D ·X1(s), (20)

where:

b1 =
KFL1 ·KFL2

KFL1 + KFL2

, (21)

and the following expression is derived:

X1(s)

Vz(s)DxKx + b1 ·X2(s)
=

1

MP · s2 + D · s + KFL1 + Kx + K −
K2

F L1

KF L1+KF L2

. (22)

Using Eq. (16) the final transfer function is obtained:

X2(s) =
A1

A2

·
b1

MSK · s2 + DSK · s + KSK + b1

·X1(s).

(23)
Combining Eqs. (22) with (23), the following expression is
obtained:

X2(s)

Fz(s)
=

Ω0

Ω4s4 + Ω3s3 + Ω2s2 + Ω1s + 1
, (24)

where:

Ω0 =
1

K01K04 − b1

, (25)

Ω4 =
K03MPK

K01K04 − b1

, (26)

Ω3 =
(K03D + K02MPK)

K01K04 − b1

, (27)

Ω2 =
K05

K01K04 − b1

, (28)

and

Ω1 =
(K02K04 + K01D)

K01K04 − b1

, (29)

with

K01 =
A2 ·KSK + A2 · b1

A1 · b1

, (30)

K02 =
A2

A1 · b1

·DSK , (31)

K03 =
A2

A1 · b1

·MSK , (32)

K04 = KFL1 + Kx + K −
K2

FL1

KFL1 + KFL2

, (33)

K05 = K03K04 + K02D + K01MPK . (34)

3.1 Hydraulic part of the actuator

In Fig. 5 a possible linear model which is often utilised
in practical applications is presented. The model was
presented in Murrenhoff (2002) and it is a possible linear
approximation utilized in many industrial applications, see
industrial cases presented in Murrenhoff (2002). In Fig. 5
this model in which, the following parameters are visible, is
represented: TH which represents the time constant of the
hydraulic part, TM which represents the time constant of
the mechanic part. VH and VM represent the steady state
factors of the hydraulic and mechanical transfer function
respectively. The other parameter which characterises the
hydraulic-mechanical model is K2Lidx. In fact, parameter
K2Lidx is a characteristic value of the velocity-dependent
internal leakage. This parameter multiplied by the velocity
of the valve states a loosing mass flux as represented in
the block diagram of Fig. 5. Parameter AAK is the surface
of the moving part (servo piston). Observing Fig. 5 and

Fig. 5. Hydraulic model structure

considering that variable Qth is the mass flux involved
in the hydraulic actuator, the following calculations are
derived:

bm = Qth(s) − am, (35)

VV (s) = bm ·
VH ·VM ·AAK

(TH · s + 1) · (TM · s + 1)
, (36)

VV (s) = bm ·
VH ·VM ·AAK

TH ·TM · s2 + (TH + TM ) · s + 1
(37)

am = VV (s) · (AAK + K2Lidx), (38)

bm = Qth(s) − VV (s) · (AAK + K2Lidx), (39)

VV (s) = (Qth(s) − VV (s) · (AAK + K2Lidx)) ·

VH ·VM ·AAK

TH ·TM · s2 + (TH + TM ) · s + 1
. (40)

Considering the transfer function, then:

VV (s)

Qth(s)
=

dm

am · s2 + bm · s + cm

, (41)

where:
am = TH ·TM , (42)
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bm = (TH + TM ), (43)

cm = 1 + VH ·VM ·AAK · (AAK + K2Lidx), (44)

dm = VH ·VM ·AAK , (45)

am · s2 ·VV (s)+bm · s ·VV (s)+cm ·VV (s)−dm ·Qth(s) = 0.
(46)

Considering the Back Laplace transform, then:

am · V̈V (t)+bm · V̇V (t)+cm ·VV (t)−dm ·Qth(t) = 0. (47)

If the following positions are considered:

x1(t) = VV (t), (48)

x2(t) = ẋ1(t), (49)

then:

ẋ1(t) = x2(t), (50)

ẋ2(t) =
1

am

· (dm ·Qth(t) − bm ·x2(t) − cm ·x1(t)), (51)

and
[

ẋ1(t)
ẋ2(t)

]

=

[

0 1

−
cm

am

−
bm

am

]

·

[

x1(t)
x2(t)

]

+

[

0
dm

am

]

·Qth(t). (52)

It is possible to write the following general equation:

ẋ(t) = Am ·x(t) + Bm ·Qth(t). (53)

4. CONTROL SYSTEM

Figure 6 shows the control system structure which consists
of an inversion of the piezo mechanical system together
with a Lyapunov based controller. This inversion is a
standard one and for sake of brevity just the Lyapunov
controller will be considered. The following sliding function
is defined:

s(t) = G
(

xd(t) − x(t)
)

, (54)

where G = [ λ 1 ], and xd(t) represents the vector of the
desired trajectories. Equation (54) becomes as follows:

s(t) = [ λ 1 ]

[

x1d(t) − x1(t)
x2d(t) − x2(t)

]

, (55)

thus:

s(t) = λ
(

x1d(t) − x1(t)
)

+ x2d(t) − x2(t). (56)

If the following Lyapunov function is defined:

V (s) =
s2(t)

2
, (57)

then it follows that:

V̇ (s) = s(t)ṡ(t). (58)

In order to find the stability of the solution s(t) = 0, it is
possible to choose the following function:

V̇ (s) = −η(t)s2(t), (59)

with η > 0. Comparing (58) with (59), the following
relationship is obtained:

s(t)ṡ(t) = −ηs2(t), (60)

and finally:
s(t)

(

ṡ(t) + ηs(t)
)

= 0. (61)

The no-trivial solution follows from the condition

ṡ(t) + ηs(t) = 0. (62)

From (54) it follows:

ṡ(t) = G
(

ẋd(t) − ẋ(t)
)

= Gẋd(t) − Gẋ(t), (63)

and thus:

G
(

ẋd(t) − ẋ(t)
)

+ Gη
(

xd(t) − x(t)
)

= 0. (64)

If the Backward Euler sampling method is considered for
the control law, then from Eqs. (53) and (64) it follows:

Qth(k) = −(GBm)−1 ·
(

GAm ·x(k)−

G
xd(k) − xd(k − 1)

Ts

− ηG
(

xd(k) + x(k)
)

)

, (65)

where Moore-Penrose Pseudoinverse of Bm is used.
Equation (64) states the following error dynamics:

ė(t) + ηe(t) = 0. (66)

Considering the Forward Euler sampling approximation,
Eq. (70) becomes:

e(k)− e(k − 1) + Tsηe(k − 1) = Ts∆(xd(k − 1),x(k − 1)),
(67)

where Ts equals the sampling time. It is well-known that
in order to obtain the asymptotic stability, it must be
η < diag(2/Ts), but in this case parameter η does not
influence the reduction of the error. In fact, we can write
the following relation:

e(k) = (I−Tsη)e(k−1)+Ts∆(xd(k−1),x(k−1)). (68)

If the Backward Euler sampling approximation is consid-
ered, then Eq. (66) becomes:

e(k) − e(k − 1) + Tsηe(k) = Ts∆(xd(k),x(k)). (69)

If a non-exact cancellation is considered, then:

ė(t) + ηe(t) = ∆(xd(t),x(t)), (70)

where ∆(xd(t),x(t)) represents the cancellation error
which can be assumed to be limited because the model of
Eq. (53) is a minimum phase one. and in case of no-exact
cancellation through parameter η it is possible to control
the error: the bigger parameter η is, the smaller the error
becomes. In fact, we can write the following relation:

e(k) = (I + Tsη)−1
e(k − 1)+

(I + Tsη)−1Ts∆(xd(k − 1),x(k − 1)). (71)

Fig. 6. Control scheme
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5. SIMULATION RESULTS

The control scheme is shown in Fig. 6 in which the control
law of equation (65) is visible together with the inversion
of the piezo mechanical system. Figure 7 shows the final
results concerning the tracking of a desired position of an
exhaust valve with 8000 rpm. Figure 8 shows the final
results concerning the tracking of a desired velocity of an
exhaust valve with 8000 rpm. Figure 9 shows the desired
and the servo piston position. The force acting directly on
the valve at the opening time has a peak value equal to 700
N circa. This force is reduced to a few Newton acting on
the piezo part thanks to the decoupling structure of the
hybrid actuator. This is one of the greatest advantages
of these hybrid actuators. The model of such kind of a
disturbance is obtained as an exponent function of the
position of the valve. The digital controller is set to work
with a sampling time equal to 20 × 10−6 s, according to
the specifications of the Digital Signal Processor which we
intend to test the system with.
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to 8000 rpm
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6. CONCLUSIONS

This paper deals with a hybrid actuator composed by
a piezo and a hydraulic part and its control structure
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Fig. 9. Desired and obtained servo piston position consid-
ering 8000 rpm

for camless engine motor applications. The idea is to
use the advantages of both, the high precision of the
piezo and the force of the hydraulic part. The proposed
control scheme considers a regulator which consists of an
inversion of the piezo mechanical part and a Lyapunov
based controller. Backward and Forward Euler sampling
methods are compared. Simulations with real data of a
motor and of a piezo actuator are shown for the controller
realized by Backward Euler method.
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