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Abstract: Nonlinear PDEs domain discretization yields finite but high dimensional nonlinear
systems. Proper Orthogonal Decomposition (POD) is widely used to reduce the order of such
systems but it assumes that data belongs to a linear space and therefore fails to capture the
nonlinear degrees of freedom. To overcome this problem, we develop a Space Vector Clustering
(SVC) POD and use the reduced order model to design the controller which will then be applied
to the full order system. A space vector is the solution at a particular space location over all
times. The solution space is grouped into clusters where the behavior has significantly different
features, then local POD modes will be constructed based on these clusters. We apply our
method to reduce and control a nonlinear convective PDE system governed by the Burgers’
equation over 1D and 2D domains and show a significant improvement over global POD. We
also design a reference tracking controller and compare the controlled systems. We show that
the controller based on our SVC local POD reduced system yields more accurate tracking results
over the one based on global POD.

1. INTRODUCTION

Large number of states is needed to accurately capture
the dynamics of systems described by partial differential
equations. It is computationally difficult to design control
laws for such systems [17]. Conventionally the order of the
system must be reduced before control law design can be
done [2], [6].

Different model reduction approaches have been developed
in literature, but only some of them are optimal in some
sense. For linear systems, the balanced truncation based on
singular value decompositions is one of them. The theory
of balanced model reduction was initiated by B.C. Moore
for controllable, observable and exponentially stable linear
systems in state space form [1].

For nonlinear systems, Proper Orthogonal Decomposition
(POD) is a model reduction technique that proved efficient
performance when used to reduce models that approxi-
mate nonlinear infinite dimensional systems by high order
finite dimensional systems, especially those who describe
the dynamics of fluid flows [8], [4]. POD is a popular
model reduction technique used to alleviate the computa-
tional expense required for very high dimensional systems.
The POD snapshot method is usually used to create an
ensemble of solutions with particular open loop control
input data. The set is used to construct a set of POD
basis modes [2]. It is well known that the modes maximize
energy in mean square sense [8]. In our earlier paper [5],
we showed that POD is optimal in a wider sense, which
is of a distance minimization in spaces of Hilbert-Schmidt
integral operators. These arguments are used to carry out
model reduction, and determine its fidelity. From a given
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POD basis set, only the numbers of modes needed to
capture a specified percentage of the total set energy are
kept. This argument is problematic in the feedback control
setting. Energy of POD modes generated from snapshots
incorporating open-loop actuation might not correlate to
the energy of the system under feedback control [2], [9].

POD fails to capture the nonlinear degrees of freedom in
nonlinear systems, since it assumes that data belongs to a
linear space and therefore relies on the Euclidean distance
as the metric to minimize [7]. However, snapshots gen-
erated by nonlinear partial differential equations (PDEs)
belong to manifolds for which the geodesics do not corre-
spond in general to the Euclidean distance. A geodesic is
a curve that is locally the shortest path between points.
The global nonlinear manifold geodesic is difficult to be
quantified in general but we show in this paper that it can
be approximated efficiently by local linear Euclidean dis-
tances [16]. In [20], authors showed the poor performance
of using global POD. They introduced a nonlinear model
reduction approach via nonlinear projection framework. In
[21], authors used the time domain partitioning approach
and they presented a method for treating model reduction
of evolution problems. This was realized by an adaptive
partitioning of the time domain into several intervals and
creating specialized reduced bases with limited size on each
of the intervals.

In [18] the solution snapshots were partitioned into sub-
regions that characterize the nonlinear features of the
solutions of interest. This partitioning was performed
by computing snapshots of the solution, clustering them
according to their relative distances using the k-means
algorithm, computing in each cluster a reduced-order basis
using POD method, identifying each snapshot cluster
with a sub-region of the solution space, and assigning to
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this sub-region the reduced-order basis computed in that
cluster.

In this paper we introduce an improved POD technique
and we call it Space Vectors Clustering (SVC) POD. We
define the space vector to be the solution over all times
at a particular space location. For infinite dimensional
systems described by PDEs, the large number of states
comes from the discretization of the space domain, not the
time domain. This gives the advantage to space clustering
over snapshot clustering presented in [18].

This paper is organized as follows. In section (2), the Burg-
ers’ equation in both 1D and 2D domains are numerically
solved using finite difference techniques to construct the
full order model for comparison purposes. In section (3) we
reduce the full order system using global POD. In section
(4) we show the performance when SVC POD reduced
order bases are constructed based on space clustering. In
section (5) we design a tracking controller based on the
reduced order system and apply it to the full order system,
and finally section (6) is the conclusion and future work.

2. THE BURGERS’ EQUATION

The Burgers’ equation is a nonlinear PDE with a quadratic
type nonlinearity. POD assumes Euclidean distance min-
imization which is not the case in the nonlinear Burgers’
equation, and that is the reason why POD fails to reduce
the order of the system efficiently. The 1-D Burgers’ equa-
tion is given by [19]:

du

dt
+ u

du

dx
=
d2u

dx2
(1)

where x ∈ [a, b] and t ∈ [0, T ] for some initial condition
u(x, 0) = u0(x) and boundary conditions u(a, t) = ua(t)
and u(b, t) = ub(t). Discretization of the space domain into
N points and using finite difference approximations for the
space derivatives yields:

dui
dt

+ ui
ui − ui−1

∆x
=
ui+1 − 2ui + ui−1

∆x2
(2)

where lim∆x→0 ∆x = 1
N and i = 0 · · ·N .

Writing (2) in the matrix form we have:

u̇(t) =Au+N(u) +Bua,b := f(u, ua,b) (3)

u(0) = u0

where Au is the linear term ui+1−2ui+ui−1

∆x2 and N(u) is the

nonlinear term ui
ui−ui−1

∆x , Bua,b is the boundaries term
which will be used in the boundary control process and u0

is system the initial value. Full order system is solved in
Matlab with N = 500, x ∈ [0, 100], t ∈ [0, 50], Dirichlet
boundary condition u0(t) = 2 and Newman boundary

condition
du100(t)

dx
= 0.

For the 2D Burgers’ equation system, (1) becomes:

du

dt
+ u(

du

dx
+
du

dy
) =

1

Re
(
d2u

dx2
+
d2u

dy2
) (4)

where x and y are the spacial variables, t is the time vari-
able and Re is a constant that is analogues to the Reynolds

number that appears in the Navier Stokes equations. The
2D Burgers’ equation PDE shares the same nonlinearity
as the Navier stokes PDE. It has the same quadratic
nonlinearity and can be used to model incompressible fluid
flows. 2D Burgers’ equation full order system is solved in
Matlab with N = 2000 and Re = 300, on the space domain
shown in Fig. (1) which shows the solution at t = 30
seconds. This domain models the velocity of a fluid with a
constant Dirichlet parabolic velocity at the left boundary
that is maximum in the middle and zero in the top and
bottom. The fluid passes around an obstacle to show the
velocity behavior that the 2D Burgers’ equation models.

Fig. 1. 2D Full order solution at t=30

3. GLOBAL PROPER ORTHOGONAL
DECOMPOSITION

Let the number of snapshots be M , the M×M correlation
matrix L is defined by [2]:

Li,j = 〈Si, Sj〉 (5)

is constructed, where 〈, 〉 denotes the Euclidean inner
product of snapshots S. With R denotes the number of
POD modes to be constructed, the first R eigenvalues of
largest magnitude, {λ}Ri=1 , of L are found. They are sorted
in descending order, and their corresponding eigenvectors
{v}Ri=1 are calculated. Each eigenvector is normalized so
that

‖vi‖2 =
1

λi
(6)

The orthonormal POD basis set {φi}Ri=1 is constructed
according to [8]:

φi =
∑M

j=1
vi,jSj (7)

where vi,j is the jth component of vi. The first four global
POD modes are shown for the 1D and 2D domains in Fig.
(2) and (3) respectively.

Fig. 2. First Four 1D Global POD Modes
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Fig. 3. First Four 2D Global POD Modes

With a POD basis in hand, the solution U of the dis-
tributed parameter model is approximated as a linear
combination of POD modes, i.e.,

U ≈
∑R

i=1
αiφi (8)

This shows that POD finds a low dimensional embedding
of the snapshots that preserve most of the energy as
measured in a much higher dimensional solution space.

Comparison between reduced order system using Global
POD and full order system for the 1D Burgers’ equation
is shown in Fig. (4) with full number of states N = 500 is
reduced to R = 15 where the space domain is x ∈ [0, 100]
and the time domain is t ∈ [0, 50]. The Figure shows the
comparison at t = 30. The error norm between the full
order and the reduced order systems is found to be 0.3080

Fig. 4. Full order solution Vs Global POD at t=30

For the 2D problem, the reduced order system is shown in
Fig. (5) with full number of states N = 2000 is reduced
to R = 50. The Figure shows the comparison at t = 30.
The error norm between the full order and the reduced
order systems is found to be 0.001. With this small error,
full and reduced order models look identical because the
reduced number of states (R = 50) is still relatively high.
R can be reduced even more using our SVC POD method
discussed in the next section.

4. SPACE VECTOR CLUSTERING (SVC) POD

The solution space domain is partitioned into clusters
where the solution exhibits significantly different features.

Fig. 5. 2D Global POD Reduced system at t=30

A cluster is a group that contains states which are close in
some defined distance. Local bases are pre-computed and
assigned to each cluster. The set of pre-computed solution
space domain is partitioned into T clusters using K-means
clustering algorithm discussed in the next subsection.

4.1 Clustering Using K-Means Algorithm

K- means algorithm groups together nearby locations
according to their relative clustering distances. Note that
the distance here is not spacial, it refers to the solution
difference between two locations for all times. Therefore,
it is possible that two locations separated by a large spacial
distance might be SVC neighbors and they will be grouped
in the same cluster if their solution values are close. The
clustering distance is defined as follows:

d(Wi,Wj) =
√

(Wi −Wj)T (Wi −Wj) (9)

where d is the 2- norm distance between two vectors Wi

and Wj . These vectors contain the solution at locations i
and j respectively for all times.

Suppose we want to group N space vectors {Wi}Ni=1 into T
clusters {χj}Tj=1, we first randomly choose T space vectors

as centroids {Wcj}Tj=1. Then the distance between each
space vector and the centroid is calculated as:

d(Wi,Wcj ) =
√

(Wi −Wj)T (Wi −Wcj ) (10)

Let ci be the argument of the minimum distance between
Wi and Wcj :

ci = arg min
j=1,···T

d(Wi,Wcj ) (11)

Then the new centroids would be:

Wcj =

∑N
i=1 1ci=jWi∑N
i=1 1ci=j

(12)

where j = 1, · · ·T and 1ci=j = 1 if ci = j and zero
otherwise. Then the last step is to assign each space vector
Wi to the cluster χcj .

4.2 Construction of SVC POD Bases

In the previous subsection, space vectors were grouped into
clusters. Reduced order bases are now computed for each
cluster as follows:

Let the number of space vectors in cluster k be Nk, the
Nk ×Nk correlation matrix Lk is defined by [2]:

Lk
i,j =

〈
W k

i ,W
k
j

〉
(13)
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is constructed, where 〈, 〉 denotes the Euclidean inner
product of space vectors W k. With Rk denotes the number
of SVC POD modes to be constructed for cluster k, the

first Rk eigenvalues of largest magnitude, {λ}Rk

i=1 , of Lk

are found. They are sorted in descending order, and their

corresponding eigenvectors {vk}Rk

i=1 are calculated. Each
eigenvector is normalized so that∥∥vki ∥∥2

=
1

λki
(14)

The orthonormal SVC POD basis set {φki }R
k

i=1 is con-
structed according to [8]:

φki =
∑Nk

j=1
vki,jW

k
j (15)

where vki,j is the jth component of vki . The 1-D Burgers’
equation solution space vectors were grouped into 4 clus-
ters and the first four modes of each cluster are shown in
figure (6).

Fig. 6. First four modes of space vectors Local POD in
four clusters

The 2-D Burgers’ equation solution space vectors were
grouped into 8 clusters. The first four modes of cluster
4 are shown in Fig.(7).

Fig. 7. 2D First four modes of SVC POD in cluster 1

The SVC modes in Fig. (7) are different from the modes
of the global POD in Fig. (3) because they are based only

on one cluster that includes relatively close states. These
states are clearly the ones on the far left of the domain
that share a relatively higher fluid velocities most of the
time. We should notice from the modes of this cluster that
locations which are close to the top and bottom of the left
side do not appear to belong to this cluster. This is due to
the fact that they have lower velocities most of the time
so they are grouped in some other clusters other than the
one shown in Fig. (7).
Now we have computed the clusters with their local re-
duced order bases. The last step is the projection to the full
solution. It is important to record the original ordering of
snapshots because we need this in the projection process.
The constructed local reduced order bases are projected to
their corresponding locations in the full solution as follows:

{U}Tk=1 ≈ {
∑Rk

i=1
αk
i φ

k
i }Tk=1 (16)

Comparison between Reduced order system using SVC
POD reduced order system and full order system for the
1D Burgers’ equation is shown in Fig. (8) with the full
number of states N = 500 is reduced to R = 15 where
the space domain is x ∈ [0, 100] and the time domain
is t ∈ [0, 50]. The Figure shows the comparison at t =
30. The error norm for this case is found to be 0.0012.
The error norms at t = 30 for the two methods when
reducing the order from 500 states to 15 states are shown
below. A third method based on snapshots clustering in
[18] is added to the comparison, our method still shows
significant improvement.

Fig. 8. Full order solution Vs Space vectors Local POD
reduced order at t=30

Method Error
Global POD 0.3080

Snapshot Clustering POD 0.0352
SVC POD 0.0012

The reduced order system for the 2D domain using the
SVC POD method is shown in Fig. (9) with full number
of states N = 2000 is reduced to R = 10 states. The Figure
shows the comparison at t = 30. The error norm between
the full order and the reduced order systems is found to be
0.0012 which is almost the same amount of error we got
using global POD with reduction to 50 states in the last
section, which is a significant improvement.
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Fig. 9. Full order solution (top) Vs Global POD reduced
model (middle) VS SVC POD reduced model (bot-
tom)

5. CONTROL

We will solve a tracking control problem for the nonlin-
ear system in (3). Desired output should track a given
fixed reference signal uref . Linearization around uref is
required. The nonlinear term in (3) is given by:

N(u) = diag(u)Mu

=

u1 · · · 0
...

. . .
...

0 · · · uN


m11 · · · m1N

...
. . .

...
mN1 · · · mNN


u1

...
uN



=



u1

N∑
j=1

m1juj

...

uN

N∑
j=1

mNjuj



Then the Jacobian matrix ∂N(u)
∂u becomes:

u1m11 +

N∑
j=1

m1juj · · · uNm1N

...
. . .

...

uNmN1 · · · uNmNN +
N∑
j=1

mNjuj


= diag(u)M + diag(Mu)

where

diag(u)M =

 u1m11 · · · uNm1N

...
. . .

...
uNmN1 · · · uNmNN


and

diag(Mu) =



N∑
j=1

m1juj · · · 0

...
. . .

...

0 · · ·
N∑
j=1

mNjuj


∂N(u)

∂u
|uref

= diag(uref )M + diag(Muref ) := AN(17)

Then the linearized system becomes:

u̇(t) = f(uref ) + (A+AN )u+Bua,b (18)

u(0) = u0

where f(uref ) is constant. The block diagram in figure
(5) shows the state feedback tracking control problem.
F and G are gains to be designed such that the output
tracks uref . The cost function to be minimized to track
the trajectory uref is given by:

J(u0) =

∫ T

0

{(u− uref )TQ(u− uref ) + uTa,bRua,b}(19)

The reference input is chosen to be a sin function. Figure

Fig. 10. The state feedback tracking problem

(11) shows the controlled system using the full order
model while the reduced order controlled system is shown
in figure (12) shows. In both results the output tracks
the reference input efficiently. The full order controller
result looks better but considering the huge computational
savings provided by the reduced order controller, the latter
shows very good tracking performance with significantly
lower computational cost.

Fig. 11. Controlled system using the full order model at
two different times
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Fig. 12. Controlled system using the reduced order model
at two different times

6. CONCLUSION AND FUTURE WORK

In this paper, the solution space of nonlinear PDEs is
grouped into clusters where the behavior has significantly
different features. We first solved the nonlinear problem
for the full solution, we then grouped the space vectors
into clusters where a space vector is the solution over all
times at a particular space location. Then we computed
the reduced order bases for the local clusters. We applied
our method on the Burgers’ equation for both 1D and 2D
domains and we showed efficient and promising simulation
results. It is important to note that this clustering method
is different from methods found in the literature, all avail-
able clustering methods are based on snapshots clustering,
not space clustering. Finally, the controller was designed
for the 1D problem based on the reduced order system.
Results showed very good tracking performance with sig-
nificantly lower computational cost. For future work, we
will work with a new space-time clustering approach where
the N ×M space-time solution is clustered according to
relative distances, that is clusters will include the solution
at different space locations and at different times.
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