
Adaptation of System Configuration under
the Robot Operating System ?

Jonathan M. Aitken ∗ Sandor M. Veres ∗ Mark Judge ∗

∗Department of Automatic Control and Systems Engineering,
University of Sheffield, UK (e-mail: jonathan.aitken, s.veres,

m.judge@sheffield.ac.uk).

Abstract: This paper lays down the foundations of developing a reconfigurable control system
within the Robot Operating System (ROS) for autonomous robots. The essential components
of robots are programmed under a ROS system. A formal model is defined as a tripartite
graph to represent the robots functional architecture. ROS systems are then generalised to
component libraries for any ROS architecture and an abstract model as a “system graph” is
introduced. Orthogonality of a library and a system graph is defined and redundancy levels
of robot components are studied for maintaining full functionality of the robot by automated
reconfiguration in face of hardware malfunction. This allows AI planning tools, such as Planning
Domain Definition Language (PDDL), to compute permissible reconfigurations. We present an
example of a pair of robotic arms which requires reconfiguration of the underlying control system
in order to retain the capability to carry out a task.

Keywords: Autonomous control, Robot arms, Reconfigurable control, Adaptation,
Computer-aided control system design

1. INTRODUCTION

The design and deployment of any system is carefully
managed by engineers. As systems become more complex
(as do their controllers), we gradually wish to incorpo-
rate autonomous behaviour into the operation of systems,
however, we demand high-performance, high-efficiency and
high-tolerance to any failures. The aim of the auton-
omy should be to simplify the system for the operators
whilst, providing an increase in performance or efficiency
in the system. However, without careful design and good
grounding, the introduction of automation can make the
operation of such systems more complex or dangerous - as
highlighted in the Überlingen mid air collision. The sys-
tem operators were unaware of the system configuration,
and made a series of incorrect and dangerous decisions
based on a lack of knowledge about the operation of the
underlying systems (Aitken et al., 2010). This is especially
important for any foundation in any mix of autonomous
reconfiguration. There is a necessity to be able to provide
feedback to the operator to provide better system aware-
ness that is both:

• Accurate, providing a true representation of the cur-
rent system state and any reconfiguration taking
place.
• Understandable, providing a clear and concise repre-

sentation of the system and reconfiguration. Ideally
this should be provided in as simple a language as
possible so that the operator can understand the
decisions that have been made with the rational be-
hind them in order to develop trust in the automa-

? This work has been supported by the Engineering and Physical
Sciences Research Council under grant EP/J011770/1

tion (Muir, 1987), which is essential to ensuring good
operational use, otherwise unexpected autonomous
actions could jeopardise trust in the system (Lee and
Moray, 1994).

Emerging autonomous system applications are to be im-
plemented in environments where the complexity of what
can happen is significantly higher than in traditional feed-
back control systems, whilst the plant dynamics have rela-
tively low complexity. Automated reconfiguration for these
more complex environments is then used in two distinct
instances:

• When a new autonomous system is to be created from
existing components.

• When an operating autonomous system needs to self-
reconfigure due too changes in own hardware or the
environment.

This paper sets out a framework for the incorporation of
reconfigurable automation in systems design. This frame-
work includes a clear indication of the purpose of reconfig-
uration which can be used to aid feedback to the operator
to provide understanding about the new system configu-
ration. In it we will outline a model of autonomy founded
within the Robot Operating System (ROS) (Quigley et al.,
2009). This will focus on developing a generic mathemati-
cal model of a ROS that is readily analysable by computer.

This generic mathematical model is based upon a tripar-
tite graph, composed of ROS components. By abstracting
the ROS systems into libraries of interchangeable elements
a model of that can be applied to an robotic system. This
“system graph” is a generic model, applicable to any ROS-
based system. The focus of reconfiguration is to recover full
functionality in the case of component addition (e.g. new

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 4484



functionality being added online) or removal (e.g failure).
We define the orthogonality of the component library and
the system graph, which allows redundancy levels of a ROS
system to be identified and so reconfiguration options to be
discovered. Using the information a planning system, such
as the Planning Domain Definition Language (PDDL), can
be used to identify possible reconfiguration options.

Section 2 of the paper discusses literature based around
reconfiguration of control systems. Section 3 presents a
graph model of the Robot Operating System (ROS).
Section 4 provides a methodology of reconfiguration and
also gives a formal proof that reconfiguration will be
achieved. Section 5 introduces methods based on the
symbolic planner in PDDL (planning domain description
language) before an example is shown in Section 6. We
draw conclusions on the paper in Section 7.

2. RECONFIGURATION

The reconfiguration process is required to change the form
of the control system in order to satisfy the changing
environment. Ultimately this places a considerable de-
mand on the engineers and system designers and hence
automation of the reconfiguration process is a desirable
feature to speed up development, eliminate mistakes and
obtain a near optimally configured new system. Ideally
these control systems should be able to adjust to any
situation that they find themselves in, reconfiguring to
“accommodate component failures automatically” Zhang
and Jiang (2008).

Looze et al. (1985) states four key features that an auto-
matic redesign procedure must address:

• “The failures are unanticipated”.
• “The available response time is limited”.
• “Non-standard control effectors and configurations

may be required”.
• “The handling/ride qualities of the reconfigured [sys-

tem] may be degraded”.

2.1 Plug-and-Play

A typical control system will have been designed for the
operation of one specific plant. If the characteristics of the
plant change at any time, the controller may well cease to
operate satisfactorily (Stoustrup, 2009). Additionally new
sensors or actuators may become available which make the
current control algorithms sub-optimal, traditionally this
would require a major redesign in order to incorporate the
new components. Plug-and-play control (Ippolito et al.,
2005b; Stoustrup, 2009; Bendtsen et al., 2013) focuses
on this area of new resources, rather than just dealing
with component failure or adaptive control. Plug-and-
play control focuses on two distinct challenges (Stoustrup,
2009), first when a known addition is made and system
must match an appropriate control scheme. Secondly when
an unknown component is plugged in and a pre-existing
controller design is not available. In this case awareness of
the design is required in order to identify where the new
component should be slotted into the control structure,
for example using Youla-Kucera-based controlled modifi-
cation (Bendtsen et al., 2013).

2.2 Reconfigurable and Polymorphic Control

Polymorphic control (Ippolito et al., 2005a; Ippolito and
Al-Ali, 2007; Ippolito and Joo, 2008) builds on distribu-
tive plug-and-play control. The prime aim of polymorphic
control systems is to enhance key system properties, for
example performance, resilience and fault-tolerance. This
is achieved by modelling the underlying control system
as a graph-like structure that is amenable to automatic
analysis. The control structure is then part of the dynamic
network, as it is fundamentally de-localised amongst the
sensors and actuators of the system. Therefore the con-
troller is in a position where it can be quickly reconfigured
or restructured in both form and function.

Typically the polymorphic controller is based on a tra-
ditional block diagram, for example as built in Simulink,
modelled as a graph. Individual components of the sys-
tem are comprised of multiple vertices that represent the
system inputs and outputs. Edges then represent the con-
nection between the input and output vertices. By taking
appropriate choices during the modelling process a set of
graphs is formed representing the system. These hyper-
graphs (Papa and Markov, 2006) that are formed can be
partitioned to determine new system configurations during
operation.

Ippolito and Joo (2008) shows how this polymorphic con-
trol can be used to enable collaboration between an Un-
manned Ground Vehicle (UGV) and an Unmanned Aerial
Vehicle (UAV). In their scenario the UAV is on a approach
to landing, when it loses on-board position estimation.
A planned (rather than automatic) reconfiguration occurs
where a ground based UGV uses vision-based systems to
provide position estimation so that a successful (and safe)
landing is achieved.

Shore and Bodson (2005) illustrate a reconfigurable control
system using a flight of a modified model aircraft capable
of four failure modes: frozen elevator, frozen aileron, engine
failure and elevator separation. They use realtime recursive
identification to find new controller parameters. Rather
than adjusting the control structure this process adapts
to the failures to counteract failure employing parameter
identification in the feedback loops to adjust gains. The
new controller models are observed to behave with very
good handling characteristics, even under failure.

Agent-based techniques provide a good match to system
reconfiguration, as they offer a platform that can easily be
distributed. Brennan et al. (2002) uses a collection of dis-
tributed agents to reconfigure a distributed control system
in real-time. Individual processes are controlled by single
agents and an overall coordinator agent is responsible for
scheduling tasks. It dispatches mobile agents with tasks to
assign to members of the cohort - changing the parameters
with which they operate; these mobile agents report back
on the success of the tasks execution.

3. THE ROBOT OPERATING SYSTEM

ROS provides a structured communications layer for im-
plementing the software system of a robot that individual
processes can use for interaction (Quigley et al., 2009).
It simplifies the task of programming robots by providing

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4485



a robust framework where the designer is provided with
direct control for the robot, without any overhead required
in interfacing. A ROS implementation has three typical
components:

• Nodes - Nodes are the basic process that performs
the computation. Each node is a process which may
have threads. It is the node where the processing
takes place, and that the programmer is responsible
for designing. Typical systems are formed from many
nodes, each of which does a portion of the overall
task.
• Topics - Topics are one of the two methods available

for exchanging messages. Topics provide a sender-
receiver agnostic method for exchanging and receiving
messages. In order to publish messages any node can
establish a topic and publish messages to it, as and
when necessary. Any other node within the network
may also publish to this topic. In order receive mes-
sages, the other nodes may subscribe, wherein they
can receive any message sent via a callback. There-
fore a topic provides a many-to-many communication
model, as many nodes may publish to a topic (nodes
often publish to more than one topic) and many may
also subscribe. It is a broadcast messaging stream
and so does not provide any synchronous message
transfer.
• Services - Services provide a more strict communica-

tion model where there is an established request and
response message. In a process similar to web services,
a node may request certain information via a service
and then be supplied back with the information on
demand. This contains much lower overheads than a
topic, as there is no continual broadcast of messages
rather an individual exchange.

Communication between these three components is facil-
itated by Messages which are a bundle of information
packaged as a strictly typed data structure. Typically these
are comprised of standard primitive types, but also may
contain other messages.

There are two possibilities for describing a ROS based
system:

• A tri-partite graph with vertices for nodes, topics and
services.
• Nodes with labelled, directed edges for topics and

services.

The second representation is less amenable to exact mathe-
matical analysis. Hence our choice remains the first option,
the tri-partite graph, where each of the three vertex types
are not interchangeable in graph matching algorithms.
New topics and services can be easily introduced that
can allow reconfiguration of the system to provide agents
with the information they required, albeit sourced from
different locations. This can be seen in Figure 1, where
vertices represent nodes, topics and services. Edges show
the routes of information flow, all services and topics
therefore must have at least one incoming edge from a
node. Additionally all node communication must occur
through topics or services.

Definition 1. A ROS-graph is GROS = {N,T, S,E},
where N are the set of vertices of nodes, T are the set

Fig. 1. Basic ROS-Graph.

of topics and S are the set of services. E represents a set
of directed edges between vertices in N and T or N and
S in either direction. A labelling function λ is a mapping
defined over all vertices as follows: ` : T ∪ S → Ω and
ℵ : E → Γ where Γ is the class set of an agent ontology
which define templates for message objects.

To serve reconfigurability we will make a distinction be-
tween a ROS-graph and a ROS system. A ROS-graph is
as defined above. A ROS system however is a set of nodes
each of which is potentially able to provide a number of
services and publish a set of topics. Whether these will be
used depends on whether other nodes use these services or
subscribe to these topics. Some of the services of topics can
remain dormant if no other node uses them. Hence we will
make a distinction between a ROS-graph and the collective
potential of a set of nodes in terms of the services and
topics they can provide. We will call this a ROS system.

Definition 2. A ROS system provision R = [N,S+, T+] is
a set of nodes N with their available services S+ : N →
2(Ω×Γ) and available publishing capabilities T+ : N →
2(Ω×Γ) through topics.

Note that this definition does not exclude the possibility
that certain services can be provided by more than one
nodes or that identically labelled and formatted messages
could be published by several nodes.

A concrete ROS-graph is however not defined by node
capabilities but by the needs of nodes for some services
and topics.

Definition 3. ROS system requirement [N,S−, T−] is a set
of nodes with required services S− : N → 2(Ω×Γ) and
topics T− : N → 2(Ω×Γ) .

As there can be multiple providers, the ROS system
requirement will not uniquely define a ROS-graph either
as different graphs can be obtained by different choices of
providers.

Lemma 4. For any ROS-graph G = {N,T, S,E} the rela-
tions

⋃
n∈N S−G(n) = S+

G ⊆ SG ⊆ S+
R and

⋃
n∈N T−G (n) =

T+
G ⊆ TG ⊆ T+

R hold where the definitions S+
G =⋃

n∈N S+
G(n) and T+

G =
⋃

n∈N T+
G (n) are used.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4486



This lemma means that within a ROS-graph the set of
service requirements and topic publications are satisfied.
This sheds light on the fact that a ROS-graph is only a
single realisation of the potentials of ROS system provision
in R. The set of all ROS-graphs which can be obtained
under a provision R will be denoted by Ψ(R). If we assume
that multiples of the same nodes can be used from R then
Ψ(R) is an infinite set.

One can think of a node set N used above not only
as the vertices of a ROS-graph with fixed services and
topics but as a library of nodes which can be configured
to form an autonomous system. A ROS system provision
R = [N,S+, T+] can be thought of not as the set of
nodes to be used in a system but as a library of available
resources to synthesize an autonomous control capability.
The next section will examine how reconfiguration can be
done in engineering terms.

4. MAIN RESULTS ON RECONFIGURATION

This section provides a methodology of reconfiguration
and also gives a formal proof that reconfiguration will
be achieved. Figure 2 displays the structure of a typical
control system as part of an autonomous system.

Fig. 2. Control Block Diagram Indicating ROS-graph
Components.

A key question is: how will the software agent (i.e. the
agent handling the reconfiguration) able to decide whether
a feedback control system as on Figure 2 will satisfy quality
and performance requirements? To state the question
more precisely: assuming that the agent is able to find a
correct connection of components (i.e. sensor nodes, sensor
services, perception nodes and services, controller nodes
and services, actuator nodes and services) how can we
make sure that the resulting control system will serve the
purpose? Before we can answer this important question a
constructive analysis and some observations can be made.

(1) If perception nodes (i.e. sensor signal processing
nodes) and control nodes are not adaptive to varying
quality of sensor signals and actuator qualities then
system reconfigurability becomes much more hard.
It is therefore desirable, and in fact a practical ne-
cessity that in a reconfigurable ROS architecture the
algorithmic solutions to sensor signal processing and
control are adaptive: adaptive signal processing and
adaptive control is a necessity. Adaptivity means that

substitution of sensors and actuators with a bit differ-
ent qualities will not cause the control system to fail
completely in terms if instability or bad performance.

(2) Assuming sufficient level of adaptivity is ensured in
perception nodes and control nodes, the question
remains: how to decide which components can be
connected, how to derive and choose components
which can tolerate each other due to adaptivity?

We outline two types of solutions to this question: one
takes a longer time and the other can be used quickly
and during the robots operation. Both assume that some
configuration Σ of sensors, perception processing, adap-
tive/learning control and actuators have been tested by
the agent for correct data connectivity in terms of services
and topics.

M — The M-solution assumes that there are dynamical
models available for each of the components of Σ.
The agent is also assumed to be equipped with the
ability to simulate each of the components and typical
environmental model to be able to generate simulated
sensor signals and effects of actuators. The agent per-
forms a set of simulations and evaluates the control
performance results. This can be a lengthy process
and mostly applicable when engineers need to set
up a new system. A remotely stationed autonomous
robot, without communication with humans super-
visors, may however also have the time to evaluate
its reconfiguration options. This solution assumes no
prior data are available about the quality of perfor-
mance of Σ.

S — The S-solution relies on a priori stored configura-
tion library L of interoperability schemas which is a
list of system graphs with abstracted node names and
direction of connectivity indicated by edges. For quick
reconfiguration the agent needs to check whether
there is a ROS-graph which matches a required in-
teroperability schema and can be implemented using
the resources in the library L.

In the following we provide a formal representation of a
system for the S-solution, which will be our main interest
in the rest of the paper.

Definition 5. (1) An abstraction of the node set of a
ROS system provision library L = [N,S+, T+] is a
mapping N → Λ of nodes to a label set Λ.

(2) A system graph is a directed graph with vertices
labelled from Λ.

To clarify the relevance of these abstract definitions we
present an example before we proceed to our main result.

Example 6. Assume that we have the following library of
components and associated ROS nodes: (1) a five joint
DC-motor-based robot arm with actuator node NDC (2)
a five joint servo-motor-based robot arm with actuator
node NSM (3) a five servo motor and 2 camera based
vision head with actuator node NV H (4) a GPGPU clus-
ter based perception module represented by ROS node
NVM (5) a vision based adaptive feedback control module
represented by node NFB (6) a human typed-command
based task interpreter module represented by ROS-node
NTEX (7) a human-voice control based task interpreter
module represented by ROS-node NV OI . Each of these
nodes provide services and require some services to be

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4487



Node Λ 

NDC robot_arm_actuator 

NSM robot_arm_actuator 

NVH robot_vision_head 

NVM vision module 

NFB feedback control module 

NTEX task interpreter 

NVOI task interpreter 

 

Fig. 3. Example abstractions of ROS nodes.

available. A mapping into Λ is illustrated in Figure 3 where
two pairs of nodes map to the same abstraction labels. A
system graph is illustrated in Figure 4. The automated

Fig. 4. A system graph to carry out tasks of the robot arm.
The dashed arcs are not part of the directed edges of
the system graph, they are used to indicate the role
of the physical environment of the robot arm.

reconfiguration problem is now to find services or topics
to realise the functionality of the system graph based on
the resource from library L.

We define a library of control schemas to be more then
just a set of system graphs: we associate a skill and
environment description with each graph.

Definition 7. An interoperability schema S is a triple S =
[G, x, e] where G is a system graph and x is a textual
(qualitative) description of the skill of the robot which
the graph represents and e is a textual (qualitative)
description of the environmental dynamics in which the
skill can operate.

Note that here skill can represent a perception/modelling
skill, physical/control skill or mental/planning skill of the
autonomous system/robot. In this paper we leave the
method of textual description of x and e as a free design
variable. As an example we quote the use of sEnglish
(Veres, 2012, 2008, 2010) for a description of the skill or
the environment.

Definition 8. A configuration library C is defined as a list
of interoperability schemas. The component library L is a
set of available sensor, perception and control nodes with
a set of service and publishing capabilities each. The C is
called independent (or orthogonal) to L if any substitution
of correctly labelled components into any interoperability

schema results in the possibility of a correctly functional
control system.

Our main result is that for autonomous system design
ensuring the orthogonality of L to C is a worthwhile a
priori undertaking as it results in considerable time savings
when autonomous systems are reconfigured in practical
engineering operations.

Theorem 9. Assuming C is orthogonal to L the number of
implementable ROS-graphs is multiple of the number of
system graphs.

Proof. If there is only one ROS node available for each
node of a system graph then there is no redundancy of
components. Still, the way services or topics are set up to
represent directed edges of the system graph, can be in
multiple ways. In case of multiple ROS nodes matching a
system node, orthogonality of C to L means that there will
be service/topic solutions fore each of the substitutions of
abstractions by available nodes. 2

Orthogonality of C to L means that system schemas
can be arbitrarily “plugged in” by matching name nodes
as service/topic communication (represented by edges of
the system graph) can always be constructed by the
configuration agent to obtain a functioning ROS graph
for implementation. The greater the reconfigurability in
face of unavailable nodes the greater the power of this
approach. Here we present a quantitative analysis in case
a large number of components are needed to build up an
autonomous system or robot.

Assume that the probability of the availability of a library
component c ∈ L, which can rely on a piece of hardware,
is denoted by p(c). The abstraction of the components in
L will be denoted by ν : L→ Λ. We also assume, without
imposing real limitations, that C requires the use of all of
ν(L) = Λ. We are interested to obtain the probability of
the autonomous system C not being disabled by lack of
reconfigurability.

If we assume that different a ∈ Λ can be played by an
uneven number of library components card(ν−1(a)) then
1 the complexity of computations goes up and we do not
get a clear picture about the redundancy level present.
For the sake of investigating the relationship between
the number of components in C and the corresponding
redundancy level to maintain a certain probability level of
reconfigurability, we assume that r = card(ν−1(a)), a ∈ Λ
where r now means our level of redundancy.

Theorem 10. For a given probability q ≈ 1 of reconfigura-
bility we can state the following:

(1) If q is required and N →∞ then the redundancy level
r needed is proportional to logN .

(2) If N is fixed and q → 1 then the required redundancy
is asymptotically proportional to log log q−1.

(3) Otherwise an approximate formula for the redundancy
level to ensure reconfigurability with probability q is

r =
log(− log q)

log p
− logN

log p

1 Here card(x) denotes the number of elements in set x.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4488



Proof. The essence of the proof is based on discovering
what happens to r to maintain the relationship

(1− pr)N = q

This leads to

r =
log
(
1− elog q/N

)
log p

Given that log q/N ≈ 0 the approximation exp{log q/N} ≈
1 + log q/N can be made that results (3) as

r =
log(− log q)

log p
− logN

log p
which also implies (1) and (2) when N →∞ or q → 1. 2

If control system reconfiguration is needed due to changing
resources (either during robot operations or at design
stage) the process of finding available components for
the system graph can be automated. The next section
illustrates this automated procedure using PDDL.

5. SOLVING RECONFIGURATION BY PDDL

So far this paper has developed a framework that provides
a mathematical model for describing ROS systems that
allows for autonomous reconfiguration. However, this has
stopped one step short of how to handle this information
to allow autonomous reconfiguration. We have presented a
representation of the system as a ROS-graph. We will show
that reconfiguration of this graph, and thus preservation
of the system properties, can be accomplished by using
appropriate planning constructs described by the Planning
Domain Definition Language (PDDL) (McDermott et al.,
1998; Mcdermott, 2000; Fox and Long, 2003).

PDDL is the defacto standard for describing planning
problems (McDermott et al., 1998; Mcdermott, 2000).
It uses STRIPS actions supported by ADL conditional
effects. PDDL describes what is present in a problem: what
predicates there are, the actions and their effects, and
the structure of any compound actions. The language is
divided into sets of features (requirements) with each prob-
lem domain specifying which requirements are needed. The
most commonly used include STRIPS, ADL, equality, and
typing. In order to fully describe a problem, two files are
generally used. The first, the domain file, contains the
domain definition and the complete set of action schemata,
defined by required preconditions and associated effects.
The second file, the problem file, contains a listing of the
objects used for a specific problem instance in this domain.

This PDDL domain can be used to describe a simple
reconfiguration over the ROS-graph defined in Section 3.
The effect of each reconfiguration will have an impact
on the system behaviour and ultimately determine the
effectiveness of the overall system. The planner is free to
develop a new system configuration, the effectiveness of
this controller configuration can then be assessed using
traditional control techniques to assess the result of these
planning steps, such as steady state error and settling time.

In order to begin defining a reconfigurable ROS-graph
we must define an appropriate domain structure that can
represent the reconfigurable control system. This implies
that the ROS-graph must be broken down in order to fully

model the components. The ROS-graph contains services,
topics and nodes. Services and topics are the medium
for exchanging messages. The nodes represent the core
components of the control system, which includes sensors,
control processes and actuators. Sensors take information
from the environment (e.g. measurements of actuator
positions or measurable system states). Control processes
manipulate information, with the resulting signals flowing
to actuators or to further control systems. Actuators
receive information from control systems to effect changes
on the environment.

Figure 2 shows a conceptual block diagram of the ROS-
graph realised reconfigurable control system. Sensors, ac-
tuators and control blocks are formed from ROS nodes,
which use services or topics to communicate. Under re-
configuration there are two components that exist for the
planner to ensure that connections can be made: labels
associated with the data provide a useful matching tool
to ensure data consistency, and block matching block de-
scriptions provide further definition.

6. AN EXAMPLE OF RECONFIGURATION

In order to explore the reconfiguration of a ROS-graph,
we will introduce an example that provides several op-
portunities for reconfiguration. A robotic arm is required
to perform two separate tasks, “Object Repositioning”
and “Disc Loading”. The configuration of the system is
summarised in Table 1. In order to perform the task there
are two arms available; the first is a five-degree-of-freedom
(5-dof) jointed robotic arm (shown in Figure 5(b)) with
digital servos which provides accurate information on their
position, the second is a 5-dof jointed robotic arm which
is controlled only by DC motors (shown in Figure 5(c)).

(a) Camera Setup.

(b) Digital Servo Controlled
Robotic Arm.

(c) DC Motor Controlled
Robotic Arm.

Fig. 5. Robotic System Components.

The components in the system can be broken down into
ten broad classes:

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4489



Table 1. Robot Example Components, Services
and Schema Assignment

Node Services Services
Requests

In Schema

NDC1
NDC2
NDC3
NDC4
NDC5

Request Class: voltage
pulse, Service: dc servo
command

none Object
reposition-
ing

NSM1
NSM2
NSM3
NSM4
NSM5

Request Class: digital sig-
nal, Service: digital servo
command

none Object
reposition-
ing, Disc
loading

NCA1
NCA2

Request Class: camera
setting Response Class:
rgb640x480, Service: cam-
era image

none Object
reposition-
ing, Disc
loading

NCO1
NCO2

Request Class: Boolean
Response Class: pressure
vector, Service: gripper
feeling

none Object
reposition-
ing, Disc
loading

NVP1
NVP2

Request Class:
rgb640x480, pressure
vector, arm features, object
features Response Class:
relative position (NCO1),
description (NCO1), metric
positions model (NCO2)
Service: visual perception

camera
image,
gripper
feeling

Object
reposition-
ing, Disc
loading

NFB11
NFB12
NFB13
NFB14

Request Class: object fea-
tures, arm features, Re-
sponse Classes: Comple-
tion Statement Service:
positioning arm (NFB11),
grasping object (NFB12),
carrying object (NFB13),
placing object (NFB14)

gripper
feeling,
visual per-
ception,
dc servo
command

Object
reposition-
ing

NFB21
NFB22
NFB23
NFB24

Request Class: object fea-
tures, arm features, Re-
sponse Classes: Comple-
tion Statement Service:
positioning arm (NFB11),
grasping object (NFB12),
carrying object (NFB13),
placing object (NFB14)

gripper
feeling,
visual per-
ception,
digital
servo
command

Object
reposition-
ing, Disc
loading

NREA Request Class: human re-
quest, object features, Re-
sponse classes: Boolean,
sentence

visual per-
ception,
gripper
feeling,
dc servo
command
digital
servo
command

Object
reposition-
ing, Disc
Loading

• NDC1, NDC2, NDC3, NDC4, NDC5 - These are
control components for the DC motor controlled
arm, each controller serves one joint. These are only
capable of being used for the Object repositioning
task. These control the base, shoulder, elbow, wrist
and gripper respectively.
• NSM1, NSM2, NSM3, NSM4, NSM5 - These are con-

trol components for the digital servo controlled arm,
each controller serves one joint. These are capable of
being used for the Object repositioning or the Disc
loading task. These control the base, shoulder, elbow,
wrist and gripper respectively.

• NCA1 and NCA2 - These are cameras fitted that
are available to provide images of the scene. These
are both capable of being used for either the Object
repositioning or Disk loading task.

• NCO1 and NCO2 - These are pressure sensors fitted
to the object grippers. Both can be used for Object
repositioning and Disc loading.

• NVP1 and NVP2 - These are computer vision al-
gorithms that are capable of interpreting an incom-
ing image and providing more information about it.
NVP1 provides a relative position and description of
the work piece and can be used for Object reposi-
tioning and Disc loading. NVP2 provides different
information about the work piece, as it produces a
metric positions model which can be used for either
Object repositioning or Disc loading.

• NFB11 and NFB21 - These are control tasks that
position the arm, NFB11 only operates with the DC
motor controlled arm so is only available for Object
repositioning. NFB21 only operates the digital servo
controlled arm so is available for both the Object
repositioning and Disc loading tasks.

• NFB12 and NFB22 - These are control tasks that
grasp objects, NFB12 only operates with the DC
motor controlled arm so is only available for Object
repositioning. NFB22 only operates the digital servo
controlled arm so is available for both the Object
repositioning and Disc loading tasks.

• NFB13 and NFB23 - These are control tasks that
carry objects, NFB13 only operates with the DC
motor controlled arm so is only available for Object
repositioning. NFB23 only operates the digital servo
controlled arm so is available for both the Object
repositioning and Disc loading tasks.

• NFB14 and NFB24 - These are control tasks that
places objects, NFB14 only operates with the DC
motor controlled arm so is only available for Object
repositioning. NFB24 only operates the digital servo
controlled arm so is available for both the Object
repositioning and Disc loading tasks.

• NREA - This is the reasoning control node that
coordinates the action.

The planner performs reconfiguration on the system, cre-
ating a new system using different components that is
still capable of completing the assigned task. However,
there is a generic model that sits underneath that the
planner is following. In general this follows the form shown
in Figure 2. The general form of the controller is shown
in Figure 6. There are a set of sensor nodes that are
capable of measuring the presence of an object within the
gripper and cameras capable of producing an image of the
environment which can be processed by a perception unit.
Control systems carry out the four basic actions of the
robot arm: positioning the arm, carrying, grasping and
placing an object, by interacting with the five joints within
the robot arm.

Under reconfiguration the PDDL planner selects appropri-
ate components from Table 1 to place in each of the boxes
in the diagram. In order for the blocks to be compatible,
the services that each block requires must be matched.
Therefore there are a finite set of components that can be
used together. NDC1, NDC2, NDC3, NDC4 and NDC5

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4490



Fig. 6. Basic Block Diagram for the Reconfigurable Robot-
Arm.

all related to the DC motor controlled arm, therefore they
must be used with NFB11, NFB12, NFB13, NFB14 and
NFB15 which are control nodes for DC servos. Similarly
NSM1, NSM2, NSM3, NSM4 and NSM5 are the actua-
tors for the servo controlled arm so may only be used
with NFB21, NFB22, NFB23, NFB24 and NFB25, this
is encoded into the services produced and consumed. By
ensuring the labels match (“digital servo command” or
“dc servo command”), only appropriate controllers may
be connected.

Additionally there are a set of physical constraints placed
on the system, the camera, gripper and vision perception
units are assumed to be linked together, therefore selection
of NVP1 implies NCO1 and then NCA1 must be used.
Selection of NVP2 implies that NCO2 and then NCA2
must be used as part of the complete system.

Taking these restrictions as a whole it becomes clear
that there are several constraints in the problem, before
considering the reconfiguration. Namely either robot arm
can be used to perform the “Object Repositioning” task,
whereas the “Disc Loading” task can only be performed
by the robot with the digital servo motors. Overall these
design constraints allow for four possible configurations in
“Object Repositioning” and two in “Disc Loading”.

Within “Object Repositioning”, these four cases arises
as either robot arm may perform the task, but there is
freedom as to whether Camera 1 (NCA1) or Camera 2
(NCA2) (as shown in Figure 5(a)) is used to provide
images to the perception unit. This provides four possible
configurations:

• NDC1, NDC2, NDC3, NDC4, NDC5, NCA1, NCO1,
NPV1, NFB11, NFB12, NFB13, NFB14, NFB15,
NREA
• NDC1, NDC2, NDC3, NDC4, NDC5, NCA2, NCO2,

NPV2, NFB11, NFB12, NFB13, NFB14, NFB15,
NREA

(:action visual_perception_ready

:parameters ;available to any schema

(?visualperceptnode1 - visualperceptnode

?grippernode1 - grippernode

?cameranode1 - cameranode)

:precondition

(and (config_vispercept ?visualperceptnode1 ?grippernode1 ?cameranode1)

(image_available ?cameranode1)

(gripper_sensing_available ?grippernode1)

(no_visual_percept_available ?visualperceptnode1))

:effect

(and (visual_percept_available ?visualperceptnode1)

(not(no_visual_percept_available ?visualperceptnode1))))

Fig. 7. Example Action Block for Visual Perception.

• NSM1, NSM2, NSM3, NSM4, NSM5, NCA1, NCO1,
NPV1, NFB21, NFB22, NFB23, NFB24, NFB25,
NREA

• NSM1, NSM2, NSM3, NSM4, NSM5, NCA2, NCO2,
NPV2, NFB21, NFB22, NFB23, NFB24, NFB25,
NREA

However, the “Disc Loading” task is more complex and so
can only be performed by one robot which presents two
possible solutions:

• NSM1, NSM2, NSM3, NSM4, NSM5, NCA1, NCO1,
NPV1, NFB21, NFB22, NFB23, NFB24, NFB25,
NREA

• NSM1, NSM2, NSM3, NSM4, NSM5, NCA2, NCO2,
NPV2, NFB21, NFB22, NFB23, NFB24, NFB25,
NREA

6.1 Implementing the System in PDDL

In order to implement the system in PDDL we require two
separate files, one which describes the domain and one for
the problem description.

Definition 11. A PDDL problem domain can be described
D = {Req, Ty, Pred,A}, where Req are the requirements
defining the object types. Ty are the possible types defined
in the problem, where T = {Objs, Sch} is a collection
of objects, Objs and schemas, Sch. These objects can be
further defined Objs = {RObjs} which contain a set of
ROS objects (RObjs) - where RObjs = {N} is a collection
ROS nodesN . Pred contains the predicates which describe
whether the basic connection conditions have been met for
each of the nodes and a Messaging Type (Mtyp) that form
the subcomponents, Pred = {N,Mtyp}, where Mtyp is
either a Service or Topic, Mtyp = {T, S}. The Actions
A are defined as containing, parameters taking part in
the action Para, preconditions (Pre) and effects (E),
A = {Para, Pre,E}. Where parameters, Para = {N}, is
a set of ROS nodes, the preconditions, Pre = {Predpre},
are a set of predicates that hold before the action and the
effects, E =

{
Predefx

}
, are predicates that hold after the

action takes place.

Actions control how each of the components can be con-
nected. Figure 7 shows an example PDDL action for visual
perception, showing required preconditions and effects.
That is, to set up the perception block, it must not previ-
ously be established, it must use an image from a camera,
and a gripper must be available. Each of the components
that form part of the overall system must be described,
using the appropriate labels and descriptions found within
the ROS-graph detailing connection constraints.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4491



Object Repositioning Config plan 1:

0: DC_SERVO_BASE_TO_SHOULDER DCBASENODE1 DCSHOULDERNODE1 OBJECTREPO1

1: DC_SERVO_SHOULDER_TO_ELBOW DCBASENODE1 DCSHOULDERNODE1 DCELBOWNODE1

2: DC_SERVO_ELBOW_TO_WRIST DCSHOULDERNODE1 DCELBOWNODE1 DCWRISTNODE1

3: DC_SERVO_WRIST_TO_GRIPPER DCELBOWNODE1 DCWRISTNODE1 DCGRIPPERNODE1

4: SETUP_CAMERA_IMAGE CAMERANODE2

5: DC_SERVO_AVAILABLE DCWRISTNODE1 DCGRIPPERNODE1 DCSERVO1

6: SETUP_GRIPPER_SENSING GRIPPERNODE2

7: VISUAL_PERCEPTION_READY VISUALPERCEPTNODE2 GRIPPERNODE2

CAMERANODE2 POSITIONARMNODE2

8: DC_PLACE_OBJECT DCSERVO1 GRIPPERNODE2 VISUALPERCEPTNODE2

POSITIONARMNODE2 DCPLACINGOBJECTNODE1

Object Repositioning Config plan 2:

0: DIGITAL_SERVO_REPOSITION_VERSION_BASE_TO_SHOULDER DIGITALBASENODE1

DIGITALSHOULDERNODE1 OBJECTREPO1

1: DIGITAL_SERVO_REPOSITION_VERSION_SHOULDER_TO_ELBOW DIGITALBASENODE1

DIGITALSHOULDERNODE1 DIGITALELBOWNODE1

2: DIGITAL_SERVO_REPOSITION_VERSION_ELBOW_TO_WRIST DIGITALSHOULDERNODE1

DIGITALELBOWNODE1 DIGITALWRISTNODE1

3: DIGITAL_SERVO_REPOSITION_VERSION_WRIST_TO_GRIPPER DIGITALELBOWNODE1

DIGITALWRISTNODE1 DIGITALGRIPPERNODE1

4: SETUP_CAMERA_IMAGE CAMERANODE1

5: DIGITAL_SERVO_REPOSITION_VERSION_AVAILABLE DIGITALWRISTNODE1

DIGITALGRIPPERNODE1 DIGITALSERVO1

6: SETUP_GRIPPER_SENSING GRIPPERNODE1

7: VISUAL_PERCEPTION_READY VISUALPERCEPTNODE1 GRIPPERNODE1 CAMERANODE1

POSITIONARMNODE2

8: DIGITAL_PLACE_OBJECT DIGITALSERVO1 GRIPPERNODE1 VISUALPERCEPTNODE1

POSITIONARMNODE2 DIGITALPLACINGOBJECTNODE1

Fig. 8. Planner Output.

6.2 Results of PDDL Reconfiguration

We have used the FF planner (Hoffmann and Nebel,
2001) to solve an instance of the reconfiguration problem.
We provide in Figure 8 the plan steps generated by the
planner. Within 18 steps the planner successfully produces
a configuration that satisfies the “Object repositioning”
task for both DC and servo controlled arms.

7. CONCLUSION

This paper lays a foundation by defining a reconfigurable
control system within the ROS. This allows the devel-
opment of autonomously reconfigurable robot systems. A
formal model has been developed using a tripartite graph
to represent a ROS implementation of a robotic system.
We have abstracted ROS components into a library. This
allows a system graph to be developed and implemented
in a planning language such as PDDL. A planner is then
capable of producing reconfigurations of the underlying
system that satisfy a given task. Our results, using the
FF planner, demonstrate the efficacy of this approach.
Future work includes augmenting our PDDL prototype
with functions and durative actions. This will allow for
a number of separate metrics (e.g. steady-state error and
settling time), facilitating multiple-criteria optimisation.

REFERENCES

Aitken, J., Alexander, R., and Kelly, T. (2010). A Case for
Dynamic Risk Assessment in NEC Systems of Systems.
In 5th International Conference on System of Systems
Engineering (SoSE).

Bendtsen, J., Trangbaek, K., and Stoustrup, J. (2013).
Plug-and-Play Control Modifying Control Systems On-
line. IEEE Transactions on Control Systems Technol-
ogy, 21(1), 79–93.

Brennan, R., Fletcher, M., and Norrie, D. (2002). An
Agent-Based Approach to Reconfiguration of Real-Time
Distributed Control Systems. IEEE Transactions on
Robotics and Automation, 18(4), 444–451.

Fox, M. and Long, D. (2003). PDDL2. 1: An Extension to
PDDL for Expressing Temporal Planning Domains. J.
Artif. Intell. Res.(JAIR), 20, 61–124.

Hoffmann, J. and Nebel, B. (2001). The FF planning
system: Fast plan generation through heuristic search.
Journal of Artificial Intelligence Research, 14, 253–302.

Ippolito, C. and Al-Ali, K. (2007). Topological Constructs
for Automatic Reconfiguration of Polymorphic Control
Systems. In AIAA Infotech@ Aerospace 2007 Confer-
ence.

Ippolito, C., Al-Ali, K., and Dolan, J. (2005a). Poly-
morphic Control and Trajectory Optimization of an
Autonomous Ground Vehicle over Wireless Mobile Net-
works. In AIAA Infotech@ Aerospace 2005 Conference.

Ippolito, C. and Joo, S. (2008). Polymorphic Control
Reconfiguration in an Autonomous UAV with UGV
Collaboration. In IEEE Aerospace Conference.

Ippolito, C., Pisanich, G., and Al-Ali, K. (2005b).
Component-Based Plug-and-Play Methodologies for
Rapid Embedded Technology Development. In AIAA
Infotech@ Aerospace 2005 Conference.

Lee, J. and Moray, N. (1994). Trust, Self-Confidence, and
Operators’ Adaptation to Automation. International
Journal of Human-Computer Studies, 40(1), 153–184.

Looze, D., Weiss, J., Eterno, J., and Barrett, N. (1985).
An Automatic Redesign Approach for Restructurable
Control Systems. IEEE Control Systems Magazine,
5(2), 16–22.

McDermott, D., Ghallab, M., Howe, A., and Knoblock,
C. (1998). PDDL-The Planning Domain Definition
Language. Technical report, New Haven, CT: Yale
Center for Computational Vision and Control.

Mcdermott, D. (2000). The 1998 AI Planning Systems
Competition. AI Magazine, 21(2), 35–56.

Muir, B. (1987). Trust Between Humans and Machines,
and the Design of Decision Aids. International Journal
of Man-Machine Studies, 27(5-6), 527–539.

Papa, D. and Markov, I. (2006). Hypergraph Partitioning
and Clustering. Approximation Algorithms and Meta-
heuristics, 1–38.

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T.,
Leibs, J., Berger, E., Wheeler, R., and Ng, A. (2009).
ROS: An Open-Source Robot Operating System. In
ICRA Workshop on Open Source Software.

Shore, D. and Bodson, M. (2005). Flight Testing of
a Reconfigurable Control System on an Unmanned
Aircraft. Journal of Guidance, Control, and Dynamics,
28(4), 3747–3752.

Stoustrup, J. (2009). Plug & Play Control: Control
Technology Towards New Challenges. European Journal
of Control, 15(3-4), 311–330.

Veres, S.M. (2010). Theoretical foundations of natural lan-
guage programming and publishing for intelligent agents
and robots. In TAROS 2010, Towards Autonomous
Robotic Systems, UK Conference. Plymouth, UK.

Veres, S.M. (2012). Knowledge of machines: review and
forward look. J. of Systems and Control Engineering,
226(1), 3–10.

Veres, S. (2008). Natural Language Programming of Agents
and Robotic Devices. SysBrain, London.

Zhang, Y. and Jiang, J. (2008). Bibliographical review
on reconfigurable fault-tolerant control systems. Annual
Reviews in Control, 32(2), 229–252.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

4492


