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Abstract: In this paper we introduce a new approach to the design of fault-tolerant systems.
Unlike traditional methods which rely on a mathematical model of the system, the proposed
method is based on measurements only and a model is not required. The key elements of this
approach are the determination of the design element values to preserve acceptable system
performance under predetermined failures of fault prone elements. It is shown that such designs
can be carried out without the necessity of a model and based only on strategic processing
of measurements. An illustrative example of an electrical circuit that continues to maintain
acceptable operation despite component failures is included.

1. INTRODUCTION

In this paper, we propose a new technique to design
fault tolerant systems by using a recently introduced mea-
surement based approach. Our goal is to obtain appro-
priate design parameters, to maintain system variables
that represent the performance of the system, within pre-
specified limits with or without the presence of faults.
We assume that the mathematical model of the system
is not known. The novel measurement based approach in
Bhattacharyya [2013] is used in our solution. First, the
relation between system variables, fault prone components
and design parameters is obtained using measurements
made on the system. Once this relation is determined,
appropriate design parameters can be characterized for
fault tolerant operation.

It is noted that all existing design techniques in Fault
Tolerant System Design are based on the availability of
mathematical models of the system. Such requirement of
availability of a mathematical model is becoming more and
more difficult as system complexity increases. Therefore,
measurement based designs serve as an attractive alterna-
tive to model based design. These techniques are especially
advantageous in real world engineering, where accurate
models are difficult to obtain or often unavailable.

Recently, a new approach that completely relies on mea-
surements only was introduced in the monograph Bhat-
tacharyya [2013]. It determines the solution function of a
system described by linear equations when the model is not
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known. This approach provides the functional dependency
of the system variables on the design parameters by using
a few measurements made on the system and processing
them strategically without constructing the model to de-
termine the parameters of the function. This approach
introduces a new paradigm for describing the behavior of
a system.

Some background literature on fault tolerant design fol-
lows. In Ikeda [1992], one plant and two controller con-
figuration was considered to obtain a reliable design. In
Gundes [1992], a stable factorization approach was used
to design controllers with fault tolerance. Subsequently,
this work led to design a software package implemented in
Mathematica, Bhaya [1994]. In Han [1996] a state feedback
control law which retains stability against arbitrary actua-
tor failures and parameter perturbations is derived using a
positive definite symmetric solution of a new Riccati-type
matrix equation. In Ikeda [2004], a method to design a
decentralized H∞ output feedback controller to maintain
stability of the system and a certain performance under
failure of any one of the local controllers. All of the above
methods are model-based.

The rest of this paper is organized as follows. Section 2
gives an overview of the measurement based approach to
unknown linear systems. Following the problem formula-
tion and our proposed approach in Sections 3 and 4, an
illustrative example is given in Section 5.

2. MEASUREMENT BASED APPROACH TO
LINEAR EQUATIONS

Consider the system of parametrized linear equations

A(p)x = b(p) (1)
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where A(p) is an n× n matrix, and x and b(p) are n× 1
vectors all with real or complex entries. Assuming that
|A(p)| 6= 0, there exists a unique solution x and the ith

component xi of x is given by

xi(p) =
|Bi(p)|

|A(p)|
(2)

where Bi(p) is the matrix obtained by replacing the ith

column of A(p) by b(p). This type of linear equation can
represent a large class of systems in engineering, biology,
and the social sciences. Here x represents the system
variables such as currents, voltages, displacements, flow
rates, and p represents a vector of design parameters which
appears affinely in A(p) and b(p). Thus, we can write

A(p) := A0 + p1A1 + p2A2 + · · ·+ plAl. (3)

To proceed, consider the special case of a scalar parameter
p = p1. Then we have the following.

Lemma 1. Let

A(p) = A0 + p1A1. (4)

Then |A(p)| is a polynomial of degree at most r1 in p1
where

r1 = rank [A1] . (5)

The proof follows easily from the properties of determi-
nants.

Lemma 2. With A(p) as in (3), let

ri = rank [Ai] , i = 1, 2, · · · , l. (6)

Then |A(p)| is a multivariate polynomial in p of degree ri
or less in pi, i = 1, 2, · · · , l and

|A(p)| =

rl
∑

il=0

· · ·

r2
∑

l2=0

r1
∑

i1=0

αi1i2···ilp
i1
1 pi22 · · · pill =: α(p)

(7)

|Bi(p)| =

tl
∑

il=0

· · ·

t2
∑

l2=0

t1
∑

i1=0

βi1i2···ilp
i1
1 p

i2
2 · · · pill =: β(p)

(8)

where Bi(p) is the matrix obtained by replacing the ith

column of A(p) by the vector b(p) and

ti = rank [Bi(p)] i = 1, 2, · · · , l. (9)

This follows immediately from Lemma 1.

Based on the above, we have the following characterization
of parametrized solutions.

Theorem 3. Let

A(p)x = b(p) (10)

where

A(p) = A0 + p1A1 + p2A2 + · · ·+ plAl. (11)

Then

xi(p) =
βi(p)

α(p)
, i = 1, 2, · · · , n (12)

where βi(p), i = 1, 2, · · · , n and α(p) are multivariate
polynomials in p.

The proof follows from (2) and Lemma 2.

For an unknown model, (A(p) and b(p) are not known.
However we assume that the ranks ri and ti are known.

The coefficient in (7) and (8) denoted by the vectors α and
β are unknown, and the number of unknown coefficients is

µ := Πl
i=1 (ri + 1) + Πl

i=1 (ti + 1)− 1. (13)

However, these coefficients can be determined by setting
the parameter vector p to µ different sets of values and
solving a set of µ linear equations in the µ unknowns.

Theorem 4. (A Measurement Theorem). The function x(p)
can be determined from µ measurements and solution of
a system of µ linear equations called the measurement
equations in the unknown coefficient vectors α and β.

To proceed, let us first consider a system with one design
parameter and one performance measurement shown in
Fig. 1. In most physical systems the design parameter
p = p1 appears in the the unknown system matrix A(p)
with rank one dependency (r1 = 1). Henceforth we assume
this rank one dependency.

design parameter p1

Unknown Linear

System

measurement x

Fig. 1. An unknown linear system with one design param-
eter

In this case, the functional dependency of the measure-
ment x on the design parameter p1 can be expressed as

x(p1) =
α0 + α1p1

β0 + p1
(14)

where α0, α1, β0 are constants to be determined. These
coefficients can easily be determined by conducting 3 ex-
periments by setting 3 different values to the design pa-
rameter p1 and making the corresponding measurements.
Then the following set of measurement equations can be
formed:

[

1 p11 −x1

1 p12 −x2

1 p13 −x3

] [

α0

α1

β0

]

=

[

x1p11
x2p12
x3p13

]

(15)

Now let us consider a system with two design parameters
(p1, p2) and one performance measurement x. Under the
same assumption that the design parameter pi, i = 1, 2
appears in the matrix A(p) with rank 1 (r1 = 1, r2 = 1),
the functional dependency of the measurement x on the
design parameter (p1, p2) can be expressed as

x(p1, p2) =
α0 + α1p1 + α2p2 + α3p1p2

β0 + β1p1 + β2p2 + p1p2
(16)

where α0, α1, α2, α3, β0, β1, β2 are constants that can be
determined by conducting 7 experiments by assigning 7
different sets of values to the design parameters (p1, p2)
and the taking the corresponding measurements. Thus, we
have the following.
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















1 p11 p21 p11p21 −x1 −x1p11 −x1p21
1 p12 p22 p12p22 −x2 −x2p12 −x2p22
1 p13 p23 p13p23 −x3 −x3p13 −x3p23
1 p14 p24 p14p24 −x4 −x4p14 −x4p24
1 p15 p25 p15p25 −x5 −x5p15 −x5p25
1 p16 p26 p16p26 −x6 −x6p16 −x6p26
1 p17 p27 p17p27 −x7 −x7p17 −x7p27

































α0

α1

α2

α3

β0

β1

β2

















=

















x1p11p21
x2p12p22
x3p13p23
x4p14p24
x5p15p25
x6p16p26
x7p17p27

















(17)

This 2 design parameter problem motivates the following
fault-tolerant system design problem:

3. FAULT TOLERANT SYSTEM DESIGN: SINGLE
FAILURE

Consider the following system shown in Fig. 2. The param-
eter p represents the states of a component which is failure
prone and x is the measurement of the performance of the
system. The fault tolerant system design is accomplished
by determining the design variable q so that the perfor-
mance measure x remains within the prescribed range of
acceptable values as the fault prone parameter p undergoes
normal and failure states. For example, p = p0 (some fixed
value) for normal state and p = 0 (or∞) if a failure occurs.

measurement x

Fault parameter p Design variable q

Unknown Linear System

Fig. 2. Fault Tolerant System Design (Single Failure)

In this case, the functional dependency of the performance
measurement x on the fault prone parameter p and the
design variable q can be written as

x(p, q) =
α0 + α1p+ α2q + α3pq

β0 + β1p+ β2q + pq
. (18)

As shown in the previous section, the coefficients α0, α1,
α2, α3, β0, β1, β2 can be determined by conducting 7 ex-
periments with 7 different sets of values of the parameters
p and q, and taking the corresponding measurements x.

Let the acceptable range of system performance values for
x be limited by

x ∈ [xmin, xmax] . (19)

Suppose that the fault prone parameter undergoes p1, p2, p3

states indicating normal or failure conditions of the com-

ponent. Then the task is to determine the design variable
q or a range of such values such that

xmin ≤ min
p∈[p1,p2,p3]

x(p, q) (20)

and
xmax ≥ max

p∈[p1,p2,p3]
x(p, q). (21)

4. FAULT TOLERANT SYSTEM DESIGN: TWO
FAILURES

We now consider a system with two vulnerable compo-
nents, one design parameter, and one performance variable
(see Fig. 3).

fault parameter p2

Unknown Linear System

fault parameter p1

measurement x design variable q

Fig. 3. Fault tolerant system design (two failure prone
elements)

The functional dependency of the performance variable x
on the two fault prone parameter p = [p1, p2] and the
design parameter q can be written as

x(p, q) =
β(p, q)

α(p, q)
(22)

where

β(p, q) =α0 + α1p1 + α2p2 + α3q + α4p1p2 + α5p1q

+ α6p2q + α7p1p2q

α(p, q) =β0 + β1p1 + β2p2 + β3q + β4p1p2 + β5p1q

+ β6p2q + p1p2q.

Clearly, 15 experiments with 15 different sets of values of
(p, q) and the corresponding measurements of x suffice to
determine all the coefficients representing the above func-
tional dependency. Suppose that the fault prone parameter
p undergoes states p̄ := {pk, k = 1, 2, · · · } representing
all possible failure states. Then the fault tolerant design
is obtained by selecting the design variable q or a range
of q values such that for the given acceptable tolerance
x ∈ [xmin, xmax], we achieve

xmin ≤ min
p∈p̄

x(p, q) (23)

xmax ≥ max
p∈p̄

x(p, q). (24)

Remark 1. The technique can easily be extended to sys-
tems with an arbitrary number of fault prone parameters
p, an arbitrary number of design variables q, and an
arbitrary number of performance measurements x.

5. EXAMPLES

Example 1. (A single failure). Consider an unknown resis-
tive circuit. A Simulink model (see Fig. 4) of the circuit
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was created to conduct experiments. No knowledge about
the circuit is assumed.

Rd

Rf

Ri

I

V

R1

R2

R3

R4

R5

R6

R7

Fig. 4. Example resistive circuit

Suppose that resistor Rf is most vulnerable to faults. The
goal is to design Rd so that the current through Ri denoted
as I should be in the range [3.2A, 6.8A]. So we can write,

[Imin, Imax] = [3.2A, 6.8A].

We find the functional dependency of current I on the
resistors Rd and Rf is given by,

I(Rd, Rf ) =
α0 + α1Rd + α2Rf + α3RdRf

β0 + β1Rd + β2Rf +RdRf

. (25)

To determine α0, α1, α2, α3, β0, β1 and β2, seven experi-
ments should be conducted by setting 7 different values for
the resistors Rd, and Rf , and measuring the corresponding
current values I. The experiments are conducted on the
Simulink model of the circuit. Note that in the design
process, it is assumed that the model is not known. By
setting 7 different values for the resistors Rd, and Rf the
corresponding currents I are measured. The measurements
made are given in Table 1.

Table 1. Numerical values of I(Rd, Rf ) mea-
surements for experiments with Rd, Rf .

Exp.No Rd(Ω) Rf (Ω) I(Rd, Rf )(A)

1 1 1 4.52

2 7 2 3.07

3 12 7 4.09

4 20 13 4.41

5 35 24 4.65

6 67 43 4.79

7 90 58 4.85

Then solve

















1 Rd1 Rf1 Rd1Rf1 −I1 −I1Rd1 −I1Rf1

1 Rd2 Rf2 Rd2Rf2 −I2 −I2Rd2 −I2Rf2

1 Rd3 Rf3 Rd3Rf3 −I3 −I3Rd3 −I3Rf3

1 Rd4 Rf4 Rd4Rf4 −I4 −I4Rd4 −I4Rf4

1 Rd5 Rf5 Rd5Rf5 −I5 −I5Rd5 −I5Rf5

1 Rd6 Rf6 Rd6Rf6 −I6 −I6Rd6 −I6Rf6

1 Rd7 Rf7 Rd7Rf7 −I7 −I7Rd7 −I7Rf7

































α0

α1

α2

α3

β0

β1

β2

















=

















I1Rd1Rf1

I2Rd2Rf2

I3Rd3Rf3

I4Rd4Rf4

I5Rd5Rf5

I6Rd6Rf6

I7Rd7Rf7

















. (26)

Using the measurements from the experiments given in
Table 1, and (26) the functional dependency of current I
on the resistors Rd, and Rf is found to be

I(Rd, Rf ) =

42.6594− 0.1964Rd + 30.5111Rf + 5.0467RdRf

8.3847 + 3.6402Rd + 4.2363Rf +RdRf

. (27)

Using (27), I(Rd, Rf )|Rf=0 and I(Rd, Rf )|Rf=∞ for the
range of resistance Rd ∈ [0, 25] are calculated and are
shown in Fig. 5.

Fig. 5. I vs. Rd, for fixed Rf .

Then the appropriate range of Rd for fault tolerance has
to be selected so that the conditions in (28) and (29) are
satisfied,

I(Rd,min, Rf )|Rf∈[0,∞] ∈ [3.2A, 6.8A], (28)

I(Rd,max, Rf )|Rf∈[0,∞] ∈ [3.2A, 6.8A]. (29)

From Fig. 5. it is found that Rd,min = 6.43Ω and Rd,max =
8.45Ω is the appropriate range of Rd which satisfies (28)
and (29). When Rd is set to any value with in the designed
range the current I is maintained within the desired range
for any fault in Rf .

Example 2. (Two Failures). Consider an unknown resis-
tive circuit. A Simulink model is created to conduct exper-
iments (Fig. 6). Resistors Rf1 and Rf2 are most vulnerable
to faults. We want to design Rd so that the current through
Ri denoted as I should be in the range [0.5A, 4A].

[Imin, Imax] = [0.5A, 4A].

First, we find the functional dependency of current I on
the resistors Rd, Rf1, and Rf2. The relation is given by,
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Rd

Rf2

Ri

I

V

R1

R2

R3

R4

R5

R6

Rf1

Fig. 6. Example resistive circuit

I(Rd, Rf1, Rf2) =
α(Rd, Rf1, Rf2)

β(Rd, Rf1, Rf2)
(30)

where

α(Rd, Rf1, Rf2) = α0 + α1Rd + α2Rf1 + α3Rf2

+ α4RdRf1 + α5Rf1Rf2 + α6Rf2Rd + α7RdRf1Rf2

β(Rd, Rf1, Rf2) = β0 + β1Rd + β2Rf1 + β3Rf2

+ β4RdRf1 + β5Rf1Rf2 + β6Rf2Rd +RdRf1Rf2.

To determine α0, α1, α2, α3, α4, α5, α6, α7, β0, β1,β2, β3,
β4, β5, and β6, fifteen experiments should be conducted by
setting 15 different sets of values for the resistors Rd,Rf1,
and Rf2, and measuring the corresponding current I. The
experiments are conducted on the Simulink model of the
circuit. As before, in the design process, it is assumed that
the model is not known. By setting 15 different values for
the resistors Rd, Rf1, and Rf2 corresponding current I is
measured. The measurements made are given in Table 2.

Table 2. Numerical values of I(Rd, Rf1, Rf2)
measurements for experiments with

Rd, Rf1, Rf2.

Exp.No Rd(Ω) Rf1(Ω) Rf2(Ω) I(Rd, Rf1, Rf2)(A)

1 1 1 1 3.53

2 2 3 4 3.62

3 7 7 7 4.35

4 10 9 12 3.99

5 13 12 17 3.68

6 18 16 20 3.54

7 21 20 25 3.24

8 24 28 31 2.85

9 29 35 35 2.65

10 34 42 43 2.38

11 39 51 56 2.06

12 43 67 67 1.77

13 51 75 70 1.71

14 58 83 79 1.59

15 75 90 85 1.53

Using the measurements from the experiments given in
Table 2, and (30) the functional dependency of current I
on the resistors Rd,Rf1, and Rf2 is found to be,

α(Rd, Rf1, Rf2) =7.5− 2.1Rd − 0.9Rf1 + 1.28Rf2

+ 0.03RdRf1 + 0.08Rf1Rf2

+ 0.11Rf2Rd − 0.0002RdRf1Rf2

β(Rd, Rf1, Rf2) =2− 0.5Rd − 0.4Rf1 + 0.5Rf2

+ 0.01RdRf1 + 0.006Rf1Rf2

+ 0.02Rf2Rd + 0.001RdRf1Rf2 (31)

For different failure conditions listed in Table 3 and for
Rd ∈ [0, 25], current I(Rd, Rf1, Rf2) is calculated using
the expression (31)). The results are shown in Fig. 7.

Table 3. Single or Two resistor Failure Condi-
tions Considered in Design

Fault Condition Rf1 Rf2

1 Short Normal

2 Open Normal

3 Normal Short

4 Normal Open

5 Short Short

6 Short Open

7 Open Short

8 Open Open

9 Normal Normal

Fig. 7. I vs. Rd, for fixed Rf1, and Rf2.

Then the appropriate range of Rd for fault tolerance has
to be selected so that the conditions in (32) and (33) are
satisfied for all the fault conditions considered in Table 3.

I(Rd,min, Rf1, Rf2) ∈ [0.5A, 4A], (32)

I(Rd,max, Rf1, Rf2) ∈ [0.5A, 4A] (33)

From Fig. 7, it is found that Rd,min = 5.5Ω and Rd,max =
8.5Ω is the appropriate range of Rd. When Rd is set to any
value within the above range, the current I is maintained
within the desired range for any faults at Rf1 and Rf2.

6. CONCLUSIONS

Here we have introduced a new approach to achieve fault
tolerant system design without knowledge of its mathe-
matical models. A measurement based approach to linear
equations is used to obtain the relation between system
variables and the design parameters. Then using this rela-
tion appropriate design parameter values are extracted, so
that the system performance measure to be controlled lies
within acceptable ranges even when faults occur. This is
illustrated by examples of design of fault tolerant electrical
circuits. Research is ongoing for extending this theory
to fault tolerant system and controller design for general
linear time invariant systems.

REFERENCES

X.-L. Tan, D.D. S̆iljak, and M. Ikeda. Reliable stabiliza-
tion via factorization methods. IEEE Transactions on
Automatic Control, 37:111786 – 1791, 1992.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9398



A.N. Gündes. Stability of feedback systems with sensor
or actuator failures: analysis. International Journal of
Control, 56:4735 – 753, 1992.

A. Bhaya and J.B.L. Vieira. CONFAL: a stable-
factorization based fault-tolerant controller design soft-
ware package. Proceedings of the 33rd IEEE Conference
on Decision and Control, 2:1556 – 1557, Buena Vista,
FL, Dec. 14 - 16, 1994.

Qing-Long Han, Jin-Shou Yu and Zheng-Zhi Tang. De-
sign of Controller Possessing Integrity for Uncertain
Continuous-Time Systems. Proceedings of the IEEE
International Conference on Industrial Technology, 545
– 549, Dec. 2 - 6, 1996.

N. Chen and M. Ikeda. Fault-tolerant design of decen-
tralized H∞ control systems using homotopy method.
Proceedings of the 2004 SICE Annual Conference, 3:
1927 – 1931, Sapporo, Japan, Aug. 2-4, 2004.

S.P. Bhattacharya, L.H. Keel, and D.N. Mohsenizadeh.
Linear Systems: A measurement based approach.
Springer, 2013.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9399


