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Abstract: This paper studies the input-output properties of a class of control affine systems
where the drift dynamics is generated by a metriplectic structure. Those systems, related to
generalized (or dissipative) Hamiltonian systems, are generated by a conserved component and
a dissipative component and appear, for example, in non-equilibrium thermodynamics. In non-
equilibrium thermodynamics, the two potentials generating the dynamics are interpreted as
generalized energy and generalized entropy, respectively. In this note, passivity and passive
feedback stabilization of this class of systems are studied, with the output function taken as
the gradient of the conserved component of the dynamics, and the proposed storage function is
computed using the dissipative (metric) component of the dynamics.
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1. INTRODUCTION

We consider control affine systems of the form{
ẋ = X0(x) +X1(x)u

y = h(x)
(1)

with states x ∈ Rn, and control u ∈ R1, where the drift
vector field X0(x) is of the special form

X0(x) = J(x)∇TE(x)−R(x)∇TS(x), (2)

under degeneracy constraints

J(x) · ∇TS(x) = 0 (3)

R(x) · ∇TE(x) = 0, (4)

and such that J(x) is antisymmetric (J(x) = −JT (x))
and R(x) is symmetric positive-definite (R(x) = RT (x) �
0). We assume that the generating functions E(x) and
S(x) are of class Ck(Rn;R), with k ≥ 2 and that the
drift dynamics X0(x) has an isolated equilibrium xs. It
is assumed that the output map h(x) is a certain function
of the gradient of the conserved quantity E(x),

h(x) = XT
1 (x)∇TE(x). (5)

The objective of the present note is to study passivity and
passive stabilizing feedback control design for this class of
systems, following the approach surveyed for example in
(Byrnes et al., 1991; van der Schaft, 2000; Sepulchre et al.,
1997).

Systems of the form (2) are known in the literature
as metriplectic systems (Kaufman, 1984; Morrison, 1986;

Guha, 2007). These systems are generated by a conserved
quantity E(x) and a metric quantity S(x). Under the
degeneracy conditions (3-4), their dynamics can be re-
expressed as dissipative Hamiltonian systems (van der
Schaft, 2000), i .e., systems of the form

ẋ= [J(x)−R(x)]∇TH(x) + g(x)u,

studied extensively in the literature, for example in (van
der Schaft, 2000; Ortega et al., 2002; Cheng et al., 2002),
if one pick H(x) to be the free energy at unit temperature,
H(x) = E(x) − S(x) (Favache et al., 2010). However,
the problem proposed above differs by the nature of the
output, which is usually taken as

y = gT (x)∇TH(x)

in the case of dissipative Hamiltonian systems. In the
present case, we assume no direct measure of the metric
quantity S(x), which is however central to the construction
of the storage function candidate in the sequel. Systems
of the form (2) are interesting from the point of view
of non-equilibrium thermodynamic systems, since the so-
called GENERIC formulation of thermodynamics, pro-
posed originally in (Grmela and Öttinger, 1997; Öttinger

and Grmela, 1997) and reviewed extensively in (Öttinger,
2005), is based on the development of metriplectic systems
proposed originally in (Kaufman, 1984; Morrison, 1986).
It should be noted that under the degeneracy conditions
given above, the quantity F (x) = E(x) − S(x) (or more
generally, F (x) = E(x)− TS(x), where T is the tempera-
ture) can be interpreted as generalized free energy (Morri-
son, 1986; Guha, 2007). Obviously, mixed potentials, that
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is, potentials combining energy and entropy, are known
from classical thermodynamics, see for example the avail-
ability potential used in (Ydstie and Alonso, 1997) in the
context of passive systems theory and control of process
systems. Moreover, this class of systems is related to the
representation of smooth nonlinear dynamical systems as
the sum of a gradient system, given by the metric part of
the system generated by the generalized entropy S(x), and
(n−1) Hamiltonian systems, given by the symplectic part
of the system generated by the generalized energy E(x),
as presented for example in (Roels, 1974). It can also be
related to a recent construction presented in (Guay et al.,
2012, 2013), where nonlinear control systems are decom-
posed using the Hodge decomposition theorem (Warner,
1983) to obtain potential-driven representations, such as
gradient systems, generalized Hamiltonian systems, and
systems described by Brayton–Moser equations. It should
be noted that asymptotic stability of metriplectic systems
was studied in (Birtea et al., 2007) using Lasalle’s in-
variance principle and in (Birtea and Comǎnescu, 2009)
in relation to the energy-Casimir method (Aeyels, 1992).
In particular, the contribution by (Birtea et al., 2007)
considered a class of metriplectic systems where the metric
part of the system is generated by Casimir functions.

In this note, we consider a local decomposition of the drift
vector field to generate a potential V (x) to be used as a
storage function candidate for the system. Stability and
state feedback stabilization of metriplectic systems using
a radial homotopy decomposition were recently studied
in (Hudon et al., 2013a). A similar construction using
a homotopy decomposition based on the gradient of the
generalized entropy of the system was proposed in (Hudon
et al., 2013b). Essentially, the decomposition in (Hudon
et al., 2013b) amounts to a projection of the metriplectic
dynamics on its metric part. This particular construction
is used in the present note to construct a storage function
candidate, as an extension to input-output characteriza-
tion of metriplectic systems. In particular, applying pas-
sive systems theory following (Byrnes et al., 1991) leads
to a straightforward output feedback control strategy for
metriplectic systems, or more generally, in the context of
systems composed of conserved elements and dissipative
elements.

The paper is organized as follows. Preliminaries on passive
systems theory are briefly reviewed in Section 2. Construc-
tion of a storage function candidate for the metriplectic
using a homotopy decomposition approach, characteriza-
tion of passive properties and passive feedback stabilizing
controller design are given in Section 3. An illustration of
the proposed approach is given in Section 4. Conclusion
and future areas for investigation are outlined in Section
5.

2. REVIEW OF PASSIVE SYSTEMS THEORY

We first recall elements of passive systems theory, following
the contribution from Byrnes et al. (1991). Consider the
control affine system

Σ :

{
ẋ = f(x) + g(x)u

y = h(x),
(6)

x ∈ X ⊂ Rn, u ∈ U ⊂ R1, y ∈ Y ⊂ R1, where f , g
are smooth vector fields and h(x) is a smooth map. It

is assumed that the drift vector field f has at least one
isolated equilibrium xs, i .e., f(xs) = h(xs) = 0.

We first recall the classical definition of dissipative systems
(Sepulchre et al., 1997; van der Schaft, 2000).

Definition 1. A control affine system Σ is said to be
dissipative with respect to the supply rate s(u, y) : U ×
Y → R if there exists a storage function V : X → R+,
and that for all t1 ≥ t0, and all input functions u(·), the
following inequality holds

V (x(t1))− V (x(t0)) ≤
∫ t1

t0

s(u(t), y(t))dt, (7)

with x(t0) = x0 and x(t1) is the state resulting, at time t1
from the solution of (6) taking x0 as initial condition and
u(t) as control input the function. If V (·) is differentiable
with respect to time for all x ∈ X and u, the inequality
(7) is equivalent to

V̇ (x) ≤ s(u(t), y(t)). (8)

The system is said to be lossless if inequalities (7) or (8)
are equalities.

In the present note, we focus on the special case of
passive systems, i .e., single-input single-output dissipative
systems with the special form of supply rate s(u, y) = u ·y.
Following the developments in (Byrnes et al., 1991), we
are interested in the sequel in a fundamental property of
passive systems, the Kalman–Yacubovich–Popov property.

Definition 2. A system Σ has the Kalman–Yacubovich–
Popov (KYP) property if there exists a C1 nonnegative
function V : X → R, with V (0) = 0 such that

LfV (x)≤ 0 (9)

LgV (x) = h(x) (10)

for each x ∈ X .

The following proposition has been proved in (Byrnes
et al., 1991).

Proposition 3. A system Σ which has the KYP property
is passive, with storage function V . Conversely, a passive
system having a C1 storage function has the KYP prop-
erty.

In a previous contribution (Hudon et al., 2013b), we
studied the problem of designing a damping state feedback
controller of the form

u = −(LgV (x)) (11)

for metriplectic systems. This approach is obviously equiv-
alent to a passive feedback design with unit gain if the
output for the system is y = (LgV (x)). This property was
exploited in the case of dissipative Hamiltonian systems
(van der Schaft, 2000; Ortega et al., 2002) under mild
conditions on the generating Hamiltonian function. In the
present note, we seek to study under which conditions
metriplectic systems (1) with drift dynamics (2) can be
rendered passive with the output function (5), which is
only a function of the conserved quantity E(x).

Following (Byrnes et al., 1991), we assume that the system
is zero-state detectable, i .e., we assume that for y ≡ 0
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(and u ≡ 0), x → xs as t → ∞, with xs the desired
equilibrium (Sepulchre et al., 1997). In the following, our
interest is to develop an output feedback control strategy
for metriplectic systems using essentially the following
result proved in (Byrnes et al., 1991).

Theorem 4. Suppose Σ is passive with storage function
V which is positive definite. Suppose Σ is locally zero-
state detectable. Let φ : Y → U be any smooth function
such that φ(0) = 0 and y · φ(y) > 0 for each nonzero y.
The control law u = −φ(y) asymptotically stabilizes the
equilibrium x = xs.

3. PASSIVITY OF METRIPLECTIC SYSTEMS

This section presents the main construction of the paper.
Following the previous approach proposed in (Hudon et al.,
2013b), a storage function candidate for the metriplectic
system is constructed using homotopy in Section 3.1. The
KYP property is studied in Section 3.2. Properties of
metriplectic systems in closed-loop with passive output
feedback is studied in Section 3.3.

3.1 Construction of a Storage Function Candidate

We first construct a storage function V (x) for the
metriplectic drift vector field (2) by using homotopy de-
composition of an exterior differential form ω(x) associated
to the system. We first briefly recall the exterior differential
notation (Lee, 2006). We denote a smooth vector field in
Γ∞(Rn) as X(x) =

∑n
i=1 v

i(x) ∂
∂xi

and a smooth differen-

tial one-form in Λ1(Rn) as ω(x) =
∑n

i=1 ωi(x)dxi, where
vi(x) and ωi(x) are smooth functions on Rn. The standard
basis for vectors in Γ∞(Rn) and one-forms in Λ1(Rn) are
denoted by ∂

∂xi
and dxi, respectively. The interior product

of a differential form ω with respect to a vector field X is
denoted by Xyω.

The derivation of a differential one-form associated to the
drift vector field X0(x) relies on the canonical Riemannian
metric in Rn, given as g = dx1 ⊗ dx1 + . . . + dxn ⊗ dxn
with its associated volume form in Λn(Rn), expressed
as µ = dx1 ∧ dx2 ∧ . . . ∧ dxn. For a given drift vector
field X0(x) =

∑n
i=1X0,i(x) ∂

∂xi
, we seek to construct

a representation with an associated natural generating
potential function. The proposed construction consists
in computing a differential one-form ω ∈ Λ1(Rn) that
encodes the divergence of the drift vector field X0(x). Such
a one-form is obtained by using the Hodge star operator ?
of a (n− 1) form j, i .e.,

ω = ?j = ?(X0(x)yµ) = (−1)n−1
n∑

i=1

X0,i(x)dxi. (12)

If the one-form ω(x) is closed, i .e., if dω(x) = 0, it can be
shown that it is also locally exact, by virtue of the Poincaré
Lemma, and the system is conservative (in particular,
the dynamics is generated by the gradient of a potential
function). However, if the one-form is not closed, ω(x) can
be decomposed as the sum of an exact component and an
anti-exact component. A geometric decomposition can be
carried locally, using a homotopy operator, to distinguish
both components. A homotopy operator H, is a linear
operator on elements of Λk(Rn) that satisfies the identity

ω(x) = d(Hω)(x) + (Hdω)(x), (13)

for a given differential form ω ∈ Λk(Rn).

Using the notation from above, the drift vector field (2) is
given as

X0(x) =

n∑
i=1

(
n∑

j=1

Jij(x)
∂E(x)

∂xj
−Rij(x)

∂S(x)

∂xj

)
∂

∂xi
. (14)

Following the approach depicted above, we first construct
a differential one-form ω(x) ∈ Λ1(Rn) for X0(x). The one-
form ω(x) for the metriplectic drift vector field (14) is thus
given by:

ω(x) = (−1)n−1

n∑
i=1

X0,idxi, (15)

where

Xi,0 =

n∑
j=1

Jij(x)
∂E(x)

∂xj
−Rij(x)

∂S(x)

∂xj
.

Following (Hudon et al., 2013b), we use a homotopy
operator defined using the metric part of the system (2) to
compute a storage function for the system. More precisely,
we define a vector field X(x) different from the radial
vector field used in (Hudon et al., 2008).

First, we make the following assumption on the potentials
E(x) and S(x) of (2).

Assumption 5. The potentials E(x) and S(x) are such
that J(xs) · ∇TE(xs) = 0 and R(xs) · ∇TS(xs) = 0 at
an isolated equilibrium xs.

This assumption essentially states the fact that the gra-
dients of both potentials are zero at the equilibrium xs,
which in the context of non-equilibrium thermodynamics
can be interpreted as the fact that, at an equilibrium
point xs, the energy is minimized, while the entropy is
maximized. In the sequel, we consider the locally-defined
vector field defined by

X = (−1)n−1
n∑

i=1

∂S

∂xi
(x)

∂

∂xi
. (16)

First, we note that by application of the homotopy oper-
ator constructed using the locally defined vector field X
from (16), we obtain the following.

Proposition 6. By projection of the metriplectic system
(15) on the local vector field X defined by (16), the
potential ψ(x) obtained by homotopy is given by

ψ(x) = −
∫ 1

0

[(∇S)(λx)R(xs + λ(x− xs))(∇S)T (λx)]dλ.

Proof. Using a vector notation, we have ω(x) given as

ω(x) = (−1)n−1
[
J(x)∇TE(x)−R(x)∇TS(x)

] 
dx1
dx2

...
dxn


T

.

Under the Assumption 5, denoting x̄ = xs +λ(x−xs), we
have
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ω(x̄) = (−1)n−1
[
J(x̄)∇TE(λx)−R(x̄)∇TS(λx)

]
dx1
dx2

...
dxn


T

.

Taking the interior product Xyω(x̄), with

X = (∇S)


∂

∂x1
...
∂

∂xn

 ,
we have

Xyω(x̄) =∇S(λx)J(x̄)∇TE(λx)−∇S(λx)R(x̄)∇TS(λx).

By the degeneracy condition J(·)∇TS(·), and since J(·) =
−JT (·), we have∇S(·)J(·) = −∇S(·)JT (·) = (J∇TS)T (·) =
0, and hence

Xyω(x̄) =−∇S(λx)R(x̄)∇TS(λx).

By homotopy, we obtain directly

ψ(x) = (Hω)(x) = −
∫ 1

0

[(∇S)(λx)R(xs + λ(x− xs))(∇S)T (λx)]dλ.

Remark 7. At this point, one should remark that a projec-
tion on the conserved component of the dynamics ∇E(x)
would not be useful to construct a suitable potential for
the system. In particular, for

X = (−1)n−1
n∑

i=1

∂E

∂xi

∂

∂xi
, (17)

we have the interior product

Xyω(x̄) =∇E(λx)J(x̄)∇TE(λx)−∇E(λx)R(x̄)∇TS(λx).

Since J = −JT , the energy term (∇EJ∇TE)(·) = 0
and by the degeneracy condition R(x)∇TE(x) = 0 with
symmetric R(x) = RT (x), we have (∇ER∇TE)(·) = 0. As
a consequence ψ(x) = Hω(x) computed along (17) would
be trivially zero.

Since the symmetric matrix R(x) is positive definite,
the potential ψ(x) is negative definite. Hence, a suitable
storage function candidate for the system is therefore
chosen as

V (x) = −ψ(x)

=

∫ 1

0

[(∇S)(λx)R(xs + λ(x− xs))(∇S)T (λx)]dλ (18)

> 0.

Moreover, under Assumption 5, V (x) is bounded from be-
low, i .e., V (xs) = 0. Passive properties of the metriplectic
system (1)–(2) with output (5) is studied in the following
section based on the storage function V (x).

3.2 KYP property for Metriplectic Systems

In order to establish the passive properties of metriplectic
systems, we seek to establish under which conditions the

metriplectic system (1)–(2) with output (5) has the KYP
property. The first part of Definition 2 is established in the
following.

Proposition 8. For the metriplectic system (2), we have

LX0
V (x) = (X0ydV )(x) < 0, x 6= xs

for the storage function V (x) derived in (18) for all x in a
neighborhood of the equilibrium, with LX0

V (xs) = 0.

Proof. As stated above, the exterior derivative of the
potential V (x) can be identified with the exact part of
the one-form ω(x), which, given the construction above, is
given by the metric part of ω(x), i .e.,

dV (x) = ωe(x)

=

n∑
i=1

 n∑
j=1

Rij(x)
∂S

∂xj

 dxi.

Taking the interior product, one obtains (dropping the
arguments)

(X0ydV ) =

n∑
i=1

(
n∑

j=1

Jij
∂E

∂xj
−Rij

∂S

∂xj

)
∂

∂xi

y

n∑
i=1

(
n∑

j=1

Rij(x)
∂S

∂xj

)
dxi.

Distributing, we obtain

(X0ydV ) = (J∇TE)T (R∇TS)− (R∇TS)T (R∇TS).

By using the degeneracy constraint R(x)∇TE(x) = 0,
and since R(x) = RT (x), we obtain directly

(X0ydV ) =−(R∇TS)T (R∇TS) < 0

and using Assumption 5, V̇ = 0 at the equilibrium xs.

We now study the conditions under which metriplectic
systems have the KYP property.

Proposition 9. (1)–(2) with output (5) has the KYP prop-
erty with storage function (18) if

XT
1 (∇TE −R∇TS) = 0.

Proof. What is left to show is the second part of Defini-
tion 2, i .e., LgV (x) = h(x). With h(x) = XT

1 ∇TE(x), we
have, using exterior calculus notation:

X1ydV = X1dE. (19)

From above, we have

dV (x) = ωe(x)

=

n∑
i=1

 n∑
j=1

Rij(x)
∂S

∂xj

 dxi.

Hence, we have the condition

X1y
(
dE −

n∑
i=1

 n∑
j=1

Rij(x)
∂S

∂xj

 dxi

)
= 0.
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In compact form, this is equivalent to XT
1 (∇TE −

R∇TS) = 0.

Remark 10. In general, i .e., for an arbitrary vector field
X1, the KYP condition boils down to

(∇TE −R∇TS) = 0.

The interpretation of this condition is equivalent to say
that the generalized entropy function S(x) is a Casimir of
the generalized energy E(x), see for example (Birtea et al.,
2007).

3.3 Passive Output Feedback of Metriplectic Systems

We finally study the metriplectic system (1)–(2) with out-
put (5) in closed-loop with the output feedback u = −Ky.
The central element to consider here is the application of
Theorem 4 in our context. The result is summarized in the
following theorem.

Theorem 11. Consider the metriplectic system (1)–(2)
with output (5) in closed-loop with the output feedback
u = −Ky, with K > 0. Then, an isolated equilibrium xs
such that Assumption 5 is met, is an asymptotically stable
equilibrium of the closed-loop if S(x) is a Casimir function
of E(x).

Proof. First, by Proposition 3 and the development from
the last Section, we have that if XT

1 (∇TE − R∇TS) = 0,
since it is assumed that S(x) is a Casimir of E(x), then
the system is passive, since the system has the KYP
property with storage function V (x) given in (18). By
the Assumption 5, both conserved and metric components
go to zero simultaneously, and as a consequence, the
metriplectic system is zero-state detectable. Then, by
Theorem 4, the control law u = −φ(y), and in particular
the constant-gain control law u = −Ky, asymptotically
stabilizes the equilibrium x = xs.

4. EXAMPLE

To illustrate the above approach to the output stabiliza-
tion of metriplectic systems, we consider the stabilization
of the rigid body, an example considered in (Morrison,
1986; Bloch and Marsden, 1990; Aeyels, 1992). The control
system is given by:

ẋ1 = (I2 − I3)x2x3 (20)

ẋ2 = (I3 − I1)x1x3 (21)

ẋ3 = (I1 − I2)x1x2 + u, (22)

where I1 < I2 < I3 are positive constants. Following
the discussion in (Morrison, 1986), we have two conserved
quantities

E(x) =
1

2
(I1x

2
1 + I2x

2
2 + I3x

2
3) (23)

l2(x) = x21 + x22 + x23, (24)

from which it is possible to recover a metriplectic repre-
sentation (2), by setting S(x) = φ(l2(x)), with φ(·), an
arbitrary function, and

J =

[
0 0 0
0 0 −1
0 1 0

]
(25)

R =

[
I22x

2
2 + I23x

2
3 −I1I2x1x2 −I1I3x1x3

−I1I2x1x2 I21x
2
1 + I23x

2
3 −I2I3x1x3

−I1I3x1x3 −I2I3x1x3 I21x
2
1 + I22x

2
2

]
. (26)

The objective is to stabilize an isolated equilibrium
located at xs = (x1d, 0, 0)T , where x1d depends on the
initial conditions (Birtea and Comǎnescu, 2009). In the
sequel, we consider the metriplectic system generated
using J , R(x), E(x) and S(x) = l2(x), with the output
y = h(x) = XT

1 ∇TE(x). For this construction the system
has the KYP property, with a storage function constructed
as demonstrated above.

The output passive feedback controller u = −Ky is given
by

u(x) =−KXT
1 ∇TE(x) (27)

=−KI3
2
x3, (28)

which is different from the controller proposed originally
in (Bloch and Marsden, 1990). Figures 1 and 2 show the
trajectory of the dynamics in closed-loop and the control
action for the system with parameters I1 = 1/2, I2 = 1,
I3 = 3/2, initial conditions x0 = (1, 1, 1)T , and unit output
controller gain K = 1.

Fig. 1. Closed-loop state dynamics

5. CONCLUSION

We studied passive and passive feedback control design for
a class of control affine systems where the drift is generated
by two potentials, interpreted as generalized energy and
generalized entropy, under some degeneracy constraints.
This class of systems proved to be useful in studying
dynamical properties of thermodynamical systems. In the
present note, the output is taken as the gradient of the
conserved quantity. A potential for the metriplectic system
was derived using a homotopy operator centered at an
isolated equilibrium of the system. Using the obtained
potential, characterization of the passive character of the
system was studied. Stability of the closed-loop system
under unit output feedback was demonstrated. Future
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Fig. 2. Passive output feedback control signal

investigations would consider the problem of studying L2-
gain and inverse optimality for this class of dynamical
systems following the techniques developed in (van der
Schaft, 2000).
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