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Abstract: This paper presents a distributed decision making approach to the problem of control
effort allocation to robotic team members. The objective is for a team of autonomous robots
to coordinate their actions in order to efficiently complete a task. A novel controller design
methodology is proposed which allows the robot team to work together based on a game-
theoretic learning algorithms using fictitious play and extended Kalman filters. In particular each
robot of the team predicts the other robots’ planned actions while making decision to maximise
its own expected reward that is dependent on the reward for joint successful completion of the
task. After theoretical analysis the performance of the proposed algorithm is tested on a scenario
of collaboration between material handling and patrolling robots in a warehouse.

1. INTRODUCTION

Teams of robots can be used in many domains such as mine
detection [Zhang et al., 2001], exploration of unknown
environments [Simmons et al., 2000, Madhavan et al.,
2004], medication delivery in medical facilities [Evans and
Krishnamurthy, 1998] and inspection of hazardous areas
which contain materials that are harmful for humans. In
these cases teams of intelligent robots should coordinate
in order to accomplish a desired task. When autonomy is a
desired property of a multi-robot system then coordination
between the robots of the team is necessary.

Game theory has been used in the past to design optimal
controllers when the objective is coordination. In these
results the agents/robots would eventually reach the Nash
equilibrium of a coordination game. Semsar-Kazerooni and
Khorasani [2009, 2008] used local and global components
in each agent’s cost function and searched for the Nash
equilibrium of the game. Bauso et al. [2006] also searched
for the Nash equilibrium of games using agents’ cost
functions which were based on local components and
assumed that the states of the other agents were constant.

In this work we propose a collaborative controller design
methodology which is based on game theory and it over-
laps with the topic of distributed optimisation [Chapman
et al., 2011]. Each agent i strives to minimise a global con-
trol cost function through minimising its private control
cost function which is associated with the global one. The
private cost functions of an agent i incorporates terms that
not only depend on agent i but also on costs associated
with the actions of all the agents. As we are interested in
autonomous robots we interpret the coordination problem
as a distributed optimisation problem. It is well known
that many decentralised optimisation tasks can be cast as
potential games [Wolpert and Tumer, 2004, Arslan et al.,
2007], and the search of an optimal solution can be seen

? This work was supported by EPSR Research Grant No
EP/J011894/2: Distributed Sensing, Control and Decision Making.

as the task of finding Nash equilibria in a game. Thus it
is feasible to use iterative learning algorithms from the
game-theoretic literature, such as fictitious play, to solve
decentralised optimisation problems.

In this paper we propose a learning algorithm based on fic-
titious play [Brown, 1951] which serves as the coordination
mechanism of the controllers of team members. Instead of
finding the Nash equilibrium of the game, which is not pos-
sible in polynomial time for some games [Daskalakis et al.,
2006], we allow agents to learn how they will minimise
their cost function through communication and interac-
tion with other agents. Thus, in our proposed controller
design methodology there is a coordination phase where
agents learn other agents policies and then they use this
knowledge to decide the action that minimise their cost
functions.

Fictitious play is a learning process where players choose
an action that maximises their expected rewards based on
their beliefs about their opponents’ strategies. The play-
ers update these beliefs after observing their opponents’
actions. Even though fictitious play converges to the Nash
equilibrium for certain categories of games [Fudenberg and
Levine, 1998], this convergence can be very slow because
of the assumption that players use a fixed strategy in the
whole game. Speed up of the convergence can be facili-
tated by an alternative approach, which was presented by
Smyrnakis and Leslie [2010], where opponents’ strategies
vary through time and players use particle filters to predict
them. Though providing faster convergence, this approach
has the drawback of high computational costs of the parti-
cle filters. In applications where the computational cost is
important, as the coordination of many UAVs, the particle
filters approach is intractable. The alternative that we
propose is to use extended Kalman filters (EKF) instead
to predict opponents’ strategies. EKFs have much smaller
computational costs than the particle filter variants of
fictitious play algorithm that have been proposed by Smyr-
nakis and Leslie [2010]. Moreover in contrast to [Smyrnakis
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Fig. 1. A feedback loop controller for decision making of
autonomous robots

and Leslie, 2010] we provide a proof of convergence to
Nash equilbrium of the proposed learning algorithm for
potential games.

From implementations’ point of view, the controller
methodology we propose can be considered as part of the
“mental” capabilities of each software agent controlling a
robot as in Lincoln et al. [2013]. While the agent focuses
on its own duties such as collision detection and observing
its environment and observing what the other robotic
agents are doing, it can also estimate their anticipated
actions within a generic rational agent architecture. Figure
1 outlines this collaborative skill of the agent in a block
diagrammatical form.

The remainder of this paper is organised as follows. We
start with a brief description of relevant game theory.
Section 5 describes how we construct the performance
model by casting the control problem as a game. Section
3 introduces the learning algorithm that we use in our
controller, Section 5 contains the main theoretical results
and Section 6 presents the simulation results we obtained.
In the final section we conclude by a summary of results,
open problems and future work.

2. GAME THEORY DEFINITIONS

In this section we will briefly present some basic definitions
from game theory, since the learning block of our controller
is based on it. A game Γ is defined by a set of players
I, i ∈ 1, 2, . . . , I, who can choose an action, si, from a
finite discrete set Si. We then can define the joint action
s, s = (s1, . . . , sI), that is played in a game as an element
of the set product S = ×i=Ii=1S

i. Each Player i receives a
reward, ri, after choosing an action si. The reward, utility,
is a map from the joint action space to the real numbers,
ri : S → R. We will often write s = (si, s−i), where si is
the action of Player i and s−i is the joint action of Player
i’s opponents. When players select their actions using a
probability distribution they use mixed strategies. The
mixed strategy of a Player i, σi, is an element of the set
∆i, where ∆i is the set of all the probability distributions
over the action space Si. The joint mixed strategy, σ, is
then an element of ∆ = ×i=I

i=1∆i. Analogously to the joint
actions we will write σ = (σi, σ−i). The expected utility a
player i will gain if he chooses a strategy σi (resp. si), when
his opponents choose the joint strategy σ−i is ri(σi, σ−i)
(resp. ri(si, σ−i)).

A common decision rule in game theory is best response
(BR). Best response is defined as the action that max-

imises players’ expected utility given their opponents’
strategies. Thus for a specific mixed strategy σ−i we eval-
uate the best response as:

BRi(σ−i) = argmax
si∈S

ri(si, σ−i) (1)

Nash [1950], showed that every game has at least one
equilibrium, which is a fixed point of the best response
correspondence, σi ∈ BR(σ−i). This implies that if a
mixed strategy σ̂ is a Nash equilibrium then it is not
possible for a player to increase his utility by unilaterally
changing his strategy. When all the players in a game select
their actions using pure strategies then the equilibrium
actions are referred to as pure strategy Nash equilibria.

A class of games of particular interest are potential games
because distributed optimisation tasks can be cast as
potential games. In potential games the global utility and
players’ utilities has the following attribute:

ri(si, s−i)− ri(s̃i, s−i) = φ(si, s−i)− φ(s̃i, s−i) (2)

where φ is a potential function and the above equality
stands for every player i, for every action s−i ∈ S−i,

and for every pair of actions si, s̃i ∈ Si. Moreover
potential games have at least one pure Nash equilibria,
hence there is at least one joint action s where no player
can increase their reward, i.e. their potential function,
through a unilateral action. For instance the “”wonderful
life” utility [Wolpert and Tumer, 2004, Arslan et al., 2007]
can be used as global utility to act as a potential for the
system.

3. THE LEARNING PROCESS

In this section we present a combination of fictitious play
and extended Kalman filters as the algorithms that we
will use in the learning block of the proposed controller.
We briefly present the classic fictitious play algorithm and
how it can be combined with extended Kalman filters in a
decision making algorithm.

3.1 Fictitious play

Fictitious play [Brown, 1951], is a widely used learning
technique in game theory. In fictitious play each player
chooses his action according to the best response of his
beliefs about his opponent’s strategy.

Initially each player has some prior beliefs about the
strategy that his opponent uses to choose an action based
on a weight function κt. The players, after each iteration,
update the weighting functions, and therefore their beliefs,
about their opponent’s strategy and play again the best
response according to their beliefs. More formally, in the
beginning of a game players maintain some arbitrary non-
negative initial weighting functions κj0, j = 1, . . . , I ,
j 6= ithat are updated using the formula:

κjt (s
j) = κjt−1(sj) + Isjt=sj

(3)

for each j, where Isjt=sj
=

{
1 if sjt = sj

0 otherwise.
.

Players assume that their opponents choose their actions
using a fixed mixed strategy. It is natural then to use
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a multinomial distribution to approximate an opponent’s
mixed strategy. The parameters of the multinomial dis-
tribution can be estimated using the maximum likelihood
method. The mixed strategy of opponent j is then esti-
mated from the following formula:

σjt (s
j) =

κjt (s
j)∑

s′∈Sj κ
j
t (s
′)
. (4)

When (4) is used, the recent observations have the same
weight as the initial ones, which can lead to poor adapta-
tion when the other players choose to change their strate-
gies.

3.2 Fictitious play as a state space model

A more realistic assumption is to presume that players
are intelligent and change their strategies according to
the other players’ actions. We follow Smyrnakis and Leslie
[2010] and will represent the fictitious play process as a
state-space model. According to the state space model
each player has a propensity Qit(s

i) to play each of their
available actions si ∈ Si, and then to form a strategy
based on these propensities. Finally players can choose
an action based on their strategy and the best response
decision rule. Because players have no information about
the evolution of their opponents’ propensities, and under
the assumption that the changes in propensities are small
from one iteration of the game to another, we model
propensities using a Gaussian autoregressive prior on all
propensities zSmyrnakis and Leslie [2010]. We set Q0 ∼
N(0, I), where I is the identity matrix, and recursively
update the value of Qt according to the value of Qt−1 as
follows:

Q(st) = Q(st−1) + ηt (5)

where ηt ∼ N(0, χ2I). The propensities are connected with
the measurements’ layer, actions by the following sigmoid
equation for every si ∈ Si

Qm(si) =
exp (Qit(s

i)/τ)∑
s̃∈Si exp (Qit(s̃)/τ)

. (6)

3.3 Fictitious play and EKF

For the rest of this paper we will only consider infer-
ence over a single opponent mixed strategy in fictitious
play. Separate estimates will be formed identically and
independently for each opponent. We therefore consider
only one opponent, and we will drop all dependence on
player i, and write st, σt and Qt for player i’s opponent’s
action, strategy and propensity respectively. Moreover for
any vector x, x[j] will denote the jth element of the vector
and for any matrix y, y[i, j] will denote the (i, j)th element
of the matrix.

We can use the following state space model to describe the
fictitious play process:

Qt = Qt−1 + ξt−1
Qmt = h(Qt) + ζt

where ξt−1 ∼ N(0,Ξ), is the noise of the state process and
ζt ∼ N(0, Z) is is the error of the observation state with
zero mean and covariance matrix Z, which occurs because
we approximate a discrete process like best responses (1),

using a continuous function h(·). Hence we can combine
the EKF with fictitious play as follows.

At time t− 1 Player i has an estimation of his opponent’s
propensity using a Gaussian distribution with mean mt−1
and variance Pt−1, and has observed an action st−1.
Then at time t he uses EKF prediction step to estimate
his opponent’s propensity. The mean and variance of
p(Qt|s1:t−1) of the opponent’s propensity approximation
are:

m−t = mt−1

P−t = Pt−1 + Ξ

Player i then evaluates his opponents strategies using his
estimations as:

σt(st) =
exp(m−t [st]/τ)∑
s̃∈S exp(m

−
t [s̃]/τ)

. (7)

where m−t [st] is the mean of Player i’s estimation about
the propensity of his opponent to play action st. Player i
then uses the estimation of his opponent strategy (7) and
best responses (1), to choose an action. After observing the
opponent’s action st, Player i correct his estimations about
his opponent’s propensity using the update equations of
EKF process. The update equations are:

vt = zt − h(m−t )

St =H(m−t )P−t H
T (m−t ) + Z

Kt = P−t H
T (m−t )S−1t

mt =m−t +Ktvt

Pt = P−t −KtStK
T
t

where h = exp(Qt[s
′
]/τ)∑

s̃∈S
exp(Qt[s̃]/τ)

, and τ is a temperature pa-

rameter. The Jacobian matrix H(m−t ) is defined as

[H(m−t )]j,j′ =


∑
j 6=j′ exp(m−t [j]) exp(m−t [j′])

(
∑
j exp(m−t [j]))2

if j = j′

−exp(m−t [j]) exp(m−t [j′])

(
∑
j exp(m−t [j]))2

if j 6= j’

.

Table 1 summarises the fictitious play algorithm when
EKF is used to predict opponents strategies.

4. THE MAIN RESULTS

In this section we present our convergence results for
games with at least one pure Nash equilibrium. The results
are valid for the EKF fictitious play algorithm of Table
1, when the covariance matrices Ξ and Z are defined
as Ξ = (ξ̃ + ε)I and Z = (1/t)I respectively, where ξ̃
is a constant, ε is an arbitrarily small Gaussian random
variable, ε ∼ N(0,Ψ), t is the tth iteration of fictitious
play, and I is the identity matrix.

The EKF fictitious play algorithm has the following prop-
erties:

Proposition 1. If at iteration t of the EKF fictitious play
algorithm, action s is played from Player i’s opponent,
then the estimation of his opponent propensity to play
action s increases, mt−1[s] < mt[s]. Moreover if ∆[i] =
mt[i] − mt−1[i], then ∆[s] > ∆[j]∀j ∈ Sj , where Sj is
the action space of the jth opponent of Player i. Therefore
since

∑
j∈Sj σj = 1, σjt will be also increased.
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(1) At time t Player i maintains some estimations about his opponents propensity up to time
t − 1, p(Qt−1|s1 : t− 1). Thus he has an estimation of the mean mt−1 and the covariance
Pt−1 of this distribution.

(2) Player i updates his estimations about his opponents’ propensities p(Qt|s1 : t− 1) using
equations, m−

t = mt−1, P−
t = Pt−1 + Ξt−1.

(3) Based on the weights of step 1 each player updates his beliefs about his opponents’ strategies

using σjt (sj) =
exp(m−

t
(j)/τ)∑

j′
exp(m−

t
(j)/τ)

.

(4) Player i chooses an action based on the beliefs of step 3 and best response decision rule.
(5) He observes opponents’ actions st.
(6) Update his estimations of opponents’ propensities using mt = m−

t + Ktvt and

Pt = P−
t −KtStKT

t .

Table 1. EKF Fictitious Play algorithm

L R

U 1,1 0,0

D 0,0 1,1

Table 2. Simple coordination game

Proof. The proof of Proposition 1 is on Appendix A.

Proposition 1 implies that players, when they use EKF
fictitious play, learn their opponent’s strategy and eventu-
ally they will choose the action that will maximise their
reward base on their estimation. Nevertheless there are
cases where players may change their action simultane-
ously and become trapped in a cycle instead of converging
in a pure Nash equilibrium. As an example we consider
the game that is depicted in Table 2. This is a simple
coordination game with two pure Nash equilibria the joint
actions (U,L) and (D,R). In the case were the two players
start from joint action (U,R) or (D,L) and they always
change their action simultaneously then they will never
reach one of the two pure Nash equilibria of the game.

Proposition 2. When the players of a game Γ use EKF
fictitious play process to choose their actions, then with
high probability they will not change their action simulta-
neously infinitely often.

Proof. The proof of Proposition 2 is on Appendix B.

Based on Proposition 1 and 2 we can infer the following
propositions and theorems.

Proposition 3. (a) If s is a pure Nash equilibrium of a game
Γ, and s is played at date t in the process of EKF fictitious
play, s will be played at all subsequent dates. That is,
pure Nash equilibria are absorbing for the process of EKF
fictitious play.

(b) Any pure strategy steady state of EKF fictitious play
must be a Nash equilibrium.

Proof. Consider the case where players beliefs σ̂t, are
such that their optimal choices correspond to a pure
Nash equilibrium ŝ. In EKF fictitious play process players’
beliefs are formed identically and independently for each
opponent based on equation (7). By Proposition 1 we
know that players’ estimations about their opponents’
propensities and therefore their strategies will increase for
the actions that are included in ŝ. Thus the best response
to their beliefs σ̂t+1 will be again ŝ and since ŝ is a Nash
equilibrium they will not deviate from it. Conversely, if a

player remains at a pure strategy profile, then eventually
the assessments will become concentrated at that profile,
because of Proposition 1 and so if the profile is not a Nash
equilibrium, one of the players would eventually want to
deviate.

Proposition 4. Under EKF fictitious play, if the beliefs
over each player’s choices converge, the strategy profile
corresponding to the product of these distributions is a
Nash equilibrium.

Proof. Suppose that the beliefs of the players at time t,
σt, converges to some profile σ̂. If σ̂ were not a Nash equi-
librium, some player would eventually want to deviate and
the beliefs would also deviate since based on Proposition
1 players eventually learn their opponents actions.

Based on the propositions (1-4) we can show that EKF
fictitious play converges to the the Nash equilibrium of
games with a better reply path. A game with a better
reply path can be represented as a graph were its edges
are the join actions of the game s and there is a vertex
that connects s with s′ iff only one player i can increasing
his payoff by changing his action [Young, 2005]. Potential
games have a better reply path.

Theorem 5. The EKF fictitious play process converges to
the Nash equilibrium in games with a better reply path.

Proof. If the initial beliefs of the players are such that
their initial joint action s0 is a Nash equilibrium, from
Proposition 3 and equation (7), we know that they will
play the joint action which is a Nash equilibrium for the
rest of the game.

Moreover in the case of the initial beliefs of the players
are such that their initial joint action s0 is not a Nash
equilibrium based on Proposition 1 and Proposition 2 after
a finite number of iterations because the game has a better
reply path the only player that can improve his payoff
by changing his actions will choose a new action which
will result in a new joint action s. If this action is not
the a Nash equilibrium then again after finite number
of iterations the player who can improve his payoff will
change action and a new joint action s′ will be played.
Thus after the search of the vertices of a finite graph, and
thus after a finite number of iterations, players will choose
a joint action which is a Nash equilibrium. the player that
we know that after a finite number of iterations t1 with
high probability players at least one player will not change
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his action simultaneously with the others, thus for a Player
i, sit1−1 = sit1. If the new joint action st1 is not a Nash
equilibrium, then at least one of the other players will
deviate. Based on Proposition 2 and the fact that players
estimate opponents’ strategies independently at least one
of them who will not change his action simultaneously with
the others after t2 iterations which will result to a new joint
action st2 that will improve the current utility. Eventually
after a finite number of time steps, T , the process will end
up in a pure Nash equilibrium. The maximum number
of iterations that is needed is the cardinality of the joint
action set multiplied with the total number of iterations
that is needed in order not to have simultaneous changes,(
n
2

)
(t1 + t2 + t3 + . . .+ T )

5. THE PERFORMANCE MODEL

The controllers that we associate with each robot will be
assumed to be able to carry out some dynamic tasks. We
will consider I independent control systems, each of them
associated with a robot, with the following dynamics:

ẋi =fi(xi, ui) (8)

y =gi(xi) (9)

where xi is the state of the system and ui the control
input of the system. A general cost function then can
be expressed as Li(xi, ui) = Ji(xi, ui) + Ei(xi) where
Ji(xi, ui) and Ei(xi, x−i) are the maneuverability and
environmental costs respectively and can be defined as:

Ji(x
T
i , ui) = cm

∫ T

0

||ui(s)||ds (10)

The states can be angular lateral possitions and their
velocities and ui can be actuator forces.

Ei(xi) = ce

k∑
j=1

θji (xi, x−i) (11)

where cm and ce are constants, us is the control input in
order to move from from the initial state x0i towards the

terminal state xTi and θji (·) are the environmental costs
that depend on the final state of the agent xTi and all
agents but i final state xT−i. In order to choose the actions
that provide the best performance we should solve the
following maximisation problem :

min −Li(xi, ui)
s.t
xTi ∈ Xi

(12)

where Xi is the set of all possible final states for agent i.

In order to create the performance model of our controller
we need to define a utility function. Utility functions
have been used as metrics of the robots’ coordination
efficacy in applications,such as [Parker, 1998, Zlot et al.,
2002, Timofeev et al., 1999, Botelho and Alami, 1999,
Tsalatsanis et al., 2009]. Since the players of the game
will maximise their expected reward the utility function
can be seen as the negative of a cost function. Therefore
we can include in the utility any maneuverability costs
of the robots and environmental elements of the robots’
tasks and the constraints that might arise from specific
tasks. In the maneuverability part of the cost function
we will take into account the spatial characteristics of the

problem like the cost to the robot to move towards to
a specific position. The environmental part of the cost
function takes into account costs that arose from the
nature of the coordination problem and can include the
also the quality of the sensors of a robot, the aptness of
the robots to perform specific tasks, etc.

The following case study serves as an example of the
relationship between game theory and the control appli-
cations. We consider a team of robots who should co-
ordinate in order to identify possible threats in an area
A. We assume that in N regions of A there are some
hazardous items. These items have different attributes of
the following categories: flammable, chemical, radioactive
and security sensitive. In each region there are items that
belong up to two different categories, i.e. in the same region
n we cannot place flammable, radioactive and chemical
objects. Each of the I robots of the team is equipped
with sensors that have different attributes and capabilities
in order to identify different threats. Each robot i then
can be equipped with up to four of the following sensors:
fire detector, chemical detector, Geiger counter and vision
system. Therefore robots with a fire detector should patrol
areas with flammable objects, robots with Geiger should
patrol areas with radioactive material etc.

We will use cooperative robot teams, robots who have
different sensors and capabilities, but it is possible to
use a similar controller in swarms of robots, i.e. robot
teams that have identical specifications. The differences
between the robots can be expressed in terms of their
endurance in a specific environment, the efficiency with
which they accomplish a specific task and the presence of
the correct sensor to identify a specific threat. In order to
quantify the efficacy of a robot in a specific task we use
two fuzzy variables: endurance and efficiency. The values of
endurance are short, fair, long and values of efficiency are
low, medium and high. If a robot is not equipped with a
specific sensor then its efficiency to detect an event is zero.
Each robot, using a controller like the one that is depicted
in Figure 1, should then coordinate with the other robots
in order to efficiently choose a region to patrol.

The robots should coordinate and choose a region which
they will patrol based on the possible threats that should
be detected in each area, their sensors’ specifications and
the actions of the other robots. Each robot can choose
only one region to patrol, but many robots can choose the
same area. We will denote the efficacy of a robot i to sense
a threat k in area n as Eink.

Each object in A is of different significance and therefore
each region has a different value depending on the objects
that are stored there which can be incorporated in Ei(·).
In a game theoretic terminology we can define a potential
game Γ with I players which have N available actions.
The utility function that is prodused in a region n can be
defined as:

rn(s) =
∑
∀i,si=n

rmi (si) +
∑

∀si=n,n∈N

rei (s
i, s−i).

where rmi (si), is a function that depends on the initial
position of the robot, the region n, n ∈ N . In terms
of the cost functions of the previous section (rmi (si) =
−Ji(xTi , ui)) and the final state xTi depends on the region
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Weak Fair Strong

Weak 1,1 0,0 0,0

Fair 0,0 1,1 0,0

Strong 0,0 0,0 1,1

Table 3. Symmetric game

which robot i chooses. The environmental cost of this
choice,rei (s

i) = −Ei(xTi ) depends on the actions, final
states, of all the robots and is a function that depends
on the sensors of the robots, the value an the types of the
objects in region n that is represented as final the state
xTi . The global utility that the robots will share is defined
as:

rg(s) =

n=N∑
n=1

rn(s) (13)

6. SIMULATIONS

This section contains the results of two simulation scenar-
ios we tested the performance of the proposed learning
algorithm on. We set, in both games, Ξt = (ξ̃ + ε)I and

Zt = ζ̃I, where I is the identity matrix, ξ̃ = 0.1, ζ̃ = 1/t
and ε is an arbitrary small Gaussian random number. This
set of parameters of the EKF fictitious play algorithm were
empirically found to provide good tracking of opponents’
strategies.

We initially tested the performance of the proposed algo-
rithm in the symmetric game that is presented in Table
3.

An example of how a symmetric game can be ensued from
a realistic application comes from the area of material
handling robots tasks. Consider the case where two robots
should coordinate in order to move some objects to a
desired destination. The robots can either push or pull
the objects depending to the direction of the destination
of the object. Moreover each robot can apply different
forces to the objects. The amount of the force that a robot
applies to an object can be represented as a fuzzy variable
that can take the values: Weak, Fair and Strong. This set
up can lead to either games where there is a dominant
joint action which will gain the maximum reward, or to
symmetric games like the games that are described in
Tables 2 and 3. The controller which is depicted in Figure
1 can be used when robots have to take such decisions.
We compared the quality of our robots’ decisions with the
max-sum algorithm [Farinelli et al., 2013]. Because of the
symmetry in the utility function of the fictitious play and
themax-sum algorithms, they do not always converge in
one of the joint actions that maximise the global reward.
In our simulations the two robots had to negotiate using
one of the algorithms for 50 negotiation steps and then
choose a joint action. Figure 2 depicts the percentage of
the replications where the algorithms converged to one of
the three optimal solutions. We can observe that, when
we use EKF fictitious play, then robots always choose an
optimal joint action, if the other two algorithms are used
the robots choose an optimal joint action less than in 50%
of the replications.

An advantage of the game-theoretic algorithms, and the
proposed method in particular over the message passing
algorithms is their communication cost. Even in the simple

Fig. 2. Percentage of the times that each algorithm con-
verged to one of the three optimum joint actions.

scenario where two robots have three available actions,
when the robots use the message passing algorithm as
a coordination mechanism they need to exchange more
messages. In particular the robots that use fictitious play
based algorithms should only share with the other robots
only their action, in the simple case of the symmetric
game each robot should exchange with all the other 50
messages in total. Each of these messages will consist of an
integer number that will represent the action that he will
choose. On the other hand when the max-sum algorithm is
used as a coordination mechanism then each robot should
exchange 100 messages and each of these messages consists
of 3 real numbers. Even in the simple symmetric case the
communication needs of the message passing algorithm
are greater than the game-theoretic one, therefore in more
complicated games with a large number of players and
actions, message passing algorithms can be intractable
because their communication cost increases exponentially
[Farinelli et al., 2013].

We also examined the performance of EKF fictitious play
in the task allocation scenario we described in Section
2. In particular in an area A we assume that there are
ten regions, N = 10, with hazardous objects. Each region
contains two objects with different attributes. In A there
are thirty robots, I = 30, who should be allocated in one
of the ten regions to patrol them. Each robot can move
towards a region n with a velocity Vin. In our case study
we assume that the velocity of a robot i, towards a region
n can be either slow or medium or fast. Therefore the time
that a robot needs to reach a region n, Tin, depends both
in the distance between the robot and the region and the
velocity that the robot will choose to move towards n as
well. The global reward that is shared among the agents
is defined as:

rg(s) = −
N∑
n=1

∑
i:si=n

c1Tin + c2Vin

+

N∑
n=1

∑
k∈Kn

Vnk(1−
∏
i:si=n

(1− Eink))

(14)

where c1 = 1, c2 = 1/6 and Eink is a metric of robot i’s
efficacy to patrol a region n based on its endurance and
efficiency to detect a threat k. It can also be seen as the
accuracy of robot i’s measurement in region n for threat
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Endurance
Short Fair Long

Efficiency
Low 0.2 0.3 0.5

Medium 0.3 0.5 07
High 0.5 0.7 0.9

Table 4. Efficacy that a robot efficiently patrol
the area for a specific threat.

Fig. 3. Robot team task allocation performance

k. We define Eink as a function of robot i’s endurance and
efficiency as it is presented in Table 4.

In this scenario we did not use the max-sum algorithm in
our comparisons because of the scale of our problem. In
particular robots should search over to 1030 possible joint
actions which make the max-sum algorithm intractable
for this scenario. Instead we compared the efficacy of
the proposed controller with the allocation quality of a
centralised approach that uses genetic algorithms, thus
a central decision maker chooses in advance the room
that each robot will patrol and the robot completes the
pre-optimised allocation task. In our comparison we used
the genetic algorithm function of Matlab’s optimisation
toolbox. Since genetic algorithms are stochastic processes,
in each repetition of the same replication of the task
allocation problem it will converge to a different solution
Thus we used two instances of the genetic algorithm, in
the former one we used a single repetition of the genetic
algorithm per replication of our problem, in the latter one
for each replication of the task allocation problem we chose
the allocation of the maximum utility among 100 runs of
the genetic algorithm.

In our simulations we used 100 replications of the task
allocation problem. In order to be able to average across
the 100 replications. we normalise the utility by the
maximum global utility that is observed in a replication
of the simulation scenario by the learning algorithms we
used.

As it is shown in Figure 3, the genetic algorithm can be
easily trapped in a local maximum point and therefore
it is important to use more than one repetition of the
algorithm. Moreover when EKF fictitious play is used in
the optimisation block of our controller the allocation the

robots can patrol the warehouse with bigger efficacy than
the instances we used genetic algorithm and fictitious play.

7. CONCLUSIONS

A cooperative control methodology for a team of robots
has been proposed using a game theoretical approach. The
coordination of the robots has been cast as a potential
game which has been used as a performance model of this
distributed control problem. A learning algorithm has been
used by each robot based on fictitious play and EKF as
an implicit coordination mechanism between the robots.
It has been shown that the collective learning algorithm
converges to the Nash equilibrium of potential games.
Simulations have been used to illustrate performance.

Our ongoing work includes further comparison with state
of the art predictive control algorithms. Moreover we are
planning to use the proposed controller design methodol-
ogy on a team of flying and ground based robots in our
laboratory followed by implementation by our industrial
partners.

Appendix A. PROOF OF PROPOSITION 1

In the case where players have only 2 available actions
an abstract representation of H and P are ( a −a

−a a ) and

( b kk b ) respectively. The Kalman gain is estimated up to a
multiplication constant

K1 ∼
(

c −c
−d d

)
where c = P−t [1, 1]− P−t [1, 2] and d = P−t [2, 2]− P−t [1, 2].
Then m increases for the recently observed action and
decreases otherwise.

In the case where there are more than 2 available ac-
tions, when 1/t << 1 then the covariance matrix St '
H(m−t )P−t H

T (m−t ) and then Kt ' H(m−t ). From the
definition of H(m−t we know that its diagonal elements
are positive and all the of diagonal elements are negative.
In particular we can write :

H(m−t )[i, i] =
∑
j∈S/i

σt−1(si)σt−1(sj)

H(m−t )[i, j] = −σt−1(si)σt−1(sj).

Suppose that action sj is played from Player i’s opponent
then the update of mt[j] is the following:

mt[j] = m−t +H(m−t )[j, ·]y.
The only positive element of y is y[j]. The multiplication of
H(m−t )[j, ·] and y is the sum of I positive coefficients and
therefore the value of mt[j] will be increased. In order to
complete the proof we should show that ∆[j] > ∆[i]∀i ∈
S/i, where ∆[̃i] = mt [̃i] − mt−1 [̃i], ĩ ∈ S. For simplicity
of notation for the rest of the proof we will write H[i, j]
instead of H(m−t )[i, j] and σ(i) instead of σt−1(si).
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∆[i] = H[i, ·]y
= H[i, 1]σ(1) +H[i, 2]σ(2) + . . .+
H[i, i− 1]σ(i− 1)−H[i, i]σ(i)+
H[i, i+ 1]σ[i+ 1] + . . .+
H[i, j − 1]σ(j − 1)−H[i, j](1− σ(j))+
H[i, j + 1]σ(j + 1) + . . .+H[i, I]σ(I)

(A.1)

∆[j] = H[j, ·]y
= H[j, 1]σ(1) +H[j, 2]σ(2) + . . .+
H[j, j](1− σ(j)) + . . .+H[i, I]σ(I)

(A.2)

∆[i]−∆[j] = σ(1)(H[i, 1]−H[j, 1]) + . . .+
σ(i− 1)(H[i, i− 1]−H[j, i− 1])−
σ(i)(H[i, i] +H[j, i])+
σ(i+ 1)(H[i, i+ 1]−H[i, i+ 1]) + . . .+
σ(j − 1)(H[i, j − 1]−H[j, j − 1])−
(1− σ(j))(H[[i, j] +H[j, j]])+
σ(j + 1)(H[i, j + 1]−H[j, j + 1]) + . . .+
σ(I)(H[i, I]−H[j, I])

(A.3)
If we substitute H[·, ·] with its equivalent and we can write
∆[i]−∆[j] as:

∆[i]−∆[j] = (σ(1))2(σ(i)− σ(j)) + . . .+
(σ(i− 1))2(σ(i)− σ(j))−
(σ(i))2((

∑
j̃∈S/i

σ(j̃)) + σ(j))+

(σ(i+ 1))2(σ(i)− σ(j)) + . . .+
(σ(j − 1))2(σ(i)− σ(j))−
(1− σ(j))σ(j)((

∑
j̃∈S/j

σ(j̃)) + σ(i))+

(σ(j + 1))2(σ(i)− σ(j)) + . . .+
(σ(I))2(σ(i)− σ(j))

(A.4)
solving the inequality ∆[i]−∆[j] < 0 we obtain:

∆[i]−∆[j] < 0⇔
(σ(i)− σ(j))((

∑
j̃∈S/{i,j}

(σ(j̃)2))) <

((σ(i))2((
∑
j̃∈S/i

σ(j̃)) + σ(j))+

(1− σ(j))(σ(j))((
∑
j̃∈S/j

σ(j̃)) + σ(i)))

(A.5)

In the case where σ(i) < σ(j) the inequality is satisfied
always because the left hand side of the inequality is always
negative and the right hand side is always positive. In the
case where σ(i) > σ(j) inequality (A.5) we will show by
contradiction that (A.5) is satisfied ∀i, i 6= j. Therefore we
assume that:

∆[i]−∆[j] ≥ 0⇔
(σ(i)− σ(j))((

∑
j̃∈S/{i,j}

(σ(j̃)2))) ≥

((σ(i))2 + (1− σ(j))(σ(j)))((
∑
j̃∈S/i

σ(j̃)) + σ(j))

(A.6)

Since ((
∑
j̃∈S/{i,j}(σ(j̃)2))) < ((

∑
j̃∈S/i σ(j̃)) + σ(j)) in

order to complete the proof we only need to show that:

σ(i)− σ(j) ≥ (σ(i))2 + (1− σ(j))σ(j)
σ(i)− (σ(i))2 ≥ 2σ(j)− (σ(j))2

σ(i)(1− σ(i)) ≥ σ(j)(2− σ(j))
(A.7)

Inequality (A.7) will be satisfied if the following inequality
is satisfied:

(1− σ(i)) ≥ σ(j)

σ(i)
(2− σ(j)) (A.8)

Inequality (A.8) will be satisfied if

(1− σ(i)) ≥ (2− σ(j))
σ(j)− σ(i) ≥ 1

(A.9)

since σ(i) > σ(j), (A.9), is false ∀i and thus by contradic-
tion ∆[i]−∆[j] < 0, which completes the proof.

Appendix B. PROOF OF PROPOSITION 2

Similarly to the proof of Proposition 1 we consider only
one opponent and a game with more than one pure Nash
equilibria. We assume that a joint action s = (s1(j′), s2(j))
is played which is not a Nash equilibrium. Since players
use EKF fictitious play because of Proposition 1 they
will eventually change their action to s̃ = (s1(j̃′]), s2(j̃))
which will be the best response to action s2(j) and s1(j′)
for players 1 and 2 respectively. But if this change is
simultaneous their is no guarantee that the resulted joint
action s̃ will increase the expected reward of the players.
We will show that with high probability the two players
will not change actions simultaneously infinitely often.

Without loss of generality we assume that at time t Player
2 change his action from s2(j) to s2(j̃). We want to show
that the probability that Player 1 will change his action to
s1(j̃′) with probability less than 1. Player 1 will change his
action if he thinks that Player 2 will play action s2(j̃) with
high probability such that his utility will be maximised
when he plays action s1(j̃′). Therefore Player 1 will change

his action to s1(j̃′) if σ2(s2(j)) > λ, where σ2(·) is the
estimation of his Player 1 about Player 2’s strategy. Thus
we want to show

p(σ2 > λ) < 1⇔

p(
exp(mt−1[j])∑

j′′∈S2 exp(mt−1[j′′])
> λ) < 1⇔

p(mt−1[j] > ln
λ

1− λ
+

∑
j′′∈S2/j

exp(mt−1[j′′])) < 1⇔

p(mt−2[j] + (Kt−1yt−1)[j] > . . .

ln
λ

1− λ
+

∑
j′′∈S2/j

exp(mt−1[j′′])) < 1

(B.1)
we can expand Kt−1yt−1[j] as follows

(Kt−1yt−1)[j] = ((Pt−2 + (ξ̃ + ε)I)HS−1yt−1)[j]
= (Pt−2HS

−1yt−1)[j]+

((ξ̃ + ε)HS−1yt−1)[j]

(B.2)

If we substitute Kt−1yt−1[j] in (B.1) with its equivalent
we obtain the following inequality:
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p(mt−2[j] + (Pt−2HS
−1yt−1)[j] + ((ξ̃ + ε)HS−1yt−1)[j] > . . .

ln
λ

1− λ
+

∑
j′′∈S2/j

exp(mt−1[j′′])) < 1⇔

p(((ξ̃ + ε)HS−1yt−1)[j] > −mt−2[j]− (Pt−2HS
−1yt−1)[j] . . .

ln
λ

1− λ
+

∑
j′′∈S2/j

exp(mt−1[j′′])) < 1⇔

p(ε > C) < 1
(B.3)

where C is defined as:

C =
ln λ

1−λ
(HS−1yt−1)[j]

+∑
j′′∈S2/j exp(mt−1[j′′])

(HS−1yt−1)[j]
−

−mt−2[j]− (Pt−2HS
−1yt−1)[j]

(HS−1yt−1)[j]
−

q(HS−1yt−1)[j]

(HS−1yt−1)[j]

(B.4)

Inequality (B.3) is always satisfied since ε is a Gaussian
random variable. To conclude the proof we define χt
as the event that both players change their action at
time t simultaneously, and assume that the two players
have change their actions simultaneously at the following
iterations t1, t2, . . . , tT , then the probability that they will
also change their action simultaneously at time tT+1,
P (χt1 , χt2 , . . . , χtT , χtT+1

) is almost zero for large but
finite T .
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