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Abstract: The paper describes an approach to the development of the geometric path following
control for a rigid body. Desired path of movement in the space is represented by an intersection
of two implicit surfaces. Path following control problem is posed as a problem of maintaining the
holonomic relationships between the system outputs. Control is synthesized using the differential
geometrical method through nonlinear transformation of initial dynamic model. The main
results presented are the model of spatial motion and relevant nonlinear control algorithms.
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1. INTRODUCTION

The paper considers the development of path following
control system for a rigid body, that is, the problem of
providing a motion along a given spatial path. With the
advent of unmanned vehicles the path following control
problem became even more urgent, because path following
is an UAV major operating mode. Two approaches to the
development of these systems are known [Aguiar et al.
(2005), Nielsen et al. (2009)].

In the first one, a tracking system controlled by a reference
model is developed [Breivik and Fossen (2005), Lee et al.
(2010)]. The path is generally set by a time-dependent
function, which leads to practical problems when the
object motion is behind or ahead of the program due to
parametric uncertainties or external disturbances. To solve
this problem, the path should be parametrized by the
length instead of time, and dynamics of this parameter
should be introduced in the system model [Breivik and
Fossen (2005)]. This method rather easily realizes the
motion along polynomial curves, which provides better
path planning and more accurate path following, however
the resultant controller is rather lengthy.

An alternative approach is based on stabilization of invari-
ant manifolds in state space based on feedback lineariza-
tion [Nielsen et al. (2009),Hladio et al. (2013)] or passive-
based control[El-Hawwary and Maggiore (2011),El-Hawwary
and Maggiore (2013)]. Simply speaking, a transformation
generating an attractor in state space is selected for the
initial system. In path following context, the attractor is a
desired path set in output coordinates. Then the designer
should only stabilize this solution, which is much less
demanding than creating a tracking system as in the first
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approach. As a control object, an autonomous robot is a
multichannel nonlinear dynamic system. Control system of
a mobile robot should generate control actions providing
preset motion of the centre of mass in operating area.
The one of the methods for synthesizing the control algo-
rithms was proposed by I.V. Miroshnik. It is based on the
second approach and implies nonlinear transformation of
robot model to the task-oriented coordinate system, which
makes it possible to reduce the complex multichannel con-
trol problem to several simple problems of compensation
of linear and angular deviations and then to find adequate
control laws using nonlinear stabilization [Fradkov et al.
(1999), Kapitanyuk and Chepinsky (2013)].

Differentially geometric methods of nonlinear control the-
ory [Fradkov et al. (1999), Kapitanyuk and Chepinsky
(2013), Miroshnik and Nikiforov (1996), Miroshnik and
Lyamin (1994), Miroshnik and Bobtsov (2000),Miroshnik
and Sergeev (2001)] are used in the analysis method for
these systems and synthesis of control algorithms solving
the path following problem as a stabilization problem with
respect to implicit space curve. This article deals with
further development of task-oriented approach inspired
by works[El-Hawwary and Maggiore (2011),Hua et al.
(2013)]. The latest results based on feedback linearisation
are presented in the first part of article. The further exten-
sion of task-oriented framework is described in the second
part. Proposed design procedure base on the using of
properties of passive systems. This article focuses directly
on the synthesis of controllers without restricting the path
planning method.

2. RIGID BODY MODEL AND STATEMENT OF
CONTROL PROBLEM

Consider a fully actuated rigid body model illustrated in
Fig. 1

ẋ = v, (1)
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Fig. 1. Rigid body and desired trajectory in the space

mv̇ = Fc, (2)

Ṙ(α) = S(ω)R(α), (3)

Jω̇ + ω × Jω =Mc, (4)

where x = [xrb, yrb, zrb]
T ∈ R3 is the Cartesian position

vector of the center of mass C in the inertial reference
frame XY Z, v = [ẋrb, ẏrb, żrb]

T ∈ R3 is the velocity
vector of the center of mass C in the inertial reference
frame, m ∈ R is a total mass of the rigid body, Fc =
[Fx, Fy, Fz]

T ∈ R3 is the vector of the control forces in
the inertial reference frame, α = [ϕ, θ, ψ]T ∈ R3 is the
vector of Euler angels of the body-fixed frame in the
inertial reference frame with yaw, pitch and roll angels
respectively, R(α) ∈ SO(3) is the rotation matrix from the
body-fixed frame to the inertial frame, ω = [ωϕ, ωθ, ωψ]

T ∈
R3 is the vector of angular velocities in the body-fixed
frame, Mc = [Mϕ,Mθ,Mψ]

T ∈ R3 is the vector of the
control moments in the body-fixed frame, S(ω) ∈ SO(3)
is the skew symmetric matrix with structure:

S(ω) =

[
0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0

]
. (5)

The rotation matrix can be expressed through Euler angels
as

R(α) = R3(ψ)R2(θ)R1(ϕ) (6)

where

R1(ϕ) =

[
1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

]
,

R2(θ) =

[
cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

]
,

R3(ψ) =

[
cosψ − sinψ 0
sinψ cosψ 0
0 0 1

]
.

The desired path is a smooth segment of curve S (see
Fig. 1) described as an intersection of two implicit surfaces

φ1(x, y, z) = 0 ∩ φ2(x, y, z) = 0, (7)

where φ1, φ2 and ψ are smooth functions.

Tangential velocity along the curve S is defined as

ṡ =
∇φ1 ×∇φ2

∥∇φ1 ×∇φ2∥
v, (8)

where × is the vector product and ∥·∥ is the vector norm.

It should be noted the description of a curve as a smooth
geometrical object is not the only one possible, and the se-
lection of functions (7) is ambiguous. Selection of functions
φ1(x, y, z) and φ2(x, y, z) mostly limited by regularity
condition [Fradkov et al. (1999)] implying that Jacobian
matrix

Υ(x, y, z) =


∇φ1 ×∇φ2

∥∇φ1 ×∇φ2∥
∇φ1

∥∇φ1∥
∇φ2

∥∇φ2∥

 (9)

is not degenerate for any vector x = [xrb, yrb, zrb]
T belong-

ing to curve S, i.e.

detΥ(x, y, z) ̸= 0.

Path following control problem is posed as a problem
of maintaining the holonomic relationships between the
system outputs [xrb, yrb, zrb]

T set in (7). It is augmented
by the description of desired longitudinal motion of the
point of the centre of mass of the rigid body along the
desired path S usually set using the reference velocity of
longitudinal motion V ∗ = ṡ∗

Consider the errors of the path following [Fradkov et al.
(1999), Kapitanyuk and Chepinsky (2013)]. Violation of
condition (7) is characterized by deviations

e1 = φ1(x, y, z) (10)

e2 = φ2(x, y, z) (11)

zeroed at manifold S.

Therefore, the path following control problem for the
rigid body consists in determination of inputs Fc =
[Fx, Fy, Fz]

T in closed loop, which provides:

(a) stabilization of robot motion with respect to the curve
S, which implies asymptotic zeroing of spatial deviation
vectors e1 and e2;

(b) asymptotic zeroing of velocity error

∆V = V ∗ − ṡ. (12)

(c) stabilization of the required robot orientation with
respect to the curve S

3. TRANSLATION MOTION CONTROL

To synthesize the path following controllers we transform
the system model with account for (1)-(4) to the task-
based (path-based) form [Fradkov et al. (1999), Kapi-
tanyuk and Chepinsky (2013)] with outputs s, e1 and e2.
To do it, we differentiate (8), (10) and (11) with respect
to time: [

ṡ
ė1
ė2

]
= Υ(x, y, z)v. (13)
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Once more differentiate (13) with account for (2):[
s̈
ë1
ë2

]
= Υ̇(x, y, z)v +Υ(x, y, z)

Fc
m
. (14)

Now consider the virtual (task-based) controls:

Υ̇(x, y, z)v +Υ(x, y, z)
Fc
m

=

[
us
ue1
ue2

]
. (15)

Substitute (15) to (14) and obtain:[
s̈
ë1
ë2

]
=

[
us
ue1
ue2

]
. (16)

Now select the controllers:

us = Ks∆ṡ, (17)

ue1 = −K1e1ė1 −K2e1e1, (18)

ue2 = −K1e2ė2 −K2e2e2, (19)

where Ks, K1e1, K2e1, K1e2, K2e2 are positive coefficients
which provides the desired dynamics of asymptotic zeroing
of ∆s, e1 and e2 deviations and solves the problems (a) and
(b).

Now we determine actual control actions Fc and finally
obtain:

Fc = mΥ(x, y, z)−1

([
us
ue1
ue2

]
− Υ̇(x, y, z)v

)
. (20)

In this section, we have described the general method for
synthesizing the controller of translation motion.

4. ATTITUDE CONTROL

Now focus on the solution of problem (c). Introduce the
vector of angular errors δ = [δϕ, δθ, δψ]

T ∈ R3 and the
angular deviations matrix

R(δ) = R(α)RT (α∗)RT (∆), (21)

where R(α∗) ∈ SO(3) is the matrix of angular orientation
of the body-fixed frame along the curve S in the point
[xrb, yrb, zrb]

T , RT (∆) ∈ SO(3) is the matrix of the desired
angular orientation respect to the curve S.

For the stabilisation of the desired attitude and eliminating
of the vector δ(or fulfilment of the identity R(δ) = I) use
approach described in work [Lee et al. (2010)]. Define the
angular error function as

er =
1

2

(
R(δ)−R(δ)T

)∨
, (22)

where vee map ∨ is the transformation SO(3) → R3.

Now define the angular speed error eω. Differentiating (21)
with respect to time and the expression (3) and obtain the
equation

d

dt
R(δ) = S(δ̇)R(δ) = eωR(δ), (23)

d

dt
R(δ) = S(ω)R(δ)−R(α)RT (α∗)S(ω∗)RT (∆), (24)

Use the property of skew symmetric matrix RS(ω)RT =
S(Rω) obtain the final expression

d

dt
R(δ) =

(
S(ω)− S(R(α)RT (α∗)ω∗)

)
R(δ), (25)

and

eω = ω −R(α)RT (α∗)ω∗. (26)

Differentiating (27) with account for (3)

ėω =
1

J
(M − ω × Jω) + ad (27)

where

ad = −S(ω)R(α)RT (α∗)ω∗ +R(α)RT (α∗)ω̇∗ (28)

Resulting attitude controller has form

Mc = ω × Jω − Jad −KRer −Kωeω. (29)

where KR and Kω are positive constants.

In a common case for the matrix R(α∗) can use the
orthogonal matrix based on Jacobian (9)

R(α∗) = T (x, y, z) =


∇φ1 ×∇φ2

∥∇φ1 ×∇φ2∥
∇φ1

∥∇φ1∥
(∇φ1 ×∇φ2)×∇φ1

∥(∇φ1 ×∇φ2)×∇φ1∥

 . (30)

The vector of desire angular speed can found from the
Frenet-like equation [Fradkov et al. (1999)]:

Ṫ (x, y, z) = ṡS(ξ)T (x, y, z),

S(ξ) =

[
0 τ 0
−τ 0 κ
0 −κ 0

]
,

where ξ = [τ, 0, κ]T ∈ R3, κ - curvature of curve S in the
point(x,y,z), τ - torsion of curve S in the point (x, y, z).

Then equations (27), (28) and (30) transform to

eω = ω − ṡR(α)AT (x, y, z)ξ,

ad =−s̈R(α)TT (x, y, z)ξ −
−ṡS(ω)R(α)TT (x, y, z)ξ +
+ṡ2R(α)AT (x, y, z)S(ξ)ξ −
−ṡR(α)AT (x, y, z)ξ̇.

In this section, we have described the general method for
synthesizing the controller of attitude motion which solves
the problems (c). Now focus on particular cases popular
in practice.

5. PASSIVE BASED PATH FOLLOWING

Consider the same model (1)-(4) and storage function V

V =
1

2
|ẋ− vd|2 +

1

2
|ω − ωd|2 (31)

Differentiating (31) with respect to time and obtain the
equation
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V̇ = (ẋ− vd)
T (ẍ− v̇d) + (ω − ωd)

T (ω̇ − ω̇d) =

= (ẋ− vd)
T (

1

m
F − v̇d) +

+(ω − ωd)
T (−J−1ω × Jω + J−1Mc − ω̇d)

Now choose the control inputs F and Mc in the forms

F = upF + uF ,

Mc = upM + uM ,

where upF = v̇d and upM = ω × Jω + Jω̇d are control
inputs, which make system passive. In the result we obtain

V̇ = (ẋ− vd)
TuF + (ω − ωd)

TuM = yTu.

It means that system (1)-(4) is passive from inputs

u = [uTF , u
T
M ]T

to outputs

y = [(ẋ− vd)
T , (ω − ωd)

T ]T .

For the stabilisation of passive system we can use ordinary
feedback control law

u = −Ky
where K is diagonal matrix of scalar coefficients k1, .., k6
Now we can use variables vd and ωd as new ”virtual” inputs
and stabilise the desired manifolds for the translation
motion

φ1(x, y, z) = 0 ∩ φ2(x, y, z) = 0,

and desire orientation presented by relations [Hua et al.
(2013)]

(1− nTnd),

where n is a vector of current orientation and nd is a vector
of desired orientation Consider Lyapunov function

W =
1

2
φ2
1 +

1

2
φ2
2 +

1

2
(1− nTnc)

2 (32)

Take the derivative of the function (32) with respect to
time

Ẇ = φ1

(
∂φ1

∂x

)T
ẋ+ φ2

(
∂φ2

∂x

)T
ẋ−

− d

dt
nTnc − nT

d

dt
nd =

=

(
φ1
∂φ1

∂x
+ φ2

∂φ2

∂x

)T
vd +

+(1− nTnc)(n
TS(ωd)nc − nTS(ωc)nc) =

=

(
φ1
∂φ1

∂x
+ φ2

∂φ2

∂x

)T
vd +

+(1− nTnc)n
TS(ωd − ωc)nc =

=

(
φ1
∂φ1

∂x
+ φ2

∂φ2

∂x

)T
vd +

+(1− nTnc)n
TST (nc)(ωd − ωc)

Then for vd = uτ + uφ and ωd = ωc + uω obtain

Ẇ =

(
φ1
∂φ1

∂x
+ φ2

∂φ2

∂x

)T
Υ−1[V ∗, 0, 0]T +

+

(
φ1
∂φ1

∂x
+ φ2

∂φ2

∂x

)T
uφ +

+(1− nTnc)n
TST (nc)uω

-20

0

20

X

-10

0

10

Y

0

5

10

Z

Fig. 2. Motion along space curve

Select the control inputs uφ and uω as

uφ = −Kφ

(
φ1
∂φ1

∂x
+ φ2

∂φ2

∂x

)
uω = −S(nc)nkω(1− nTnc)

Then equation of derivative of Lyapunov function becomes

Ẇ =−
(
φ1
∂φ1

∂x
+ φ2

∂φ2

∂x

)T
Kφ

(
φ1
∂φ1

∂x
+ φ2

∂φ2

∂x

)
−

−kω(1− nTnc)
2 < 0,

where Kφ is the positive defined matrix of constant coef-
ficients and kω is a strictly positive constant. This result
means that our system is asymptotic stable with domain
of attraction (−π, π).

6. NUMERICAL EXAMPLE

For the illustration of the rigid body motion we have
considered two cases.

At first, we was modelling the common control law based
on feedback linearisation approach for the rigid body with
m = 1, J = 1. The desire path S is an intersection of two
implicit surfaces such as elliptic cylinder and parabola

(φ1(x, y, z) = 0.2x2+y2−R2)∩(φ2(x, y, z) = z+0.05y2−5)

Initial position of the centre C of the rigid body is x0 =
[−10, 5, 10]T and initial orientation is α0 = [3, 2, 1]T

Parameters of the controller is presented below

Ke11 = 1,Ke12 = 10;

Ke21 = 1,Ke22 = 10;

KR = 20,Kω = 50.

Desire speed along the trajectory ṡ∗ = 1

For the attitude control was used simplified version of
control law (30) without feed-forward term ad

Mc = ω × Jω −KRer −Kωeω.

The results of modelling is presented on figures (2)-(8).

In the second case, was modelling the passivity based pro-
posed control law for the rigid body spatial motion for the
same desire path S. Desire speed along the trajectory ṡ∗ =
1. Initial orientation describes by vector n = [1, 0, 0]. The

desired orientation set by vector nc = [1/
√
3, 1/

√
3, 1/

√
3].

Parameters of controllers is represented below

K = diag [ 0.1 0.1 0.1 10 10 10 ]

Kφ = diag [ 2 2 2 ]

kω = 8
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Fig. 3. Projection on XY plane
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Fig. 4. Projection on YZ plane
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Fig. 5. Position error e1 = φ1(x, y, z)
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Fig. 6. Position error e2 = φ2(x, y, z)
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Fig. 7. Speed error ∆V = ṡ∗ − ṡ
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Fig. 8. Angular error er
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Fig. 9. Motion along space curve
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Fig. 10. Projection on XY plane

-10 -5 5 10
Y

2

4

6

8

10

12
Z

Fig. 11. Projection on YZ plane

2 4 6 8 10
t,time

-60

-50

-40

-30

-20

-10

0

10
e1HtL

Fig. 12. Position error e1 = φ1(x, y, z)

The result of modelling is presented on figures (9)-(16) We
can’t direct compare this two approach yet, for the detailed
analysis we should deeper research this two method for
identify of possible advantages and disadvantages. This is
the main task for further work.
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Fig. 13. Position error e2 = φ2(x, y, z)
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Fig. 14. Speed error ∆V = ṡ∗ − ṡ
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Fig. 15. Angular error (1− nT (t)n(t)c)
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Fig. 16. Orientation of the reference axis n(t)

7. CONCLUSIONS

The proposed control algorithms can be helpful in de-
velopment of path following control systems for mobile
robots (underwater or airborne robots). This method is
rather computational complex in common form, but with
additional assumptions can find the simple controllers. The
primary of the future research is the detailed comprassion
of the represented approach. Also it would be interesting
to apply this method to adequate robot dynamic models,
for example quadrotor UAV. Moreover the performance of
proposed controllers in the presence of parametric uncer-
tainties and external disturbances, and development ver-
sion of this controller without velocity measuring should
be the subject to further analysis.
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