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Jyväskylä, Finland (e-mail: nkuznetsov239@gmail.com)

Abstract: From a computational point of view it is natural to suggest the classification of
attractors, based on the simplicity of finding basin of attraction in the phase space: an attractor
is called a hidden attractor if its basin of attraction does not intersect with small neighborhoods
of equilibria, otherwise it is called a self-excited attractor. Self-excited attractors can be localized
numerically by the standard computational procedure, in which after a transient process a
trajectory, started from a point of unstable manifold in a neighborhood of unstable equilibrium,
is attracted to the state of oscillation and traces it. Thus one can determine unstable equilibria
and check the existence of self-excited attractors. In contrast, for the numerical localization of
hidden attractors it is necessary to develop special analytical-numerical procedures in which
an initial point can be chosen from the basin of attraction analytically. For example, hidden
attractors are attractors in the systems with no-equilibria or with the only stable equilibrium (a
special case of multistability and coexistence of attractors); hidden attractors arise in the study
of well-known fundamental problems such as 16th Hilbert problem, Aizerman and Kalman
conjectures, and in applied research of Chua circuits, phase-locked loop based circuits, aircraft
control systems, and others.
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1. INTRODUCTION

An oscillation in dynamical system can be easily local-
ized numerically if initial conditions from its open neigh-
borhood lead to long-time behavior that approaches the
oscillation. Such an oscillation (or a set of oscillations)
is called an attractor and its attracting set is called the
basin of attraction 1 . Thus, from a computational point
of view it is natural to suggest the following classification
of attractors, based on the simplicity of finding basin of
attraction in the phase space:

Definition. An attractor is called a hidden attractor if
its basin of attraction does not intersect with small neigh-
borhoods of equilibria, otherwise it is called a self-excited
attractor.

For a self-excited attractor its basin of attraction is con-
nected with an unstable equilibrium and, therefore, self-
excited attractors can be localized numerically by the
standard computational procedure, in which after a tran-
sient process a trajectory, started from a point of unstable
manifold in a neighborhood of unstable equilibrium, is

1 Rigorous definitions of attractors can be found, e.g., in (Broer
et al., 1991; Boichenko et al., 2005; Milnor, 2006; Leonov, 2008)

attracted to the state of oscillation and traces it. Thus
self-excited attractors can be easily visualized.

In contrast, for a hidden attractor its basin of attraction
is not connected with unstable equilibria. For example,
hidden attractors are attractors in the systems with no-
equilibria or with the only stable equilibrium (a special
case of multistable systems and coexistence of attractors).
Multistability is often undesired situation in many ap-
plications, however coexisting self-excited attractors can
be found by the standard computational procedure. In
contrast, there is no regular way to predict the existence or
coexistence of hidden attractors in a system. Note that one
cannot guarantee the localization of an attractor by the
integration of trajectories with random initial conditions
(especially for multidimensional systems) since its basin of
attraction can be very small.

For numerical localization of hidden attractors it is nec-
essary to develop special analytical-numerical procedures
in which an initial point can be chosen from the basin of
attraction analytically since there are no similar transient
processes leading to such attractors from the neighbor-
hoods of equilibria.
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Fig. 1. Standard computation of classical self-excited periodic oscillations.
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Fig. 2. Standard computation of classical self-excited chaotic attractors.

2. SELF-EXCITED ATTRACTOR LOCALIZATION

In the first half of the last century during the initial period
of the development of the theory of nonlinear oscillations
(Timoshenko, 1928; Krylov, 1936; Andronov et al., 1966;
Stoker, 1950) much attention was given to analysis and
synthesis of oscillating systems, for which the problem of
the existence of oscillations can be studied with relative
ease.

These investigations were encouraged by the applied re-
search of periodic oscillations in mechanics, electronics,
chemistry, biology and so on (see, e.g., (Strogatz, 1994))
The structure of many applied systems (see, e.g., Rayleigh
(Rayleigh, 1877), Duffing (Duffing, 1918), van der Pol
(van der Pol, 1926), Tricomi (Tricomi, 1933), Beluosov-
Zhabotinsky (Belousov, 1959) systems) was such that the
existence of oscillations was almost obvious since the oscil-
lations were excited from unstable equilibria (self-excited
oscillations). This allowed one, following Poincare’s advice
“to construct the curves defined by differential equations”
(Poincaré, 1881), to visualize periodic oscillations by the
standard computational procedure.

Then in the middle of 20th century it was found numer-
ically the existence of chaotic oscillations (Ueda et al.,
1973; Lorenz, 1963), which were also excited from unstable
equilibria and could be computed by the standard compu-
tational procedure. Later many other famous self-excited
attractors (Rossler, 1976; Chua et al., 1986; Sprott, 1994;
Chen and Ueta, 1999; Lu and Chen, 2002) were discov-

ered. Nowadays there is enormous number of publications
devoted to the computation and analysis of various self-
exited chaotic oscillations (see, e.g., recent publications
(Awrejcewicz et al., 2012; Tuwankotta et al., 2013; Zelinka
et al., 2013; Zhang et al., 2014) and many others).

In Fig. 1 is shown the computation of classical self-exited
oscillations: van der Pol oscillator (van der Pol, 1926),
one of the modifications of Belousov-Zhabotinsky reaction
(Belousov, 1959), two preys and one predator model (Fujii,
1977).

In Fig. 2 is shown the computation of classical self-excited
chaotic attractors: Lorenz system (Lorenz, 1963), Rössler
system (Rossler, 1976), “double-scroll” attractor in Chua’s
circuit (Bilotta and Pantano, 2008).

3. HIDDEN ATTRACTOR LOCALIZATION

While the classical attractors are self-excited attractors
and, therefore, they can be obtained numerically by the
standard computational procedure, for the localization of
hidden attractors it is necessary to develop special proce-
dures since there are no similar transient processes leading
to such attractors. At first the problem of investigating
hidden oscillations arose in the second part of Hilbert’s
16th problem (1900) on the number and possible disposi-
tions of limit cycles in two-dimensional polynomial systems
(see, e.g., (Reyn, 1994; Anosov et al., 1997; Chavarriga
and Grau, 2003; Li, 2003; Dumortier et al., 2006; Lynch,
2010) and authors’ works (Leonov and Kuznetsov, 2007a;
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Kuznetsov and Leonov, 2008; Leonov et al., 2008; Leonov
and Kuznetsov, 2010; Leonov et al., 2011a; Kuznetsov
et al., 2013b; Leonov and Kuznetsov, 2013b)). The prob-
lem is still far from being resolved even for a simple class
of quadratic systems. Here one of the main difficulties in
computation is nested limit cycles — hidden oscillations.

Later, the problem of analyzing hidden oscillations arose
in engineering problems. In 1956s in M. Kapranov’s work
(Kapranov, 1956) on the stability of PLL model, the
qualitative behavior of this model was studied and the
estimation of stability domain was obtained. In these
investigations Kapranov assumed that in PLL systems
there were self-excited oscillations only. However, in 1961,
N. Gubar’ revealed a gap in Kapranov’s work and the
possibility of the existence of hidden oscillations in two-
dimensional PLL models was showed analytically (Gubar’,
1961; Leonov and Kuznetsov, 2013b).

In 1957 R.E. Kalman stated the following (Kalman, 1957):
“If f(e) in Fig. 1 [see Fig. 3] is replaced by constants K
corresponding to all possible values of f ′(e), and it is found
that the closed-loop system is stable for all such K, then it
intuitively clear that the system must be monostable; i.e.,
all transient solutions will converge to a unique, stable
critical point.” Kalman’s conjecture is the strengthening

f(e)e f G(sr
Σ

+
−

c

Fig. 3. Nonlinear control system. G(s) is a linear transfer
function, f(e) is a single-valued, continuous, and
differentiable function (Kalman, 1957)

of Aizerman’s conjecture (Aizerman, 1949), in which in
place of condition on the derivative of nonlinearity it
is required that the nonlinearity itself belongs to linear
sector. Here the application of widely-known describing
function method (DFM) 2 leads to the conclusion on the
absence of oscillations and the global stability of the only
stationary point, what explains why these conjectures were
put forward.

In the last century the investigations of Aizerman’s and
Kalman’s conjectures on absolute stability have led to
the finding of hidden oscillations in automatic control
systems with a unique stable stationary point and with a
nonlinearity, which belongs to the sector of linear stability
(see, e.g., (Leonov et al., 2010a; Bragin et al., 2010; Leonov
and Kuznetsov, 2011a; Kuznetsov et al., 2011b; Leonov
and Kuznetsov, 2011b, 2013b) and surveys (Leonov et al.,
2010b; Bragin et al., 2011; Leonov and Kuznetsov, 2013b)).

Discussions and recent developments on existence of
periodic solution and absolute stability theory, related
to Aizerman and Kalman conjectures, are presented,
e.g., in (Kaszkurewicz and Bhaya, 2000; Lozano, 2000;
Vidyasagar, 2002; Ackermann and Blue, 2002; Rasvan,

2 In engineering practice for the analysis of the existence of periodic
solutions it is widely used classical harmonic linearization and
describing function method (DFM). However this classical method is
not strictly mathematically justified and can lead to untrue results

2004; Leigh, 2004; Gil, 2005; Margaliota and Yfoulis, 2006;
Brogliato et al., 2006; Michel et al., 2008; Liao and Yu,
2008; Wang et al., 2009; Llibre et al., 2011; Haddad
and Chellaboina, 2011; Grabowski, 2011; Alli-Oke et al.,
2012; Nikravesh, 2013). The generalization of Kalman’s
conjecture to multidimensional nonlinearity is known as
Markus-Yamabe conjecture (Markus and Yamabe, 1960)
(also proved to be false (Bernat and Llibre, 1996; Cima
et al., 1997; Leonov and Kuznetsov, 2013b)).

At the end of the last century the difficulties of numerical
analysis of hidden oscillations arose in simulations of air-
craft’s control systems (anti-windup) (Lauvdal et al., 1997;
Leonov et al., 2012a; Andrievsky et al., 2012, 2013a,b)
and drilling systems (de Bruin et al., 2009; Kiseleva et al.,
2012; Leonov and Kuznetsov, 2013b; Kiseleva et al., 2014;
Leonov et al., 2014), which caused crashes.

Further investigations on hidden oscillations were greatly
encouraged by the present authors’ discovery (Kuznetsov
et al., 2010; Leonov et al., 2010c; Kuznetsov et al., 2011c,b;
Leonov et al., 2011c,b; Bragin et al., 2011; Leonov and
Kuznetsov, 2012; Kuznetsov et al., 2013a; Leonov and
Kuznetsov, 2013a), in 2009-2010 (for the first time), of
chaotic hidden attractor in Chua’s circuits — a simple
electronic circuit with nonlinear feedback, which can be
described by the following equations

ẋ = α(y − x− ψ(x))
ẏ = x− y + z
ż = −(βy + γz)
ψ(x) = m1x+ (m0 −m1)sat(x)

(1)
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Fig. 4. a. Self-excited and b. Hidden Chua attractor with
similar shapes

Until recently only self-excited attractors have been found
in Chua circuits (see, e.g., Fig. 4 a.). Note that L. Chua
himself, in analyzing various cases of attractors existence
in Chua’s circuit (Chua, 1992), does not admit the ex-
istence of hidden attractor (being discovered later) in his
circuits. Now it is shown that Chua’s circuit and its various
modifications (Kuznetsov et al., 2010, 2011a; Leonov et al.,
2011c, 2012b; Kuznetsov et al., 2013a) can exhibit hidden
chaotic attractors (see, Fig. 4 b., Fig. 5 3 ) with posi-
tive largest Lyapunov exponent (Leonov and Kuznetsov,
2007b) 4 .

3 Applying more accurate analytical-numerical methods (Lozi and
Ushiki, 1993), one might here distinguish a few close coexisting
attractors.
4 While there are known the effects of the largest Lyapunov ex-
ponent (LE) sign reversal for nonregular time-varying linearizations,
the computation of Lyapunov exponents for linearization of nonlinear
autonomous system along non stationary trajectories is widely used
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Nowadays Chua circuits and other electronic generators
of chaotic oscillations are widely used in various chaotic
secure communication systems. The operation of such
systems is based on the synchronization chaotic signals of
two chaotic identical generators (transmitter and receiver)
for different initial data (Kapitaniak, 1992; Ogorzalek,
1997; Yang, 2004; Eisencraft et al., 2013). The control
signal, depending on the difference of signals of transmitter
and receiver, changes the state of receiver. The existence
of hidden oscillations and the improper choice of the
form of control signal may lead to inoperability of such
systems. For example, consider the synchronization of two
Chua system (1), linearly coupled through the second
equation by K(y − ỹ), with initial data x(0), y(0), z(0)
in a small neighborhood of the zero equilibrium point
for the first system and x̃(0), ỹ(0), z̃(0) on the attractor
for the second system. Fig. 6 and Fig. 7 show that the
synchronization is acquired for the classical double-scroll
attractor (α = 9.3516, β = 14.7903, γ = 0.0161, m0 =
−1.1384 m1 = −0.7225) and may not be acquired for the
hidden attractor.

Recent examples of hidden attractors can be found in
(Jafari and Sprott, 2013; Molaie et al., 2013; Li and Sprott,
2014b,a; Lao et al., 2014; Li and Sprott, 2014a; Chaudhuri
and Prasad, 2014; Wei et al., 2014; Li et al., 2014; Wei

for investigation of chaos (Leonov and Kuznetsov, 2007b; Kuznetsov
and Leonov, 2005, 2001; Kuznetsov et al., 2014), where the pos-
itiveness of the largest Lyapunov exponent is often considered as
indication of chaotic behavior in the considered nonlinear system.
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et al., 2014; Sprott, 2014), see also (Graham and Tl, 1986;
Banerjee, 1997; Pisarchik et al., 2006; Feudel, 2008; Yang.
et al., 2010; Wei, 2011; Wang and Chen, 2012b,a; Wei,
2012; Wei and Pehlivan, 2012; Liu et al., 2013; Abooee
et al., 2013; Sprott et al., 2013; Galias and Tucker, 2013;
Pisarchik, 2014).

4. ANALYTICAL-NUMERICAL PROCEDURE FOR
HIDDEN OSCILLATIONS LOCALIZATION

An effective method for the numerical localization of hid-
den attractors in multidimensional dynamical systems is
the method based on a homotopy and numerical con-
tinuation: it is necessary to constructed a sequence of
similar systems such that for the first (starting) system
the initial data for numerical computation of oscillating
solution (starting oscillation) can be obtained analytically,
e.g, it is often possible to consider the starting system with
self-excited starting oscillation. Then the transformation
of this starting oscillation is tracked numerically in passing
from one system to another.

Further, it is demonstrated an example of effective
analytical-numerical approach for hidden oscillations lo-
calization in the systems with scalar nonlinearity, which is
based on the continuation principle, the method of small
parameter and, a modification of the describing function
method (DFM) 5 .

Consider a system with one scalar nonlinearity

dx

dt
= Px + qψ(r∗x), x ∈ Rn. (2)

Here P is a constant (n × n)-matrix, q, r are constant n-
dimensional vectors, ∗ is a transposition operation, ψ(σ) is
a continuous piecewise-differentiable scalar function, and
ψ(0) = 0.

5 DFM is used here for determining an initial periodic solution for
continuation method. However, in many cases the initial periodic
solution is a self-excited oscillation and may be obtained by the
standard computational procedure.
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Define a coefficient of harmonic linearization k (suppose
that such k exists) in such a way that the matrix P0 = P+
kqr∗ has a pair of purely imaginary eigenvalues ±iω0

(ω0 > 0) and the rest eigenvalues have negative real parts
. Rewrite system (2) as

dx

dt
= P0x + qϕ(r∗x), (3)

where ϕ(σ) = ψ(σ)− kσ.

Introduce a finite sequence of the functions

ϕ0(σ), ϕ1(σ), . . . , ϕm(σ)

such that the graphs of neighboring functions ϕj(σ) and
ϕj+1(σ) slightly differ from one another, the initial func-
tion ϕ0(σ) is small, and the final function ϕm(σ) = ϕ(σ)
(e.g., below it is considered ϕj(σ) = εjϕ(σ), εj = j/m).
Since the initial function ϕ0(σ) is small over its domain of
definition, the method of describing functions give mathe-
matically correct conditions of the existence of a periodic
solution for system

dx

dt
= P0x + qϕ0(r∗x) (4)

see, e.g. (Leonov, 2010; Leonov et al., 2010c,a).

Its application allows one to define a stable nontrivial
periodic solution x0(t) (a starting oscillating attractor is
denoted further by A0).

Two alternatives are possible. The first case: all the points
of A0 are in an attraction domain of the attractor A1,
which is an oscillating attractor of the system

dx

dt
= P0x + qϕj(r∗x) (5)

with j = 1. The second case: in the passing from system
(4) to system (5) with j = 1 it is observed a loss of stability
(bifurcation) and A0 vanishes. In the first case the solution
x1(t) can be found numerically by starting a trajectory
of system (5) with j = 1 from the initial point x0(0). If
numerical integration over a sufficiently large time interval
[0, T ] shows that the solution x1(t) remains bounded and is
not attracted by an equilibrium, then this solution reaches
an attractor A1. In this case it is possible to proceed to
system (5) with j = 2 and to perform a similar procedure
of computation of A2 by starting a trajectory of system
(5) with j = 2 from the initial point x1(T ) and computing
a trajectory x2(t).

Following this procedure, sequentially increasing j, and
computing xj(t) (a trajectory of system (5) with the initial
data xj−1(T )), one can either find a solution around Am
(an attractor of system (5) with j = m, i.e. original system
(3)), or observe at a certain step j a bifurcation, where the
attractor vanishes.

Let ϕ0(σ) = εϕ(σ) with ε being a small parameter. To
define the initial data x0(0) of the initial periodic solution,
system (4) with the nonlinearity ϕ0(σ) is transformed by
a linear nonsingular transformation x = Sy to the form 6

ẏ1 = −ω0y2 + b1ϕ
0(y1 + c∗3y3),

ẏ2 = ω0y1 + b2ϕ
0(y1 + c∗3y3),

ẏ3 = A3y3 + b3ϕ
0(y1 + c∗3y3).

(6)

Here y1, y2 are scalars, y3 is (n − 2)-dimensional vector;
b3 and c3 are (n− 2)-dimensional vectors, b1 and b2 are

6 Such a transformation exists for nondegenerate transfer functions.

real numbers; A3 is an ((n − 2) × (n − 2))-matrix with
all eigenvalues with negative real parts. Without loss of
generality, it can be assumed that for the matrix A3

there exists a positive number d > 0 such that y∗3(A3 +
A∗3)y3 ≤ −2d|y3|2,∀y3 ∈ Rn−2.

Introduce the describing function

Φ(a) =

∫ 2π/ω0

0

ϕ
(

cos(ω0t)a
)

cos(ω0t)dt, (7)

and assume the existence of its derivative.

Theorem 4.1. (Leonov, 2010; Bragin et al., 2011) If there
is a positive a0 such that

Φ(a0) = 0, b1
dΦ(a)

da

∣∣∣∣
a=a0

< 0 (8)

then there is a periodic solution

x0(0) = S(y1(0), y2(0),y3(0))∗

with the initial data y1(0) = a0+O(ε), y2(0) = 0, y3(0) =
On−2(ε).

This theorem describes the procedure of the search for sta-
ble periodic solutions by the standard describing function
method.

Note that condition (8) cannot be satisfied in the case
when the conditions of Aizerman’s and Kalman’s conjec-
tures are fulfilled (i.e. a nonlinearity belongs to the sector
of linear stability). But it is possible to modify and justify
the describing function method for the special nonlineari-
ties satisfying the conditions of Aizerman’s and Kalman’s
conjectures Leonov and Kuznetsov (2011a); Bragin et al.
(2011).

5. HIDDEN OSCILLATIONS IN AIRCRAFT
CONTROL SYSTEMS

The presence of control input saturation can dramatically
degrade the closed-loop system performance. Since the
feedback loop is broken when the actuator saturates, the
unstable modes of the regulator may then drift to undesir-
able values. A terrifying illustration of this detrimental ef-
fect is given by the pilot-induced oscillations that entailed
the YF-22 (Boeing) crash in 1992 and Gripen (SAAB)
crash in 1993.

Consider the following equations (Andrievsky et al., 2013)
of the aircraft short period angular motion along the
longitudinal axis, linearized about trim operating points
αtrim, δe,trim, cf. (Reichert, 1992; Ferreres and Biannic,
2007; Biannic and Tarbouriech, 2009):{

α̇ = Zαα+ q + Zδδe,

q̇ = Mαα+Mqq +Mδδe, .
(9)

Here α, δe are the deviations of the angle-of-attack and
the elevator deflection angle from a trim flying condition,
the variable q represents the body axis pitch rate, Mα,
Mq, Mδ, Zα, Zδ are the linearized model parameters for
the given flight conditions. Let the elevator deflection
angle be symmetrically bounded about trim value δe,trim:
|δe| ≤ δ̄e. Suppose that the linear dynamics of the elevator
servosystem between PID-controller output signal u(t)

and unsaturated elevator deflection δ̃e(t) along with the
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Fig. 8. Multistep localization of hidden oscillation: εj = j/4. At the last step (i.e. j = m in (5)) there is stable zero
equilibrium point coexist with stable oscillation (hidden oscillation).

compensating device model is described by the following
transfer function

W (s) =
δ̃e
u

=
k(T 2

2 s
2 + 2ξ2T2s+ 1)

T 2
1 s

2 + 2ξ1T1s+ 1
, (10)

where k denotes the servo static gain, T1, T1 are the
time constants and ξ1, ξ2 stand for the damping ratios.
Finally, the saturated actuator output signal (the elevator
deflection) is as follows

δe(t) = δ̄e sat

(
δ̃e(t)

δ̄e

)
, (11)

where sat(·) denotes the saturation function.

In the sequel the following parameter values are taken
(Barbu et al., 1999): Zα = −1.0 s−1, Zδ ≈ 0, Mα = 15 s−2,
Mq = 3.0 s−1, Mδ = −18 s−2, δ̄e = 20 deg (≈ 0.35 rad),
k = 10, T1 = 0.083 s, T2 = 0.057 s, ξ1 = 0.1, ξ2 = 0.4.

It may be easily checked that for the given parameters
the aircraft is weathercock unstable; the eigenvalues s1,2
of system (9) are taken as s1 = −6, s2 = 2. Let the
control goal be the tracking for the commanded angle-of-
attack α∗(t). The following classical PID controller may
be applied for eliminating the static tracking error and
the achievement of the desired transient specification for
the “nominal” (non-saturated) system:

u(t) = kIσI(t) + kP e(t) + kDq(t),

σI(t) =

t∫
0

e(τ) dτ, σ(0) = 0, (12)

where e(t) = α(t) − α∗(t) is a tracking error, kP , kq, kI
are proportional, derivative and integral controller gains
(respectively).

The gains kI , kP , kD are computed for the nominal
(unsaturated) mode so as to place the nominal closed loop

poles inside a truncated sector with a minimal degree of
stability η = 5.6 (to ensure fulfillment of the settling time
specification) and a minimal damping ratio ξ = 0.3 as
follows: kP = 5.5, kq = 0.55 s, kI = 19 s−1. The H∞ gain
of the closed-loop system is found as H∞ = 1.13 and the
frequency stability margin is 75 deg.

Consider the closed-loop aircraft control system behavior
imposed by saturation of the elevator servo. The focus of
our attention is the possibility of hidden oscillations in
the closed-loop system. Consider behavior analysis of the
particular control system (9) – (12).

At the first step let us find matrices P, q, r in (2) for
the considered case. After simple calculations one can find
from (9), (10), (12) the following matrices:

P=


Zα 0 1 0 0
−1 0 0 0 0
Mα 0 Mq 0 0
−kP kI −kq −2ξ1T

−1
1 −T−21

0 0 0 1 0

 , q=


−Zδ

0
−Mδ

0
0


r∗ =

(
− kkPT 2

2 T
−2
1 , kkIT

2
2 T
−2
1 ,−kkqT 2

2 T
−2
1 ,

k(2ξ2T2 − 2ξ1T
2
2 T
−1
1 )T−21 , k(1− T 2

2 T
−2
1 )T−21

)
.

The nonlinearity ψ(·) in (2) has a form (11).

Numerically, for the given above parameter values, matri-
ces P, q, r take the from:

P=


−1.0 0 1 0 0
−1 0 0 0 0

15.0 0 −3.0 0 0
−5.56 19.1 −0.556 −2.41 −145

0 0 0 1 0

 , q=


0
0

18.0
0
0


r∗ = (−26.1 89.6 −2.61 54.5, 763) .

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

5450



Application of the described above multistep localization
procedure allows one to find hidden oscillation (see Fig. 8)
in the considered system.

6. CONCLUSION

Since one cannot guarantee revealing complex oscillations
regime by linear analysis and standard simulation, rigorous
nonlinear analysis and special numerical methods should
be used for investigation of nonlinear control systems.
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