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Abstract: We propose a generalized homogeneous controller for a class of single-input uncertain
dynamical system. The controllers are designed by means of Homogeneous Control Lyapunov Func-
tions (HCLF’s). The proposed controllers in feedback with the system make the close-loop system
homogeneous of some degree. Depending on the selection of the parameters in the control law, the
state trajectories reach the origin of the system asymptotically or in finite time. A class of homogeneous
discontinuous controllers is also recovered. Furthermore, different discontinuous finite-time controllers
with improved convergence rate can be synthesized.
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1. INTRODUCTION

Continuous (discontinuous) finite-time controller’s design has
been a research area for decades. Finite-time reaching of the
control target, high precision and better robustness and distur-
bance rejection properties are featured from this controllers,
Bhat and Bernstein [2000], Levant [2005].

Homogeneity theory is widely exploited to construct system-
atically continuous and discontinuous feedback control laws.
Homogeneous systems naturally appear as a local approxima-
tion to nonlinear systems. A linearization around the origin is,
in fact, an approximation of a nonlinear system by a linear one,
which is naturally homogeneous. The convergence rate of an
asymptotically stable homogeneous system (homogeneous dif-
ferential inclusion) is characterized by the homogeneity degree
of its vector field. In general, (a) if the degree is negative, it is
finite-time stable; (b) if the degree is zero, it is exponentially
stable and (c) if the degree is positive, it is asymptotically
stable, Hahn [1967], Bhat and Bernstein [2005], Bacciotti and
Rosier [2005], Nakamura et al. [2002], Levant [2005]. Different
convergence rates are obtained by changing the homogeneity
degree of the vector field associated to the closed-loop system.

Generally, feedback stabilization of a control system is solved
by using Control Lyapunov Functions (CLF’s). Only few works
establish methods for constructing CLF (see Freeman and
Kokotovic [1996] and references there in). Lyapunov redesign
or min-max method is one of the earliest frameworks for robust
nonlinear control, Khalil [2002]. This method relies on a known
CLF for the nominal system (system without uncertainty) to be
used as a Robust CLF (RCLF) for the uncertain system under
the well-known matching condition. Basically, a discontinuous
control is introduced together with the nominal one in order to
reject matched bounded uncertainties/disturbances that nominal
control law is not able to compensate.
⋆ Financial support from CONACyT CVU 267513, PAPIIT, UNAM, grant
IN113614, and Fondo de Colaboración del II-FI,UNAM, IISGBAS-109-2013,
is gratefully acknowledged.

An improvement on discontinuous controls can be provided
by a suitable switching strategy between different suitable
controllers. It allows to the controlled system, among other
things, improving the regulation rates and the settling time,
compared to the case where only a single controller is employed
(see Adamy and Flemming [2004] and references there in).

In this paper a new family of homogeneous controllers is intro-
duced for a single-input nonlinear perturbed dynamic systems.
Some parameters are added to the control law to manipulate the
homogeneity degree in order to ensure different stability prop-
erties for closed-loop system. It leads to synthesize a widely
variety of robust controllers by changing the homogeneity de-
gree. Therefore, we can recover homogeneous rational, expo-
nential and continuous finite-time controllers from the same
control law structure. Homogeneous discontinuous controllers
are also recovered. Since, the continuous controllers are not
robust in spite of matched disturbances, Lyapunov redesign is
used to improve the robustness properties of the controller. A
convergence rate improvement of the proposed controller is
attained by switching different controllers with different sta-
bility proprieties. Therefore, fast and fixed-time discontinuous
controllers can be synthesized, Yu and Man [2002], Cruz Zavala
et al. [2012], Polyakov [2012]. Essentially, the control design
is based on homogeneous CLF. They are obtained by using ho-
mogeneous properties and the standard backstepping technique.
Besides, Lyapunov’s design leads to estimate the convergence
time and let us find sufficient conditions for gain tuning.

2. HOMOGENEOUS SYSTEMS AND CONTROL
LYAPUNOV FUNCTIONS

We recall the concepts of continuous homogeneous functions
and vector fields from Bacciotti and Rosier [2005]. The latter
concept has been extended to (Filippov) Differential Inclusions
(ID’s) in Levant [2005].
Definition 1. Let ∆r

ε x := (εr1x1, ...,εrnxn) = diag(εri)x be the
dilation operator for any ε > 0 and ∀x ∈ Rn, where ri are
positive numbers (weights of the coordinates).
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i) A function V : Rn → R is called homogeneous of degree
m ∈ R with respect to (w.r.t.) ∆r

ε x, if the identity V (∆r
ε x) =

εmV (x),∀x ∈ Rn, holds.
ii) A vector field f : Rn →Rn is called homogeneous of degree

l ∈ R w.r.t. ∆r
ε x, if the identity f (∆r

ε x) = ε l∆r
ε f (x), ∀x ∈ Rn,

holds.
iii) A vector-set field F(x) ⊂ Rn, x ∈ Rn, is called homoge-

neous of the degree l ∈R w.r.t. ∆r
ε x, if the identity F(∆r

ε x) =
ε l∆r

ε F(x) holds.

A DI, ẋ ∈ F(x), is further called a Filippov DI if the vector set
F(x) is non-empty, closed, convex, locally bounded and upper-
semicontinuous, Filippov [1988]. Some properties of homoge-
neous functions and vector fields are given in the following
Corollary. We consider that the weights ri and ∆r

ε x are fixed.
Lemma 2. Bacciotti and Rosier [2005]. Let ∆r

ε x be any family
of dilations on Rn, and let V1, V2 (respectively, f1, f2) be
homogeneous functions (resp., vectors fields) w.r.t. ∆r

ε x of
degrees m1,m2 (resp., l1, l2). Then,

(1) V1V2 (respectively, V1 f1, [ f1, f2] is homogeneous of degree
m1 +m2 (respectively, m1 + l1, l1 + l2).

(2) V̇ = L f1V is homogeneous of degree m+ l1.

Consider the input affine nonlinear system described by

ẋ = f (x)+g(x)u, x ∈ Rn, u ∈ R1, (1)

where f (0) = 0 and f (x) and g(x) are continuous mappings.
Definition 3. (Homogeneous System): System (1) is said to be
homogenous of degree l ∈R w.r.t. ∆r

ε x, if there exists u(x) such
that f (∆r

ε x)+g(∆r
ε x)u(∆r

ε x) = ε l∆r
ε( f (x)+g(x)u).

Asymptotic stability of homogenous systems (and homoge-
neous DI’s) can be studied by means of homogeneous Lya-
punov functions (HLF’s), Bacciotti and Rosier [2005], Bhat and
Bernstein [2005], Nakamura et al. [2002]. For a homogeneous
continuous vector field f of degree l with locally asymptotically
stable equilibrium point, a Cp HLF of degree m exists if m > p ·
maxi{ri} for any p ∈ N, Bacciotti and Rosier [2005].
Theorem 4. Nakamura et al. [2002]. Assume that the origin of
a homogeneous Filippov DI’s, ẋ ∈ F(x) is uniformly globally
asymptotically stable (AS). Then, there exists a C∞ homoge-
neous strong Lyapunov function.

It is worth pointing out that it is possible to assert the existence
of continuous (but not necessarily C1) HLF’s.
Definition 5. Sontag [1998]. A C1 proper positive-definite (ho-
mogeneous) function V : Rn → R≥0 is said to be a (homoge-
neous) CLF for system (1) if infu∈R1{L fV +LgV ·u} < 0,∀x ∈
Rn\{0}, where L fV = ∂V (x)

∂x · f (x) and LgV = ∂V (x)
∂x ·g(x).

The definition guarantees that the origin is the only stationary
point of a CLF. Finally, we introduce the notion on Fixed-time
(FxT) stability. Consider the following dynamical system

ẋ = f (x), x0 = x(0), (2)

where x ∈ Rn is the state vector, f : Rn → Rn is the associated
vector field. Assume that the origin is an AS equilibrium point,
i.e., f (0) = 0. Solutions of (2) are understood in the sense of
Filippov [1988]. Define an open ball centered at the origin with
radius µ > 0 by Bµ = {x ∈ Rn : ∥x∥< µ}.
Definition 6. Bacciotti and Rosier [2005]. The origin of system
(2) is said to be

i) rationally stable if there exists positive constants r,b1,b2 > 0
and 0 < η ≤ 1 such that for any x0 ∈ Bµ , the solution x(t,x0)
is defined on [0,+∞) and satisfies

∥x(t,x0)∥ ≤ b1(1+∥x0∥b2t)−
1

b2 ∥x0∥η , ∀t ≥ 0,
ii) exponentially stable if there exists positive constants r, b1,

b2 > 0 and 0 < η ≤ 1 such that for any x0 ∈ Bµ , the solution
x(t,x0) is defined on [0,+∞) and satisfies

∥x(t,x0)∥ ≤ b1 exp(−b2t)∥x0∥, ∀t ≥ 0,
iii) finite-time stable (FTS) if it is AS and for every x0 ∈ Bµ \
{0}, any solution x(t,x0) of (2) reaches x(t,x0) = 0 at some
finite time moment t = T (x0) and remains there ∀t ≥ T (x0),
where T : Rn → R+∪{0} is the settling-time function.

The notions are global if they satisfy Definition 6 with Bµ =Rn.
Definition 7. Polyakov [2012]. The set Bµ is said to be

i) globally finite-time attractive (GFTA) for system (2) if any
solution x(t,x0) of (2) reaches Bµ at some finite time moment
t = T (x0) and remains there ∀t ≥ T (x0). T : Rn → R+∪{0}
is the settling-time function.

ii) FxT attractive for system (2) if it is GFTA and the settling-
time T (x0) is bounded by Tmax > 0, i.e., T (x0)≤ Tmax, ∀x0 ∈
Rn.

The upper bound Tmax is a positive constant independent on
initial conditions and called, here, fixed-time constant.
Definition 8. Polyakov [2012]. The origin x = 0 is said to be
FxT stable if it is globally FTS and the settling-time T (x0) is
uniformly bounded by Tmax, i.e., T (x0)≤ Tmax, ∀x0 ∈ Rn.

3. GENERALIZED HOMOGENEOUS CONTROLLER

We introduce the first result of this paper. Consider the uncer-
tain dynamical system given by

ẋi = xi+1 +wi(x, t), ∀i = 1, ...,n−1,
ẋn = g(x, t)u+wn(x, t),

(3)

where x = [x1,x2, ...,xn] ∈ Rn defines the states, u ∈ R1 is
the control input, wi(x, t) (i = 1, ...,n − 1) represents a set
of unmatched uncertainties/disturbances which are uniformly
bounded by known functions in t, ∀t ≥ 0, and satisfy the
following growth condition.
Assumption 9. For every i = 1, ...,n, and some p ∈ [0,1], q ∈
[1,2), the perturbations belong to the class

W = {wi : |wi(x, t)| ≤ ρi|σi|
αi

2−p
βi+1

βi ,ρi ≥ 0}, (4)

where σ1 = x1 and σi = ⌈xi⌋
2−p
αi +k

2−p
αi

i−1 ⌈σi−1⌋
αi−1

αi
ςi−1 with αi =

(i−2)p− (i−3),ςi =
βi+1

βi
= (i−1)q+(2−i)

(i−2)q+(3−i) , ∀i = 1, ...,n. 1

This condition characterizes a wide variety of perturbations. For
example, the disturbances are bounded by smooth functions
for any q ≥ 1 and p ∈ [0,1). In the case 1 > q > p > 0, the
uncertainties are bounded by continuous functions. In the case
q = p, the bounds of wi(x, t), i = 1, ...,n−1, are still continuous
but the matched perturbation wn(x, t) is bounded by a positive
constant, then it does not necessarily vanish at the origin. Also,
for some known positive constants Km,KM ,

Km ≤ g(x, t)≤ KM, ∀x ∈ R2, ∀t ≥ 0. (5)
1 Along this paper the operator ⌈·⌋m := | · |m sign(·), z ∈R, m ≥ 0, is used. This
operator preserves the sign of the value of the functions. Note that for any odd
integer m, ⌈·⌋m = (·)m and ⌈·⌋0 = sign(·).
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We design a state feedback controller such that the close-loop
system is homogeneous of some degree. For positive homo-
geneity degrees, the system’s trajectories converge asymptoti-
cally to a vicinity of the origin but also, this vicinity is FxT
attractive. For negative homogeneity degrees, the system’s tra-
jectories reach the origin in finite time. Under the Assumption
9, we design a class of concrete state feedback controllers with
guaranteed convergence rate in spite of unmatched perturba-
tions.
Theorem 10. Assume that (4) holds. Then, the homogeneous
controller

u = υn =−kn⌈σn⌋
αn

2−p
βn+1

βn , (6)

stabilizes the origin x = 0 of system (3) if the gains are selected

• for n = 1, k1 > ρ1,

• for n = 2, k2
1 > 2

2(1−p)
2−p q−p

2+q−p + 2
1−p
2−p 1+q−p

2+q−p ρ1 + ρ1 and

k2 > 2
1−p
2−p 2−p

2−q k2−p
1 [2

1−p
2−p 2

2+q−p +
ρ1

2+q−p ]+ρ2,

• for n ≥ 3, k2
1 > 2

2(1−p)
2−p q−p

2+q−p + 2
1−p
2−p 1+q−p

2+q−p ρ1 + ρ1, k2 >

2
1−p
2−p 2−p

2−q k2−p
1 [2

1−p
2−p 2

2+q−p +
ρ1

2+q−p ]+ρ2, ki > 2
(i−2)(1−p)

2−p Λi−1+

ρi,∀i = 3, ..,n−1, and Kmki > 2
(i−2)(1−p)

2−p Λi−1 +ρi,∀i = n,
where

Λi−1 = c(i−1)1

(
di

αi−1

λ(i−1)1

ϖi

) ϖi
2αiβi

k
di
αi
−

ν(i−1)1
2αiβi

i−1

+c(i−1)2

(
di

αi−1

λ(i−1)1

ϖi

) ϖi
αiβi

k
1−q
βi

i−1 ,

(7)

where the parameters λ(i−1)1,λ(i−1)2 depend on the ki−1’s and

ρ ′
i−1s, c(i−1)1 = 2·2

2(i−1)(1−p)
2−p

ϖi
2αiβi β 2

i αi−1[θ(i−1)1ν(i−1)1]
ν(i−1)1

2αiβi /βi−1,

c(i−1)2 = 2
(i−1)(1−p)

2−p
ϖi

αiβi β 2
i αi−1[θ(i−1)2ν(i−1)2]

ν(i−1)2
αiβi /βi−1, di =

i− (i− 1)p and θ(i−1)1θ(i−1)2 > θ(i−1)1 +θ(i−1)2 > 0. Further-
more, ∀p ∈ [0,1), if n = 1, and ∀p ∈ [ i−2

i−1 ,1) if i = 2, ...,n, the
following statements are true for the closed-loop system (3)
with (6): i) if q ∈ (1,2), the origin is rationally stable; ii) if
q = 1, the origin is exponentially stable; and iii) if q ∈ [p,1),
the origin is finite-time stable.

The generalized homogeneous controller (GHC) (6) provides
different stability properties to the closed-loop system. It is
directly determined by the value of the parameter q w.r.t. p ∈
[0,1). The vector field of the closed-loop system with con-
trollers (6) becomes homogeneous of degree l = q− 1, then,
for different values of q, the vector field is homogeneous of
some degree. This is a distinguishing feature, since from the
same control structure, we recover discontinuous, finite-time,
exponential and rational controllers. For example, a family of
continuous finite-time controllers is recovered when q = p.
However, they are not robust under nonvanishing matched per-
turbations. A family of discontinuous controllers can deal with
this problem and it is recovered from the particular selection
q = p = (n − 1)/(n − 2). A class of rational controllers is
recovered fixing p = 1 and q ≥ 1.

Modeling errors and disturbances are not precisely known.
Only a bound of them is needed. If Assumption 9 is locally
satisfied, then local stability is ensured. The gains k1, ...,ki are
designed large enough in the index order. The previous result
only gives sufficient conditions on the gains and it is possible

that they are far away from the necessary stability conditions.
In following, some controllers are listed for i ≤ 4,

(1) υ1 =−k1⌈x1⌋
1

2−q , k1 > 0, ∀q ∈ [0,2);

(2) υ2 =−k2⌈σ2⌋
q

2−p , σ2 = ⌈x2⌋2−p+k2−p
1 ⌈x1⌋

2−p
2−q , p ∈ [0,1)

and ∀q ∈ (p,2);

(3) υ3 = −k3⌈σ3⌋
p

2−p
2q−1

q , σ3 = ⌈x3⌋
2−p

p + k
2−p

p
2 ⌈σ2⌋

q
p , p ∈

[1/2,1) and ∀q ∈ (p,2);

(4) υ4 =−k4⌈σ4⌋
2p−1
2−p

3q−2
2q−1 , σ4 = ⌈x4⌋

2−p
2p−1 +k

2−p
2p−1
3 ⌈σ3⌋

p(2q−1)
(2p−1)q ,

∀p ∈ [2/3,1),∀q ∈ (p,2).

In what follows, particular control laws derived from Theorem
10 are presented. Of course, once the control input is chosen,
system (3) is robust to certain kind of matched and unmatched
uncertainties/disturbances.

Homogeneous discontinuous controller. Fix q = p and p =

n−2
n−1 , then, σi = ⌈xi⌋

2−p
αi +k

2−p
αi

i−1 σi−1, where σ1 = x1 and αi =(i−
2)p− (i− 3), ∀i = 2, ...,n. One obtains a family of discontin-
uous controllers with a particular feature. The set where the
controllers are discontinuous, defines a finite-time stable con-
tinuous manifold. These discontinuous controllers differ from
those proposed in Levant [2005]. Solutions of closed-loop sys-
tem (3) in feedback with such discontinuous controllers are
understood in the Filippov’s sense. Moreover, the associated DI
has negative homogeneity degree.
Corollary 11. Assume that (4) holds with q= p= (n−1)/(n−
2), ∀n ≥ 2. If the gains k′is are selected large enough as in
Theorem (10), then, the origin x = 0 of system (3) is stabilized
in finite-time by the homogeneous discontinuous controller

ud = υn =−kn sign(⌈xn⌋
2−p
αn + k

2−p
αn

n−1σi−1), p =
n−2
n−1

. (8)

Homogeneous controller with Exponential convergence. Fix-
ing q = p = 1, the standard linear state feedback controller is
recovered. There exists other controller which does not have
linear structure and still provides exponential convergence. Fix

q = 1 and p ∈ [ i−2
i−1 ,1), then, σi = ⌈xi⌋

2−p
αi + k

2−p
αi

i−1 ⌈σi−1⌋
αi−1

αi ,
where σ1 = x1 and αi = (i−2)p− (i−3), ∀i = 2, ...,n.
Corollary 12. Assume that (4) holds with q = 1 and p ∈
[ i−2

i−1 ,1). If the gains k′is are selected large enough as in Theorem
(10), then, the origin x = 0 of system (3) is stabilized exponen-
tially by a homogeneous controller

uexp = υn =−kn⌈σn⌋
αn+1
2−p . (9)

3.1 Lyapunov’s analysis

This Section is devoted to prove Theorem 10. First, stability of
the closed-loop system with the controller is proved by using
HCLF’s and the dynamical behavior of the state trajectories is
characterized by the proposed HCLF’s. Finally, an estimation
of the convergence time is obtained.
Proposition 13. The continuously differentiable function

Vi =
αi

3− p
|xi|

3−p
αi + k

di
αi
i−1⌈σi−1⌋

di
2−p

αi−1
αi

ςi−1xi

+
di

3− p
k

3−p
αi

i−1 |σi−1|
3−p
2−p

αi−1
αi

ςi−1 +δi−1V
αi−1

αi
ςi−1

i−1 ,

(10)
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δi−1 = k
3−p
αi

i−1 , i= 2, ...,n, is a global RCLF for system (3). More-
over, the time derivative V̇i of the RCLF along the trajectories
of the system satisfy

V̇i ≤−αi−1

αi
ςi−1δi−1bi(i−1)Vi−1 −bii|σi|ϖi/(2−p)βi , (11)

where Vi−1 =−V
q−p

αiβi−1
i−1 V̇i−1 ≥ 0, ϖi =(2i−3)q−(2(i−3)+ p),

bi(i−1) = 1−∑2
j=1 θ−1

(i−1) j, ∀θ(i−1) j > 0, bii =
ki−ρi

2
(i−2)(1−p)

2−p
−Λi−1,

∀i = 3, ...,n−1, and bnn =
Kmkn−ρn

2
(n−2)(1−p)

2−p
−Λn−1, ∀i = n, with Λi−1

as in (7). Moreover, the time derivative of the RCLF satisfies

V̇i ≤−κiminV ϖi/(3−p)βi
i (x), (12)

where κimin is a scalar depending on the ki’s and ρi’s.
Remark 14. In the case i = 1, the time derivative V̇1 satis-

fies V̇1 ≤ −( 3−p
2−p )

2−q
3−p a11V

2+q−p
3−p

1 , with a11 = k1 −ρ1. Note that
2+q−p

3−p > 1, ∀p ∈ [0,1], if q > 1, then, the time derivative V̇1

shows rational stability, Bacciotti and Rosier [2005]. Besides,
2+q−p

3−p < 1, ∀p ∈ [0,1], if p ≤ q < 1, then, the time derivative
V̇1 shows finite-time stability.

Remark 15. In the case i = 2, b21 = k1−ρ1−2
2(1−p)

2−p q−p
2+q−p

1
k1
−

2
1−p
2−p 1+q−p

2+q−p
ρ1
k1

, b22 = k2−ρ2−2
1−p
2−p 2−p

2−q k2−p
1 [2

1−p
2−p 2

2+q−p +
ρ1

2+q−p ].

The parameters θ(i−1)1,θ(i−1)2 > 0 are introduced to enforce
the negative definiteness of the time derivative of the RCLF.
The control input u, the RCLF Vi and its time derivative V̇i are

homogeneous w.r.t. ∆r
ε x = (εx1,ε

1
2−q x2,ε

q
2−q x3, ...,ε

βi
2−q xi), for

any ε > 0, i.e., υi(∆r
ε x) = ε

βi+1
2−q υi(x), Vi(∆r

ε x) = ε
3−p
αi

βi
2−q Vi(x),

V̇i(∆r
ε x) = ε

ϖi
αi(2−q) V̇i(x). From the Lyapunov’s inequality (12)

an estimation of the convergence time can be obtained. It lets
us show how the state trajectories reach the origin.
Proposition 16. Select the control input (6). Then, any trajec-
tory of system (3) starting at any initial state xi(0) ∈Ri reaches
the origin

i) asymptotically, for q ∈ (1,2). Moreover, any trajectory con-
verges to a neighborhood of the origin of radius 0 < µi <
Vi(xi(0)) from any xi(0) in a finite time smaller than

Ti(v0,µi)≤
(3− p)βi

(q−1)αiκimin
[µ

− (q−1)αi
(3−p)βi

i −V
− (q−1)αi

(3−p)βi
i (xi(0))], (13)

where κimin is a constant depending on ki’s and ρi’s. Further-
more, the convergence time is uniformly bounded by

Tµi =
(3− p)βi

(q−1)αiκimin
µ−[(q−1)αi]/[(3−p)βi]

i . (14)

ii) exponentially, for q = 1.
iii) in finite time, for q ∈ [p,1). Moreover, the convergence

time satisfies

Tf i(v0)≤
(3− p)βi

(1−q)αiκimin
V [(1−q)αi]/[(3−p)βi]

i (xi(0)), (15)

where κimin is a constant depending on ki’s and ρi’s.

Proof. It follows from (12) and by using the comparison prin-
ciple, Khalil [2002]. Then, for Vi0 =Vi (xi(0)), the solution Vi(t)
satisfies the differential inequality

i) Vi(t) ≤ (v
− (q−1)αi

(3−p)βi
i0 + (q−1)αi

(3−p)βi
κimint)

− (3−p)βi
(q−1)αi , since q ∈ (1,2)

and p ∈ [0,1] imply ϖi
(3−p)βi

> 1. This expression leads to
estimate a bound of the convergence time. In fact, any trajec-
tory starting at initial state xi(0) reaches a level set Vi = µi,
where 0 < µi < vi0, in a time determined by (13). More-
over, since limv0→∞ Ti(v0,µi) = Tµi , the convergence time
Ti(v0,µi) of any trajectory is uniformly upper bounded by
(14), i.e., Ti(v0,µi)≤ Tµi .

ii) Vi(t) ≤ Vi0 exp(−κimint), since q = 1 and p ∈ [0,1] imply
ϖi

(3−p)βi
= 1. Exponential stability is concluded immediately.

iii) Vi(t)≤ (V
(1−q)αi
(3−p)βi

i0 − (1−q)αi
(3−p)βi

κimint)
(3−p)βi
(1−q)αi ,∀q ∈ [p,1). Since,

q ∈ [p,1), with p ∈ [0,1) if i = 1, and p ∈ [ i−2
i−1 ,1) if i ≥ 2,

implies ϖi
(3−p)αi

< 1. From this expression the inequality (15)
is easily derived.

Remark 17. The convergence time estimation can be very cum-
bersome.

Both Proposition 13 and Proposition 16 guarantee: i) rational
stability of the closed-loop system in spite of some wi ∈ W ,
but also the convergence time of any trajectory is bounded by
a constant; ii) exponential stability of closed-loop system; iii)
finite-time stability of the closed-loop system for some wi ∈W .

Proof of Proposition 13. Asymptotic stability of the closed-
loop system in feedback with the GHC is proved with a RCLF.
The RCLF is given by (10). To stabilize the origin of the cas-
caded system (3), we proceed by induction using desingulariz-
ing functions (DsF’s) and backstepping based approach (BBA).

Step 1: Consider the system ẋ1 = υ1 + w1, where υ1 =
−k1⌈x1⌋1/(2−q). The parameter q takes values on q ∈ [0,2)
which implies that 1/2 ≤ 1/(2−q)< ∞. Hence

ẋ1 = υ1 +w1 =−k1⌈x1⌋
1

2−q +w1. (16)

System stability is studied by using the RCLF V1 =
2−p
3−p |x1|

3−p
2−q ,

p ∈ [0,1]. Taking the time derivative of V1 along the system
trajectories of (16) and under the Assumption 9, one obtains

V̇1 =
∂V1

∂x1
(υ1 +w1)≤−b11|x1|

2+q−p
2−q ,

where b11 = k1 −ρ1. It is negative definite for b11 > 0.

Step i − 1: Inspired from Praly et al. [1991], we use a DSF
to construct the RCLF instead of the state variable si =

xi − υi−1. The proposed DsF is given by sid = ⌈xi⌋
di
αi +

k
di
αi
i−1⌈σi−1⌋

di
2−p

αi−1
αi

ςi−1 , di = i − (i − 1)p, ∀i = 2, ...,n, where

σ1 = x1 and σi = ⌈xi⌋
2−p
αi +k

2−p
αi

i−1 ⌈σi−1⌋
αi−1

αi
ςi−1 , αi = (i−2)p−

(i− 3), ∀i = 2, ...,n. All these representations are equivalents
when si = sid = σi = 0. The DsF sid is always continuously
differentiable on (x1, ...,xi). It leads to construct the RCLF as

Vi =Wi +δiVi−1, ∀i = 2, ...,n, (17)

where Wi =
∫ xi

υi−1
(⌈τi⌋

di
αi + k

di
αi
i−1⌈σi−1⌋

di
2−p

αi−1
αi

ςi−1)dτi and δi is
some positive constant. Function (17) is positive definite but
also C1 by construction and its explicit form is given by (10).
The function sid is chosen such that Vi is homogeneous of de-

gree mVi =
(3−p)βi
αi(2−q) w.r.t. ∆r

ε x = (εx1,ε
1

2−p x2, ...,ε
αi

2−p xi). Now,
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we assume that the controller υi−1 stabilizes the (i−1)th-order
system (3) and it is guaranteed by a RCLF Vi−1 (which is
positive definite by construction) whose time derivative V̇i−1 is
definite negative.

Step i: Taking the time derivative of the RCLF Vi defined in (10)
along the system trajectories of (3), we obtain

V̇i = sid [υi +wi]+
di

2− p
αi−1

αi
ςi−1k

di
αi
i−1si|σi−1|

di
2−p

αi−1
αi

ςi−1−1σ̇i−1

+
αi−1

αi
ςi−1δi−1V

αi−1
αi

ςi−1−1
i−1

(
i

∑
j=2

∂Vi−1

∂x j−1
ẋ j−1

)
.

By straightforward calculation, it is deduced that ∑i
j=2

∂Vi−1
∂x j−1

x j =

V̇i−1 +
∂Vi−1
∂xi−1

si, where ∂Vi−1
∂xi−1

= s(i−1)d . Since xi = si + υi−1, it

is not difficult to show that σ̇i−1 = ∑i
j=2

∂σi−1
∂x j−1

(x j + w j−1) =

Ψ(i−1)n +
2−p
αi−1

|xi−1|
(i−2)(1−p)

αi−1 si +Ψ(i−1)ρ , where the functions

Ψ(i−1)ρ =
i

∑
j=2

∂σi−1

∂x j−1
w j−1, Ψ(i−1)n =

i−1

∑
j=2

∂σi−1

∂x j−1
x j +

2− p
αi−1

|xi−1|
(i−2)(1−p)

αi−1 υi−1.

According to Assumption 9, we have Ψ(i−1)ρ ≤ ∆(i−1)ρ , where

the function ∆(i−1)ρ = ∑i
j=2

∂σi−1
∂x j−1

w j−1, evaluated on w j−1 =

ρ j−1|σ j−1|
α j

2−p ς j−1 . Taking into account these facts, and apply-
ing the control input υi as in (6), follows that

V̇i ≤−(k1 −ρi)|sid ||σi|
αi+1
2−p ςi − di

2− p
αi−1

αi
ςi−1k

3−p
αi

i−1 Vi−1 +
αi−1

αi
ςi−1·

k
di
αi
i−1[

di

αi−1
|xi−1|

(i−2)(1−p)
αi−1 |si|2|σi−1|

(2−p)(q−p)+(i−2)(1−p)βiαi−1
(2−p)αiβi−1 + siϒi−1],

where ϒi−1 =
di

2−p |σi−1|
(2−p)(q−p)+(i−2)(1−p)βiαi−1

(2−p)αiβi−1 (Ψ(i−1)n+∆(i−1)ρ)+

ki−1V
q−p

αiβi−1
i−1 σi−1 and Vi−1 = −V

q−p
αiβi−1

i−1 V̇i−1 ≥ 0, since V̇i−1 ≤ 0.
From Lemma 24, the following inequalities are derived

|xi−1|
(i−2)(1−p)

αi−1 |σi−1|
(2−p)(q−p)+(i−2)(1−p)βiαi−1

(2−p)αiβi−1 ≤ λ(i−1)1V

ν(i−1)1
ϖi

i−1 ,

siϒi−1(x1, ...,xi−1)≤
di

αi−1
λ(i−1)2|si|V

ν(i−1)2
ϖi

i−1 ,

where λ(i−1)2 = maxxVi−1(x)=1 = |αi−1
di

ϒi−1(·)| and λ(i−1)1 =

maxx:Vi−1(x)=1 |xi−1|
(i−2)(1−p)

αi−1 |σi−1|
(2−p)(q−p)+(i−2)(1−p)βiαi−1

(2−p)αiβi−1 . With
help of Lemma 23 (see Appendix) we express si and sid in terms

of σi, i.e., |si| ≤ 2
(i−1)(1−p)

2−p |σi|
αi

2−p and |σi| ≤ 2
(i−2)(1−p)

di |sid |
2−p
di .

It results in

V̇i ≤− ki −ρi

2
(i−2)(1−p)

2−p

|σi|
ϖi

(2−p)βi − αi−1

αi
ςi−1k

3−p
αi

i−1 Vi−1 +2
(i−1)(1−p)

2−p
di

αi
ςi−1·

k
di
αi
i−1(2

(i−1)(1−p)
2−p λ(i−1)1|σi|

2αi
2−p V

ν(i−1)1
ϖi

i−1 +λ(i−1)2|σi|
αi

2−p V

ν(i−1)2
ϖi

i−1 ).

We use Lemma 22 to deal with the crossed terms. Then,

|σi|
2αi
2−p V

ν(i−1)1
ϖi

i−1 ≤
ν(i−1)1

ϖi
γ
− ϖi

ν(i−1)1
(i−1)1 Vi−1 +

2αiβi

ϖi
γ

ϖi
2αiβi
(i−1)1|σi|

ϖi
(2−p)βi ,

|σi|
αi

2−p V

ν(i−1)2
ϖi

i−1 ≤
ν(i−1)2

ϖi
γ
− ϖi

ν(i−1)2
(i−1)2 Vi−1 +

αiβi

ϖi
γ

ϖi
αiβi
(i−1)2|σi|

ϖi
(2−p)βi ,

where ν(i−1)1 = ϖi − 2αiβi and ν(i−1)2 = ϖi −αiβi. From the
previous inequalities, it follows that the time derivative V̇i
satisfies (11) with

bii =
ki −ρi

2
(i−2)(1−p)

2−p

−2
(i−1)(1−p)

2−p
di

αi
ςi−1k

di
αi
i−1·(

2
(i−1)(1−p)

2−p λ(i−1)1
2αiβi

ϖi
γ

ϖi
2αiβi
(i−1)1 +λu(i−1)2

αiβi

ϖi
γ

ϖi
αiβi
(i−1)2

)
,

(18)

bi(i−1) = 1−2
(i−1)(1−p)

2−p
di

αi−1
·(

2
(i−1)(1−p)

2−p
λ(i−1)1

ki−1

ν(i−1)1

ϖi
γ
− ϖi

ν(i−1)1
(i−1)1 +

ν(i−1)2

ϖi

λ(i−1)2

ki−1
γ
− ϖi

ν(i−1)2
(i−1)2

)
,

(19)

where, we fix γ(i−1)1 = [ 2
2(i−1)(1−p)

2−p di
αi−1

λ(i−1)1θ(i−1)1
ki−1

ν(i−1)1
ϖi

]
ν(i−1)1

ϖi

and γ(i−1)2 = [ 2
(i−1)(1−p)

2−p di
αi−1

λ(i−1)2θ(i−1)2
ki−1

ν(i−1)2
ϖi

]
ν(i−1)2

ϖi . Finally, the

time derivative V̇i is negative definite if 1 > θ−1
(i−1)1 + θ−1

(i−1)2,

and ki > 2
(i−2)(1−p)

2−p Λi−1 +ρi,∀i = 3, ..,n−1 with Λi−1 as in (7).
Choosing ki larger enough renders V̇i negative definite.

Step i= n: In this case, by induction argument, we get (11) with
bnn =

(Kmkn−ρn)

2
(n−2)(1−p)

2−p
−Λn−1.

Finally, for an arbitrary i, the continuous functions Vi(x) and
V̇i(x) are homogeneous of degrees mVi =

(3−p)βi
αi(2−q) and mV̇i

=
ϖi

αi(2−q) for any i = 1, ...,n, w.r.t. ∆r
ε x. Respectively, it fol-

lows from Lemma 24 that (12) holds ∀x ∈ Ri, where κimin =
minx:Vi(x)=1{−V̇i(x)}. Note that κimin > 0 since −V̇i(x) is posi-
tive definite. It shows that the time derivative V̇i can be bounded
by a function of Vi.

4. LYAPUNOV REDESIGN

In this Section, we present the second result. In general, the
controller (6) is continuous for any p < q, then, the closed-
loop system is not robust under matched bounded perturbations.
Lyapunov redesign can be applied for system (3) in order to
enhance the robustness in spite of matched bounded perturba-
tions. For that, suppose that wi(x, t) = 0, i = 1, ...,n−1, ∀t ≥ 0,
i.e, unmatched disturbances are not present. Then, system (3) is
described by

ẋi = xi+1, ∀i = 1, ...,n−1,
ẋn = g(x, t)ul2 +wn(x, t).

(20)

Moreover, the matched disturbance satisfies |wn(x, t)| ≤ ρm.
Theorem 18. The controller

ul2 = υn =−kd sign(σn)− kn⌈σn⌋
αn

2−p
βn+1

βn , (21)

robustly stabilizes system (20) if the gains k′is are selected as in
Theorem 10 with ρi = 0,∀i = 1, ...,n, and kd > ρm.

Proof. It follows from Proposition 13 assuming that wi(x, t) =
0, i = 1, ...,n−1, ∀t ≥ 0, and |wn(x, t)| ≤ ρm.
Remark 19. Actually, controller (21) can still deal with un-
matched disturbances given in the Assumption 9.

This controller enforces to reach the origin of the closed-loop
system in some manner. The parameter l2 = q− 1 determines
the convergence rate. This controller can only provide: i) robust
finite-time stability of the origin when p ≤ q < 1; ii) robust
exponential stability if q = 1 and iii) robust FxT stability if q ∈
(1,2). In general, the closed-loop system is not homogeneous
in feedback with controller (21).

In the next section, we define Vi(x) = Vi,l2(x), where Vi(x) is
the RCLF defined by (10). Particularly, if q = 1, we define
Vi,0(x) = Vi,exp(x), and if p = q = (n− 1)/(n− 2), we define
Vi,l2(x) = Vi,d(x), which is the RCLF for the discontinuous
finite-time controller.
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5. CONVERGENCE RATE IMPROVEMENT

Finally, this section is devoted to show how the GHC is com-
bined in a hybrid control algorithm in order to improve the
convergence rate of the discontinuous finite-time controllers of
Subsection 3.0.1. We combine a discontinuous finite-time and a
robust rational (exponential) controller. Consider the finite-time
stabilization problem of system

ẋi = xi+1, ∀i = 1, ...,n−1,
ẋn = g(x, t)u+wn(x, t).

(22)

where |wn(x, t)| ≤ ρm, such that the convergence rate need to
be improved. To achieve our goal, let us define the set

ε(l2,A) = min
Vi,d(x)=A

Vi,l2(x), (23)

it ensures that the level set Vi,d(x) = A is contained inside
the level set Vi,l2(x) = ε(l2,A).The idea of combining the
controllers ud and ul2 is simple. For that, we will use of
the proposed RCLF. Define the hybrid control input as u =
ϑ(ud ,ul2 ,A,ε), where u is chosen using the following algo-
rithm:
(i) Apply the control input u = ul2 until the equality Vn,d(x) =
A > 0 holds. Note that ul2 is the controller as in (21) which is
robust in spite of matched bounded perturbations.
(ii) Once the level set A is reached, we apply the control input
u = ud , which enforces to reach the origin in finite-time, for
any Vi,l2(x) < ε∗ , where ε∗ is a positive constant such that
ε∗ > ε(l2,A). It avoids that a level set Vn,d(x) = A is a positive
invariant set. Note that ud is the homogeneous discontinuous
finite-time controller as in (11) . This controller is robust to the
same matched bounded perturbation as the controller ul2 .
(iii) If Vi,l2(x)> ε∗, then we return to the step 1.
This strategy ensures that the origin is the unique positive in-
variant set.

An arbitrary fast discontinuous finite-time controller. The
following controller provides faster convergence to the origin
than the controllers proposed in Levant [2005].
Proposition 20. Consider q = 1 and A > 0. Then, the controller
u = ϑ(ud ,ul2 ,A,ε) stabilizes system (20) in finite time ∀n ≥ 2.

An arbitrary Fixed-time controller. FxT attractivity property
in the controller (21) is due to the parameter q > 1 and p ∈
[ i−2

i−1 ,1). Therefore, the convergence time to any ball centered at
the origin is guaranteed within FxT regardless if the state trajec-
tory starts at very large initial conditions. For sake of simplic-

ity, we take p = n−1
n−2 , then, σi = ⌈xi⌋

2−p
αi + k

2−p
αi

i−1 ⌈σi−1⌋
αi−1

αi
ςi−1 ,

where σ1 = x1 and αi = (i−2)p− (i−3), ∀i = 2, ...,n.
Proposition 21. Consider q > 1 and B > 0. Then, the controller
u = ϑ(ud ,ul2 ,B,ε) stabilizes system (20) within fixed-time
constant T = Tf i +Tµi , ∀n ≥ 2.

6. CONCLUDING REMARKS

A generalization of a homogeneous controller has been pro-
posed. In general, the proposed controllers enforce the trajecto-
ries of the system to reach the origin in some way. It is reached
asymptotically, exponentially or in finite time, depending on
how the parameters of the controllers are selected. Robust dis-
continuous finite-time controllers with improved convergence
rate are also synthesized.
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Appendix A. TECHNICAL LEMMAS

Lemma 22. Moreno [2011]. For every real numbers a > 0,
b > 0, γ > 0, p > 1, q > 1, with 1

p + 1
q = 1, the following

inequality is satisfied ab ≤ γ pap/p+ γ−qbq/q.
Lemma 23. For x1,x2 ∈ R, and p,q nonzero real numbers,
such that 0 < p ≤ q, the inequality |⌈x2⌋p + ⌈x1⌋p|1/p ≤
2

1
p−

1
q |⌈x2⌋q + ⌈x1⌋q|1/q holds. Furthermore, equality holds if

and only if either p = q or x1 = x2.
Lemma 24. Bhat and Bernstein [2005]. Suppose V1 and V2 are
continuous real-valued functions on Rn, homogeneous with
respect to ν of degree l1 > 0 and l2 > 0, respectively, and V1
is positive definite. Then, for every x ∈ Rn,

[ min
z:V1(z)=1

V2(z)][V1(x)]
l2
l1 ≤V2(x)≤ [ max

z:V1(z)=1
V2(z)][V1(x)]

l2
l1 .
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