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Abstract: This paper proposes an alternative extremum seeking control design technique for
the solution of real-time optimization control problems. The technique considers a proportional-
integral approach that avoids the need for a time-scale separation in the formulation of the
ESC. It is assumed that the equations describing the dynamics of the nonlinear system and
the cost function to be minimized are unknown and that the objective function is measured.
The dynamics are assumed to be asymptotically stable and relative order one with respect to
the objective function. The extremum-seeking problem is solved using a time-varying parameter
estimation technique.
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1. INTRODUCTION

Extremum-seeking control (ESC) has been the subject
of considerable research effort over the last decade. This
approach, which dates back to the 1920s Leblanc [1922], is
an ingenious mechanism by which a system can be driven
to the optimum of a measured variable of interest Tan
et al. [2010]. The revived interest in the field was primarily
sparked by Krstic and co-workers who provided an elegant
proof of the convergence of a standard perturbation based
extremum seeking scheme for a general class of nonlinear
systems. The main drawback of ESC is the lack of transient
performance guarantees. As highlighted in the proof of
Krstic and Wang Krstic and Wang [2000], the stability
analysis relies on two components: 1) an averaging analysis
of the persistently perturbed ESC loop and 2) a time-
scale separation of ESC closed-loop dynamics between the
fast transients of the system dynamics and the slow quasi
steady-state extremum-seeking task.

Over the last few years, many researchers have considered
various approaches to overcome the limitations of ESC. In
Krstic [2000], the performance limitations associated with
ESC were considered in detail. The non-local properties on
ESC was studied in Tan et al. [2006]. This work extends
the work in Krstic and Wang [2000] by considering the
case where the fast dynamics can be assumed to be uni-
formly global asymptotically stable along the equilibrium
manifold. In Adetola and Guay [2007], Guay et al. [2004]
and Cougnon et al. [2011], an alternative ESC algorithm
is considered where an adaptive control and estimation
approach is used. The key aspect of this approach is that
the equilibrium map is parameterized and the parame-
ters are estimated with the help of a tailored adaptive
estimation technique. The results in Nesic et al. [2010]
unify the approaches based on singular perturbation and
parameter estimation by considering the case where the

objective function is parameterized in a known fashion. A
three-time scale approach is proposed to establish the com-
bined adaptive estimation and extremum seeking control
algorithms. Recent work reported in Ghaffari et al. [2012]
and Moase et al. [2010] have proposed a Newton-based
extremum-seeking technique that provides an estimate of
the inverse of the Hessian of the cost function. This tech-
nique can effectively alleviate the convergence problems
associated with the increase of the gain of the Newton
update. Other alternative techniques such as proposed
Zhang and Ordóñez [2009] and Zhang and Ordóñez [2012]
make use of sampled gradient measurements to improve
the convergence properties of ESC techniques that imple-
ment numerical optimization techniques. A sliding-mode
approach is presented in Fu and Özgüner [2011].

Although the limitations associated with the tuning of
ESC is generally well understood, the limitations associ-
ated with the two time-scale approach to ESC remains
problematic. Under the two time-scale assumption, the
optimization operates at a quasi steady-state, or slow,
time-scale such that the search for optimal operating con-
ditions does not affect the process dynamics. To over-
come the time-scale separation, one must incorporate some
knowledge of the transient behaviour of the process dy-
namics. In the case where a model is available, one can
use adaptive extremum seeking technique as proposed in
Guay and Zhang [2003] to stabilize a nonlinear system to
the unknown optimum of a known but unmeasured cost
function. If a model is not available but similar systems are
available, the use of multi-unit extremum seeking control
techniques Srinivasan [2007] can be used to steer both
systems in a neighbourhood of the unknown optimum.
Both classes of techniques can solve the steady-state op-
timization ESC problem without the need for time-scale
separation. In Scheinker and Krstic [2013], Lie bracket
averaging techniques are considered to stabilize unknown
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dynamical systems using ESC. The approach does not
explicitly rely on the need for time-scale separation but
it requires a known CLF of the unknown control system.

ESC problems cannot be currently solved in the absence
of time-scale separations if explicit process models or mul-
tiple identical units are not available. This paper attempts
to bridge this gap in the application of ESC. It proposes
a proportional-integral ESC design technique. This tech-
nique can be interpreted as a generalization of the stan-
dard approach where the integral action corresponds to
the standard ESC control task used to identify the steady-
state optimum. The proportional control action is designed
to ensure that the measured cost function is optimized
instantaneously. The approach considers an alternative
parameterization of the ESC problem in which the rate of
change of the output is parameterized directly without the
need to invoke a time-scale separation argument. Under
suitable assumption on the dynamics of the system, this
action can be shown to minimize the cost over short times
while reaching the optimum steady-state conditions.

The paper is organized as follows. A brief description of
the ESC problem is given in section 2. In section 3, the pro-
posed ESC formulation is presented for a known cost func-
tion and process dynamics. The proposed proportional-
integral ESC controller is described in section 4. A simula-
tion example is presented in 5 followed by brief conclusions
in 6.

2. PROBLEM DESCRIPTION

Consider a nonlinear system

ẋ= f(x) + g(x)u (1)

y = h(x) (2)

where x ∈ Rn is the vector of state variables, u is the vector
of input variables taking values in U ⊂ Rp and y ∈ R is
the variable to be minimized. It is assumed that f(x) and
g(x) a smooth vector valued functions of x and that h(x)
is a smooth function of x.

The objective is to steer the system to the equilibrium
x∗ and u∗ that achieves the minimum value of y(= h(x∗)).
The equilibrium (or steady-state) map is the n dimensional
vector π(u) which is such that:

f(π(u)) + g(π(u))u = 0.

The equilibrium cost function is given by:

y = h(π(u)) = `(u) (3)

Thus, at equilibrium, the problem is reduced to finding the
minimizer u∗ of y = `(u∗). Let D(u) be a neighbourhood
of the steady-state x = π(u).

Some additional assumptions are required concerning the
cost function h(x).

Assumption 1. The cost h(x) is such that

(1) ∂h(x∗)
∂x = 0

(2) ∂2h(x)
∂x∂xT > αI, ∀x ∈ Rn

where α is a strictly positive constant.

Note that, in contrast to standard ESC, convexity of the
cost function h(x) is required. We also require the following
properties for the dynamics:

Assumption 2. The dynamics (1) are such that:

(1) the cost function h(x) decreases in the direction of
f(x):

∂h

∂x
f(x) +

∂h

∂x
g(x)u ≤ −α‖x− π(u)‖2, ∀x ∈ D(u),

(2) the matrix valued function g(x) is full rank ∀x ∈
D(u),

∀u ∈ U .

Assumption 2 states that h is non-decreasing in along the
vector field f(x) + g(x)u over some neighbourhood of the
steady-state manifold x = π(u) at a fixed value of the
input u. It also states that the cost function is relative
order 1 in a neighbourhood of the origin.

Finally, we will require the following additional assumption
concerning the steady-state cost function `(u).

Assumption 3. The equilibrium steady-state map `(u) is
such that

∇u`(u)(u− u∗) ≥ αu‖u− u∗‖2

for some positive constant αu ∀u ∈ U .

3. EXTREMUM SEEKING CONTROLLER WITH
FULL INFORMATION

In this section, we propose the extremum-seeking control
approach that will form the basis of the development
in later sections. Let us first consider the cost function
y = h(x) and compute its time derivation:

ẏ = Lfh+ Lghu (4)

where Lfh and Lgh are the Lie derivatives of h(x) with
respect to f(x) and g(x), respectively. The Lie derivative
is the directional derivative of the function h(x) given by:

Lfh =
∂h

∂x
f, Lgh =

∂h

∂x
g.

By the relative order assumption it follows that Lgh 6= 0
in a neighbourhood of the unknown optimum x∗.

We propose the following controller:

u = −kLgh+ û (5)

where û is a steady-state bias term to be estimated. Let
the optimal steady-state input be given by u∗. The error
in the deviation bias is denoted by ũ = u∗ − û. Pose the
function

V = y +
1

2
ũT ũ

Its time derivative is given by:

V̇ = Lfh− k‖Lfg‖2 + Lghû− ũ ˙̂u.

Let ˙̂u = −Lgh. Upon substitution of ũ = u∗ − û, one
obtains:

V̇ = Lfh− k‖Lfg‖2 + Lghu
∗

By assumption, it follows that:

V̇ ≤ −α‖x− π(u∗)‖2 − k‖Lgh‖2

Since g(x) is everywhere full rank and x∗ is the unique
point where ∇xh(x∗) = 0. Thus the system reaches the

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

378



largest invariant on the set Lgh = 0 which occurs at the
point x∗ with corresponding input u∗.

As a result, the ESC closed-loop system converges to the
steady-state optimum of the cost h(x). The main feature
of the proposed ESC is the combination of a proportional
component u − û = −kLgh with integral action given by
˙̂u = −Lgh.

4. EXTREMUM-SEEKING CONTROLLER

In this section, the minimization of y is performed in real-
time. Since the dynamics of the system are unknown, one
must consider an adaptive control approach to implement
the ESC (5). In the following, we parameterize the un-
known dynamics (4). Defining θ0 = Lfh and θ1 = Lgh, we
propose the following parameterization:

ẏ = θ0 + θ1u = φT θ (6)

where φ = [1, uT ]T and θ = [θ0, θ
T
1 ]T . The design of the

extremum seeking routine is based on the dynamics (6).
The first step consists in the estimation of the time-varying
parameters θ0 and θ1. In the second step, we define a
controller, based on the controller (5), that achieves the
extremum-seeking task.

4.1 Parameter estimation

The first element of the proposed time-varying parameter
estimation scheme is the following output prediction model
for (6). Let ŷ represent the predicted output for a given

value of the parameter estimates θ̂ = [θ̂0, θ̂
T
1 ]T . The output

prediction error is denoted by e = y− ŷ and the parameter

estimation error is given by θ̃ = θ − θ̂. We consider the
following prediction dynamics:

˙̂y = φT θ̂ +Ke+ cT
˙̂
θ, (7)

where K is a positive constant to be assigned and where
the time varying parameter c ∈ Rp is the solution of the
differential equation:

ċT = −KcT + φT (8)

with initial conditions c(0) = 0. The prediction error
dynamics are given by:

ė =u̇T θ̃ −Ke− cT ˙̂
θ (9)

with initial conditions e(0) = y(0) − ŷ(0). Following
standard arguments, we define the auxiliary variable η =
e− cT θ̃. The dynamics of η are as follows:

η̇ = −Kη − cT θ̇, η(0) = e(0) (10)

A filtered estimate, η̂, of η is also defined. The η̂ dynamics
are given by:

˙̂η = −Kη̂. (11)

As a result, the dynamics of the estimation error η̃ = η− η̂
are

˙̃η = −Kη̃ − cT θ̇, η̃(0) = 0. (12)

We can now define the proposed parameter estimation
update. Let Σ ∈ Rp×p be the solution to the following
matrix differential equation

Σ̇ = ccT − kTΣ + δI (13)

with initial conditions Σ(0) = α1I � 0, where α1, δ and kT
are strictly positive constants to be assigned. The inverse
of Σ is then given as the solution to the matrix differential
equation:

Σ̇−1 =− Σ−1ccTΣ−1 + kTΣ−1 − δΣ−2 (14)

with initial condition Σ−1(0) = 1
αI. Based on (7),(8) and

(11), one considers the following parameter update law
proposed in Adetola and Guay [2009]:

˙̂
θ =Proj(Σ−1(c(e− η̂)− σθ̂), θ̂), θ̂(0) = θ0 ∈ Θ0,(15)

where σ is a positive constant. Proj{τ, θ̂} denotes a Lips-
chitz projection operator Krstic et al. [1995] such that

−Proj{τ, θ̂}T θ̃ ≤ −τT θ̃, (16)

θ̂(0) ∈ Θ0 =⇒ θ̂ ∈ Θ,∀t ≥ 0 (17)

where Θ , B(θ̂, zθ), where B(θ̂, zθ) is the ball centered

at θ̂ with radius zθ. Following standard arguments from
adaptive control, the filter parameter, c(t), must satisfy
the following assumption.

Assumption 4. There exists constants α2 > 0 and T > 0
such that ∫ t+T

t

c(τ)c(τ)T dτ ≥ α2I (18)

∀t > 0.

4.2 Controller design

The input space U is defined as U = {u | ‖u‖ ≤ zu} where
zu is a positive constant that identifies the upper limit on
the size of the norm the control input u. Let P (u) = ‖u‖2−
z2u and define τ = −kθ̂+d(t) where d(t) is a bounded dither
signal with ‖d(t)‖ ≤ D and k > 0.

The extremum-seeking controller considered is given by:

u=−kg θ̂1 + û+ d(t) (19)

˙̂u=
1

τI
θ̂1 (20)

where d(t) is a dither signal to be determined, kg and τI
are tuning parameters taken as positive constants.

Theorem 1. Let Assumptions 1 to 4 hold. Consider the
extremum-seeking controller (19) and the parameter esti-
mation algorithm (14) and (15). Then there exists tuning
parameters kg, kT , K and τ∗I such that for all τI > τ∗I . the
system converges exponentially to an O(D/τI) neighbour-
hood of the minimizer x∗ of the measured cost function
y.
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Proof: We consider the Lyapunov function:

W =
1

2
η̃T η̃ +

1

2
θ̃TΣθ̃.

Taking the derivative of W yields:

Ẇ ≤− η̃TKη̃ + η̃T cT θ̇ + θ̃TΣθ̇ − kT
2
θ̃TΣθ̃

+
δ

2
θ̃T θ̃ − θ̃T c(e− η̂) +

1

2
θ̃T ccT θ̃ + σθ̃T θ̂

(21)

where the property of the property (16) of the projection
algorithm is invoked. Substituting for

cT θ̃ = e+ η = e− η̂ + η̃

and completing the squares yields the following inequality:

Ẇ ≤− η̃TKη̃ + η̃T cT θ̇ + θ̃TΣθ̇ − kT
2
θ̃TΣθ̃

+
δ

2
θ̃T θ̃ − 1

2
(e− η̂)T (e− η̂) + σθ̃T θ̂ +

1

2
η̃T η̃

Noting that θ = θ̂+ θ̃, one can rewrite the above inequality
as follows:

Ẇ ≤− η̃T
(
K − 1

2
I

)
η̃ + η̃T cT θ̇ + θ̃TΣθ̇ − kT

2
θ̃TΣθ̃

−
(
σ − δ

2

)
θ̃T θ̃ + σθ̃T θ

By completing the squares, we remove the indefinite terms
as follows:

Ẇ ≤− η̃T
(
K − 1

2
I − k1

2
ccT
)
η̃ +

1

2k1
‖θ̇‖2 +

k2
2
θ̃TΣθ̃

+
1

2k2
θ̇TΣθ̇ − kT

2
θ̃TΣθ̃ −

(
σ − δ

2

)
‖θ̃‖2

+
σ

2
‖θ̃‖2 +

σ

2
‖θ‖2

where k1 and k2 are strictly positive constants.

The boundedness of the matrix Σ can be shown as follows.
By integration, one gets:

Σ =e−kT tΣ(0) +

∫ t

0

e−kT (t−τ)
(
c(τ)c(τ)T +

σ

2
I
)
dτ

≥
∫ t

t−T
e−kT (t−τ)

(
c(τ)c(τ)T +

σ

2
I
)
dτ

≥ e−kTT (α2 +
σ

2
)I = γ1I

where Assumption 4 is invoked. By the boundedness of c,
one can also write,

Σ ≤Σ(0) +
(
β2 +

σ

2

)∫ t

0

e−kT (t−τ)dτI

≤
(
α1 + β2 +

σ

2

)
I = γ2I.

As a result, we get that: γ1I ≤ Σ ≤ γ2I and γ−1
2 I ≤ Σ−1 ≤

γ−1
1 I. By the boundedness of Σ and Γ, one can write:

Ẇ ≤−
(
K − 1

2
I − k1

2
ccT
)
‖η̃‖2

−
(
kT γ1

2
+
σ

2
− k2γ2

2
− δ

2

)
‖θ̃‖2

+

(
γ2
2k2

+
1

2k1

)
‖θ̇‖2 +

σ

2
‖θ‖2

We let the tuning constants of the ESC be such that:

K = kη1I + kη2c
T c, kT γ1 = kθ̃,

where kη1 > 1/2, kη2 > k/2, σ = δ and kθ̃ >
k2γ2
2 . Let

ka = K− 1

2
I− k1

2
ccT , kb =

kT γ1
2
− k2γ2

2
, kc =

γ2
2k2

+
1

2k1
,

and rewrite the last inequality as follows:

Ẇ ≤ −ka‖η̃‖2 − kb‖θ̃‖2 + kc‖θ̇‖2 +
σ

2
‖θ‖2.

Next we consider the proposed ESC at constant û using
the Lyapunov function candidate: V = W + y. Using the
last inequality, its time derivative is given by:

V̇ ≤ − ka‖η̃‖2 − kb‖θ̃‖2 + kc‖θ̇‖2 +
σ

2
‖θ‖2

+ θ0 + θT1 u+ θT1 d.

Substituting the proposed ESC:

V̇ ≤ − ka‖η̃‖2 − kb‖θ̃‖2 + kc‖θ̇‖2 +
σ

2
‖θ‖2

+ θ0 − kgθT1 θ̂1 + θT1 û+ θT1 d

or,

V̇ ≤ − ka‖η̃‖2 − kb‖θ̃‖2 + kc‖θ̇‖2 +
σ

2
‖θ‖2

+ θ0 + θT1 û− kgθT1 θ1 + kgθ
T
1 θ̃1 + θT1 d.

By Assumption 2, we obtain:

V̇ ≤ − ka‖η̃‖2 − kb‖θ̃‖2 + kc‖θ̇‖2 +
σ

2
‖θ‖2

− α‖x− π(û)‖2 − kgθT1 θ1 + kgθ
T
1 θ̃1 + θT1 d.

Completing the squares using constants k3 and k4, we
remove the indefinite terms and collect terms to obtain:

V̇ ≤ − ka‖η̃‖2 −
(
kb −

kg
2k3

)
‖θ̃‖2 − α‖x− π(û)‖2

−
(
kg −

kgk3
2
− k4

2
− σ

2

)
‖θ1‖2

+ kc‖θ̇‖2 +
σ

2
θ20 +

1

2k4
‖d‖2.

As a result, we see that the proposed ESC in the absence
of integral action can approach a neighbourhood of the
unknown optimum whose depends on the distance of û
from the true unknown steady-state optimum u∗. The next
step of the proof focusses on proving that this distance can
be minimized for some large enough τI .

To do this, we consider the equilibrium response, given by
x = π(û), of the system at a specific û. The equilibrium
map is such that:

f(π(û)) + g(π(û))û = 0.

The output trajectory along the equilibrium manifold, also
called the quasi steady-state response, can be described by
the differential equation:

dy

dτ
= ˙̂uT

∂πT

∂û

∂2h(π(û))

∂x∂xT
f(π(û))

+ ˙̂uT
∂πT

∂û

∂2h(π(û))

∂x∂xT
g(π(û))û

+ ˙̂uT
∂πT

∂û

∂h(π(û))

∂x

(
∂f(π(û))

∂x
+
∂g(π(û))

∂x
û

)
+
∂h(π(û))

∂x
g(π(û))

dû

dτ
.
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where dτ = τIdt represents the quasi steady-state time-
scale. Along the steady-state manifold, it follows that:

dy

dτ
=
∂h(π(û))

∂x
g(π(û))

dû

dτ
= θ1s(û)

dû

dτ

where θ1s(û) is the equilibrium value of θ1.

The steady-state output map is h(π(u)) = `(u). Differen-
tiating with respect to τ along the steady-state yields:

dy

dτ
=
∂`

∂u

dû

dτ
.

Thus following development above, one can always identify
the gradient of the steady-state map `(u) as follows:

∂`

∂u
=
∂h(π(û))

∂x
g(π(û)).

Remark 1. This observation suggests a unification of the
proposed approach with the standard ESC which considers
only the gradient of the steady-state objective function.

Consider the Lyapunov function candidate, W = V +
ε
2 ũ

T ũ. Differentiating, one obtains:

Ẇ =− ka‖η̃‖2 −
(
kb −

kg
2k3

)
‖θ̃‖2 − α‖x− π(û)‖2

−
(
kg −

kgk3
2
− k4

2
− σ

2

)
‖θ1‖2

+ kc‖θ̇‖2 +
σ

2
θ20 +

1

2k4
‖d‖2 − εũT ˙̂u

Upon substitution of ˙̂u = − 1
τI
θ̂1, the following inequality

results:

Ẇ ≤ − ka‖η̃‖2 −
(
kb −

kg
2k3

)
‖θ̃‖2 − α‖x− π(û)‖2

−
(
kg −

kgk3
2
− k4

2
− σ

2

)
‖θ1‖2

+ kc‖θ̇‖2 +
σ

2
θ20 +

1

2k4
‖d‖2 +

ε

τI
ũT θ̂1

The term ũT θ1 can be rewritten as:

ũT θ1 =
∂h(π(û))

∂x
g(π(û))ũ

+

(
∂h(x)

∂x
g(x)− ∂h(π(û))

∂x
g(π(û))

)
ũ.

By local convexity of the steady-state objective function,
it follows that:

ũT θ1 ≤ −αu‖ũ‖2 −
(
∂h(x)

∂x
g(x)− ∂h(π(û))

∂x
g(π(û))

)
ũ.

Given that h(x) and g(x) are smooth, it follows that there
exists Lipschitz constants Lg and Lh such that:

ũT θ1 ≤ −αu‖ũ‖2 + LgLh‖ũ‖‖x− π(û)‖.

As a result, one can write the following inequality for W:

Ẇ ≤ − ka‖η̃‖2 −
(
kb −

kg
2k3

)
‖θ̃‖2 − α‖x− π(û)‖2

−
(
kg −

kgk3
2
− k4

2
− σ

2

)
‖θ1‖2

+ kc‖θ̇‖2 +
σ

2
θ20 +

1

2k4
‖d‖2

− αu
(

1

τI

)
‖ũ‖2 +

∣∣∣∣ 1

τI

∣∣∣∣LgLh‖ũ‖‖x− π(û)‖

− 1

τI
ũT θ̃1.

Finally, we bound the last term for some positive constant
k5

Ẇ ≤ − ka‖η̃‖2 −
(
kb −

kg
2k3
− k5

2

)
‖θ̃‖2 − α‖x− π(û)‖2

−
(
kg −

kgk3
2
− k4

2
− σ

2

)
‖θ1‖2

+ kc‖θ̇‖2 +
σ

2
θ20 +

1

2k4
‖d‖2

− αu
(

1

τI
− 1

2τ2I k5

)
‖ũ‖2 +

∣∣∣∣ 1

τI

∣∣∣∣LgLh‖ũ‖‖x− π(û)‖.

As a result, it follows that there exists a strictly positive
τI such that the last inequality can be written as:

Ẇ ≤ − ka‖η̃‖2 −
(
kb −

kg
2k3
− k5

2

)
‖θ̃‖2

−
(
kg −

kgk3
2
− k4

2
− σ

2

)
‖θ1‖2

+ kc‖θ̇‖2 +
σ

2
θ20 +

1

2k4
‖d‖2

− αβ1(τ∗I )‖x− π(û)‖2 − αuβ2(τ∗I )‖ũ‖2.
from corresponding positive constants β1(τ∗I ) and β2(τ∗I ).

As a result,iIt follows that, for every τI > τ∗I , η̃, θ̃, ũ and
θ1 converge to an O(D/τI) neighbourhood of the origin.
As u approaches a neighbourhood of u∗, the state x enters
a neighbourhood of the steady-state optimum π(u∗). This
is achieved by using estimation gains K and kT that are
larger than the optimization gain kg to ensure that all

constants multiply the corresponding norms (‖η̃‖2, ‖θ̃‖2,
‖θ1‖2, ‖ũ‖2 and ‖x− π(û)‖2) are negative.

5. SIMULATION EXAMPLE

In this section, we consider the following dynamical sys-
tem:

ẋ1 =− x2 + u

ẋ2 =x1 − x2
The cost function to be minimized is given by: y = x41 +
6(x1 − 1). The optimum occurs at u∗ = −1.145, x∗1 =
−1.145, x∗2 = −1.145 where y∗ = −11.15. The tuning
parameters are chosen as: kT = 100, K = 100I, kg = 0.1
and τI = 1. The dither signal is d(t) = sin(1000t). The
simulation results are shown in Figures 1 and 2. Figure
1 shows the objective function and the corresponding
input trajectories for the ESC. Figure 2 shows the state
trajectories. The results demonstrate the effectiveness of
the PI-ESC to locate the unknown optimum.
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6. CONCLUSION

In this paper, an alternative proportional-integral ESC
technique was proposed. The technique is based on the
time-varying parameter estimation that allows one to ex-
ploit a simple parameterization of the unknown dynamics
of the cost function. The ESC algorithm is shown to
provide local asymptotic convergence of the closed-loop
system to the unknown optimum. In contrast to existing
ESC techniques, no time-scale separation is required to
achieve the steady-state optimum. Future work will be
focussed on the generalization of the technique to a large
class of systems. In particular, the proposed ESC will be
considered for the solution of steady-state optimization
problems in unstable systems
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Fig. 1. Plot of the cost function and the corresponding
control as a function of time.
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Fig. 2. State trajectories for the PI-ESC closed-loop pro-
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