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Abstract: The paper deals with the development of a new robust PID controller design method that guarantees 
designer-specified maximum overshoot and settling time for non-minimum phase processes with unstable zero. 
The PID controller design provides guaranteed gain margin GM. The parameter of the tuning rules is a 
suitably chosen point of the plant frequency response obtained by a sine-wave signal with excitation frequency 
ωn. Then, the designed controller moves this point into the phase crossover with the required gain margin GM. 
The couple (ωn;GM) is specified with respect to closed-loop performance requirements in terms of ηmax 
(maximum overshoot) and ts (settling time) according to developed parabolic dependences. The new approach 
has been verified on a vast batch of benchmark examples; subsequently, the developed algorithm has been 
extended to robust PID controller design for plants with unstable zero and unstructured uncertainties. 
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1. INTRODUCTION 

The proposed new method is applicable for control of linear 
single-input-single-output non-minimum phase systems even 
with unknown mathematical model with unstructured 
uncertainties. A survey on PID controller tuning can be found 
in (Åström and Hägglund, 1995), (Åström and Hägglund, 
2000),  (Blickley, 1990), (Grabbe et al., 1959-61), (Karaboga 
and Kalinli, 1996), (Kristiansson and Lennartson, 2002), 
(Morilla and Dormido, 2000), (O’Dwyer, 2000), (Tinham, 
1989), (Veselý, 2003), (Visioli, 2006), (Yu, 2006), in the 
famous paper (Ziegler and Nichols, 1942) and references 
therein. The control objective is to provide required nominal 
maximum overshoot ηmax and settling time ts of the controlled 
process variable y(t). The key idea behind guaranteeing 
specified values ηmax and ts consists in extending validity of the 
relations ηmax=f(GM) and ts=f(ωn) derived for 2nd order systems 
(Reinisch, 1974) for arbitrary plant orders; two-parameter 
quadratic dependences were obtained for both the maximum 
overshoot ηmax=f(GM,ωn) and settling time ts=f(GM,ωn). The 
resulting plots called B-parabolas enable the designer choosing 
such a couple (GM,ωn) that guarantees fulfillment of specified 
performance requirements thus allowing consistent and 
systematic shaping of the closed-loop step response with 
regard to the controlled plant (Bucz and Kozáková, 2012). 

2. PID CONTROLLER DESIGN OBJECTIVES FOR 
PROCESSES WITH UNSTABLE ZERO 

It is a well known difficulty to control the class of non-minimum 
phase systems G(s)=(1-αs)/(1+Ts)n with unstable zero z=+1/α, 
even for small values of α; moreover, control complexity 
increases with increasing α (Vítečková et al., 2000).  Fig. 1 
shows Nyquist plots of the non-minimum phase plant G(s) for 
n=3 and T=1, with an unstable zero (α=0.1,0.2,0.5,1,2,5 are 
considered). Fig. 1 reveals, that with increasing α the gain 

margin of the plant decreases, and the phase crossover moves 
closer to (-1,j0). Due to significant changes of the gain margin 
of the plant brought about by the non-minimum phase 
behavior, it is beneficial to use gain margin GM as a 
performance measure when designing the PID controller. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig. 1. Nyquist plots of G(s)=(1-αs)/(Ts +1)n for n=3, T=1 
and different values of α 

 
Consider a multipurpose loop shown in Fig. 2 (the switch in 
position SW=1). Let G(s) be transfer function of an uncertain 
non-minimum phase plant, and GR(s) the PID controller.  
 
 
 
 
 
 

Fig. 2. Multipurpose loop for the designed sine-wave method 
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The corresponding closed-loop characteristic equation 
c(s)=1+L(s)=1+G(s)GR(s)=0 expresses the closed-loop 
stability can easily be broken down into the magnitude and 
phase conditions 

M
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where GM is required gain margin, L(jω) is the open-loop 
transfer function, and ωp

* is the open-loop phase crossover 
frequency. Denote ϕ=argG(ωp

*),Θ=argGR(ωp
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the ideal PID controller in the form 
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where K is the proportional gain, and Ti, Td are integral and 
derivative time constants, respectively. After comparing the 
two forms of the PID controller frequency transfer functions  
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PID coefficients can be obtained from the complex equation 
at ω=ωp
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using the substitution |GR(jωp
*)|=1/[GM|G(jωp

*)|] resulting 
from (1a). The complex equation (5) is then solved as a set of 
two real equations 
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where (6a) is a general rule for calculating the controller gain 
K; substituting (6a) into (6b), a quadratic equation in Td is 
obtained 
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Expression for calculating Td is the positive solution of (7) 
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Hence, (6a), (7b) and (8) are the resulting PID tuning rules, 
where the angle Θ is obtained from the phase condition (1b) 

ϕωΘ −°−=−°−= 180180 )(Garg *
p . (9) 

3. PLANT IDENTIFICATION BY A SINUSOIDAL 
EXCITATION INPUT 

Consider again Fig. 2; if SW=2, a sinusoidal excitation signal 
u(t)=Unsin(ωnt) with magnitude Un and frequency ωn is 
injected into the plant G(s). The plant output 
y(t)=Ynsin(ωnt+ϕ) is also sinusoidal with magnitude Yn, 
where ϕ is the phase lag between y(t) and u(t). After reading 
the values Yn and ϕ from the recorded values of u(t) and y(t), 

a particular point of the plant frequency response 
corresponding to the excitation frequency ωn 
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can be plotted in the complex plane. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Graphical representation of the PID tuning principle 
 

Excitation frequency ωn is taken from the interval  

ccn .,. ωω∈ω 25150 , (11) 

where the plant critical frequency ωc can be obtained by the 
well-known relay experiment (Åström and Hägglund, 1995), 
i.e. for SW=3. 

Using the PID controller with the coefficients {K;Ti=βTd;Td}, 
the identified point G(jωn) with coordinates (10) can be 
moved into the phase crossover LP≡L(jωp

*) on the negative 
real half-axis, where the required gain margin GM is 
guaranteed (Fig. 3), if the following identity between the 
excitation and phase crossover frequencies ωn and ωp

*, 
respectively, is fulfilled 

n
*
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Considering (11), the following relations result 
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and the phase crossover coordinates are 
LP=[|L(jωn)|,argL(ωn)]=[1/GM,-180°]. Substituting (13a)  into 
(6a) and (12) into (8), the PID controller coefficients 
guaranteeing the required gain margin GM are obtained using 
the sine-wave type tuning rules expressed in the following form 
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4. CLOSED-LOOP PERFORMANCE UNDER THE 
DESIGNED PID CONTROLLER 

This section answers the following question: how to transform 
the maximum overshoot ηmax and settling time ts as required by 
the designer into the couple of frequency-domain parameters 
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(ωn,GM) needed for identification and PID controller tuning? 
Consider typical gain margins GM given by the set 

{ } { }dB,dB,dB,dB,dB,dB,dB,dBGMj 171513119753= , (17) 

j=1…8; let us split (11) into 5 equal sections of the size 
∆ωn=0,15ωc and generate the set of excitation frequencies 

{ } { }ccccccnk .,.,.,.,.,. ωωωωωωω 251119508065050= , (18) 

k=1…6; its elements divided by the plant critical frequency 
ωc determine excitation levels σk=ωnk/ωc given by the set 

{ } { }251119508065050 .,.,.,.,.,.k =σ , (19) 

k=1…6. Fig. 4 shows the closed-loop step response shaping 
for different GM and ωn using the PID controller design for 
the plant (20b) with parameters T2=0.75, α2=1.3, and 
required gain margins GM=5dB, 9dB, 11dB and 13dB at 
different excitation levels σ1=ωn1/ωc=0.5, σ3=ωn3/ωc=0.8 
and σ5=ωn5/ωc=1.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. a)-c) Closed-loop step responses of G2(s) with T2=0.75, 
α2=1.3 for various GM and ωn; d) Time responses of G2(s) for 
α/T=1 and α/T=0.1 during the relay test 
 
Consider the following benchmark plants 
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The proposed method has been applied for each element of 
the Cartesian product ωnk×GMj of the sets (18) and (17) for 
j=1...8 and k=1...6. Significant differences between dynamics 
of individual control loops under designed PID controllers 
can be observed for the benchmark systems (20).  
 
The settling time ts can be expressed by the relation 

n
st ω

γπ= , (21) 

where γ is the curve factor of the step response. To examine 
settling times of closed-loops for various plant dynamics, it is 
advantageous to define the relative settling time τs=tsωc. 

Substituting ωn=σωc we obtain relation for the relative 
settling time 

γ
σ
πτγ

σ
πω =⇒= scst , (22) 

where ts is related to the plant critical frequency ωc. Due to 
introducing ωc, the l.h.s. of (22a) is constant for the given 
plant and independent of ωn. The dependence (22b) obtained 
empirically for different excitation frequencies ωnk is depicted 
in Fig. 5b and Fig. 6b, respectively; it is evident that with 
increased phase margin GM at every excitation level σ the 
relative settling time τs first decreases and after achieving its 
minimum τs_min, it increases again. Consider the benchmark 
plants G1(s) and G2(s) with following parameters: G1.1(s): 
(T1,n1,α1)=(0.75,8,0.2); G1.2(s): (1,3,0.1); G1.3(s): (0.5,5,1); 
G2(s): T2=0.5, α2=1.3. Couples of examined plants [G2(s), 
G1.3(s)] and [G1.2(s), G1.1(s)] differ principally by the ratio 
α/T, which for the 1st couple is [α2/T2=2.6, α1.3/T1.3=2] and 
for the 2nd couple [α1.2/T1.2=0.1, α1.1/T1.1=0.27]. Hence, the 
ratio of the parameter α and the (dominant) time constant T 
of the plant is significant for the closed-loop performance 
assessment under the PID controller designed for a plant with 
unstable zero. Based on the previous analysis of design 
results of a series of benchmark examples, unknown plants 
with unstable zero can be classified according to the ratio α/T 
in following two groups: 

1. plants with the ratio α/T<0,3; 
2. plants with the ratio α/T>0,3. 

According to this classification, empirical dependences 
ηmax=f(GM), τs=f(GM) for non-minimum phase systems with 
an unstable zero were constructed for different open-loop 
gain margins GM and excitation levels σ, and are depicted in 
Fig. 5a (for α/T>0.3), and Fig. 6a (for α/T<0.3). The network 
of dependences shows that increasing gain margin GM brings 
about decreasing of ηmax. 

As the empirical dependences in Fig. 5 and Fig. 6 were 
approximated by quadratic regression curves they are called 
B-parabolas (Bucz and Kozáková, 2012). B-parabolas are a 
useful design tool to carry out the transformation 
ℜ:(ηmax,ts)→(ωn,GM) that enables to choose appropriate 
values of gain margin GM and excitation frequency ωn, 
respectively, to guarantee the performance specified by the 
designer in terms of maximum overshoot ηmax and settling 
time ts (Bucz and Kozáková, 2012). Note that pairs of 
B-parabolas at the same level (Fig. 5a, Fig. 5b) or (Fig. 6a, 
Fig. 6b) are to be used. When a real plant with an unstable 
zero is to be controlled, the ratio α/T cannot be specified 
exactly due to unavailability of the plant model. To decide to 
which category a given plant belongs (α/T>0.3 or α/T<0.3) it 
is sufficient to analyze the rise portion of the output variable 
during the relay test for finding ωc. If y(t) has an S-form with 
a tiny undershoot, the plant is included in the category 
α/T<0.3 and B-parabolas from Fig. 6 are to be used. If a 
considerable undershoot of y(t) occurs having a “square root 
sign” form (Fig. 4d in the red dashed ellipse), the plant 
belongs to the category α/T>0.3 and its performance will be 
assessed using B-parabolas in Fig. 5. 
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Fig. 5. B-parabolas: a) ηmax=f(GM); b) τs=ωcts=f(GM) for 
identification levels ωnk/ωc, k=1,2,3,4,5,6 valid for non-
minimum phase systems with the ratio α/T>0.3 
 
 
 
 
 
 
 
 
 
 

Fig. 6. B-parabolas: a) ηmax=f(GM); b) τs=ωcts=f(GM) for 
identification levels ωnk/ωc, k=1,2,3,4,5,6 valid for non-
minimum phase systems with the ratio α/T<0.3 

 

5. ROBUST SINE-WAVE TYPE PID CONTROLLER 
DESIGN 

The main idea of the uncertain plant identification consists in 
repeating the sine-wave type excitation for individual 
uncertainty changes using the excitation signal frequency ωn 
yielding a set of identified points Gi of the uncertain plant 
frequency responses 

ii
)(Gargj
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Plant parameter changes are reflected in magnitude and phase 
changes |Gi(jωn)| and argGi(ωn), where i=1...N; N=2p is the 
number of identification experiments and p is the number of 
varying technological quantities of the plant. The nominal 
plant model G0(jωn) at ωn is obtained as mean values of real 
and imaginary parts of Gi(jωn), respectively 
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where |G0(jωn)|=(a0
2+b0

2)0,5,ϕ0(ωn)=argG0(ωn)=arctg(b0/a0). 
The points Gi representing unstructured uncertainties of the 
plant can be enclosed in the circle MG centered in 
G0(jωn) with the radius RG≡RG(ωn) obtained as a maximum 
distance between the i-th identified point Gi(jωn) and the 
nominal point G0(jωn) 
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The dispersion circle MG centered in the nominal point G0 

with the radius RG encircles all identified points Gi of the 
uncertain plant (Fig. 7). 

 
 
 
 
 
 
 
 
 

Fig. 7. Dispersion circles MG and ML 

 

The proposed control law generated by the robust controller 
GRrob(s) designed for the nominal point G0(jωn) actually carries 
out the transformation ℘:{RG→RL:RL=|GRrob|RG} of the set of 
identified points Gi(jωn) encircled by MG with the radius RG 
into the set of points Li(jωn) delimited by ML, and also 
calculates the radius RL≡RL(ωn) of the dispersion circle ML 
corresponding to the points Li(jωn) of the Nyquist plot so as to 
guarantee fulfillment of the robust stability condition. The 
robust PID controller is designed using the sine-wave method 
described in sections 2 and 3; the input data for the nominal 
model G0(jωn) are its coordinates: {|G0(jωn)|; ϕ0=argG0(ωn)}. 
Substituting them into (15) and (16) the following expressions 
for calculating robust PID controller parameters are obtained 
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It can be seen that the gain margin GM appearing in (26a) is at 
the same time a robust PID controller tuning parameter 
required for guaranteeing robust stability. 
 
Theorem 1 (Sufficient condition of robust stability under 
a PID controller) 

Consider an uncertain continuous-time stable dynamic 
system described by unstructured uncertainty. The closed-
loop system T(s) under the controller GR(s) is robustly stable 
if the nominal closed-loop system (G0(s) under a PID 
controller GR(s)) is stable, and 
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where GM is the required gain margin, ωn is the excitation 
frequency, χL is the safety factor, RG(ωn) is the radius of the 
dispersion circle of the Nyquist plots of the plant at ωn, and 
G0(jωn) is a point on the Nyquist plot of the nominal plant at ωn. 
 
Proof 
 
The proof can easily be performed according to Fig. 7. If the 
nominal open-loop L0(s)=G0(s)GR(s) is stable, then according 
to the Nyquist stability criterion the closed-loop with the 
uncertain plant will be stable if the distance between L0 and 
the point (-1,j0), i.e. |1+L0(jωn)| is greater than the radius 
RL(ωn) of the circle ML centered in L0, i.e. 

)j(L)j(R nnL ωω 01+< , (29) 
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where ωn is the sine-wave generator frequency. The distance 
|1+L0(jωn)| is a complementary distance |0,L0|=|L0| to the unit 
value. Thus 

11 00 =++ )j(L)j(L nn ωω , )j(L)j(L nn ωω 00 11 −=+ . (30) 

From the principles of the proposed PID controller tuning 
method results that the robust controller shifts the nominal 
point of the plant frequency response G0(ωn) to a point L0 on 
the negative real half-axis of the complex plane. Thus, the 
magnitude |L0(jωn)|=|G0(jωn)||GR(jωn)|=1/GM yielding the 
ratio |GR(jωn)|=1/[GM|G0(jωn)|] between the radii RG 

and RL=|GR|RG of the circles MG and ML, respectively. The 
radius RL of the dispersion circle ML is calculated as  

)j(GG
RR

nM
GL ω0

1= . (31) 

Substituting (30b) and (31) into the general robust stability 
condition (29) and considering the safety factor χL, the 
following inequality holds 

)j(GG

R

G

G

nM

GL

M

M

ω
χ

0

1
>

−
, (32) 

which after some manipulations is identical to the proven 
condition (28). Let χL=1.2. According to the robust stability 
condition the chosen value GM is substituted into (26a) and 
afterwards the robust PID controller parameters are obtained 
from (26) and (27).  A setup of the proposed method is 
extensively illustrated on the following example. 

6. VERIFICATION OF THE PROPOSED ROBUST PID 
CONTOLLER DESIGN METHOD 

Consider the following uncertain plant G3(s) with an unstable 
zero  

3
3

33
3 1

1

)sT(

)s(K
)s(G

+
+−= α

, (33) 
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30

3030
30 1527

15780

1

1

)s.(

)s.(,

)sT(

)s(K
)s(G

+
+−=

+
+−= α

 (34) 

with parameters K3, T3 and α3 varying within ±15% around 
the nominal values; G30(s) is the nominal model. For the 
above plant, a robust PID controller is to be designed to 
guarantee a maximum overshoot ηmax0=5% and a maximum 
relative settling time τs0=12 for the nominal model (33), and 
stability of the family of plants G3(s) (32) (robust stability). 

1. The measured critical frequency of the nominal model 
is ωc=0.0488 s-1. From requirements on the nominal 
closed-loop performance results ts=τs0/ωc=12/0.0488= 
=245.9 s. 
 
2. To achieve the expected nominal performance (ηmax0,τs0)= 
=(5%,12), the gain margin and excitation frequency are 
chosen (GM,ωn)=(18dB,0.65ωc) using the „pink“ B-parabolas 
in Fig. 6 as according to (34) α30/T30=7.5/27.5=0.27<0.3. 
Uncertainties of the plant are included in three parameters: 
K3, T3 and α3, the number of identification experiments is 
therefore N=23=8. 

3. Using the sine-wave method, eight points of Nyquist plots of 
the uncertain plant were identified at ωn=0,65ωc=0,65.0,04880= 
=0,03172 s-1: G31(jωn)...G38(jωn) (depicted by blue „x“ in 
Fig.11). The nominal point G30(jωn), which position was 
calculated from the coordinates of identified points G3i(jωn), 
i=1...8, is located on the Nyquist plot of the nominal model 
G30(jωn) (blue curve) thus proving correctness of the 
identification. Radius of the dispersion circle MG drawn from 
the nominal point G30(jωn) is RG=0.164. 
 
4. As GM=18dB and the r.h.s. of (27) G0_RS=3.52 dB, the 
robust stability condition (26) GM>G0_RS is satisfied. The 
designed robust PID controller moves the nominal point 
G30(jωn) on the negative half-axis into L30(jωn)= 
=G30(jωn)GR_rob(jωn)=0.12e-j180°, through which passes the 
Nyquist plot of the nominal open-loop L30(jωn) (Fig. 10 in 
green), where the gain margin GM=18 dB is guaranteed. The 
nominal closed-loop step response (Fig. 11a, green curve) 
proves achieving the required nominal performance 
ηmax0_obtained=4.55%, τs0_obtained=ωcts0_obtained=0,0488.243=11,86. 
 
5. The dispersion circle ML (in green) radius RL=0.0573 
encompasses all points L3i(jωn)=G3i(jωn)GR_rob(jωn) for 
i=1…8. The PID controller has moved the worst point 
G3N(jωn) of the plant (blue symbol „+“ in Fig. 8) into  
L3N(jωn)=0.16e-j197°, according to it the estimated worst gain 
margin is GMN=14.9 dB. 
 
6. The smallest gain margin with the worst point G3N(jωn) of 
the plant (blue symbol „+“ in Fig. 8) is specified by the 
intersection of the red Nyquist plot with the negative real 
axis, where the open-loop gain margin is G+

MN=13.1 dB; here 
ηmaxN=25% and the relative settling time τsN=16 are expected 
(according to „pink“ curves in Fig. 6 at ωn=0.65ωc). Achieved 
performance ηmaxN_obtained=13.5%, tsN_obtained=301 s (red step 
response in Fig. 9b) prove this fact. 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8. Nyquist plots of G30(jω), G3N(jω), L30(jω), L3N(jω): 
zoomed, for required performance ηmax0=5% and τs0=12 
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Fig. 9. Closed-loop step responses with the uncertain plant 
G3(s) and required values ηmax0=5% and τs0=12 

Modified version of sine-wave method 

To avoid using the sine-wave generator, identification of the 
plant frequency transfer function point can be carried out as 
follows. Include some filter with the transfer function F(s) in 
closed-loop which does not violate the closed-loop. Using the 
classical Ziegler-Nichols experiment (Ziegler and Nichols, 
1942) we obtain both the controller ultimate proportional gain 
Kc and ultimate frequency ωc. With ultimate parameters the 
following equation holds 

01)()( jjGjFK ccc +−=ωω  (35) 

or, the complex-plane coordinates of G(jωc) are 

jnm
jFK

jG
cc

c +=−=
)(

1
)(

ω
ω . (36) 

Considering the crossover frequency to be set as ωc=ωp, a 
PID controller guaranteeing the prescribed gain margin using 
(15) and (16) can be designed. 

If the plant is unstable, the additional transfer function F(s) 
with P controller can stabilize the closed-loop system; hence 
the proposed modification of the sine-wave method or the 
modified Ziegler-Nichols method can be used for PID 
controller tuning even for unstable systems. 

7. CONCLUSIONS 

The proposed robust PID controller design method is 
applicable for closed-loop output variable response shaping, 
using various combinations of excitation signal values ωn and 
required gain margins GM. Important contribution of the 
paper is construction of empirical plots converting time-
domain requirements specified by a process technologist 

(nominal maximum overshoot and settling time) into 
frequency-domain performance specification in terms of 
nominal gain margin and phase crossover frequency. 
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