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Abstract: In this paper we present a method to solve algebraic Riccati equations by employing
a projection method based on Proper Orthogonal Decomposition. The method only requires
simulations of linear systems to compute the solution of a Lyapunov equation. The leading
singular vectors are then used to construct a projector which is employed to produce a reduced
order system. We compare this approach to an extended Krylov subspace method and a standard
Gramian based method.

1. INTRODUCTION

Riccati equations play an important role in optimal con-
trol and filtering. Moreover, solutions of the algebraic
Riccati equation can be important for certain model re-
duction algorithms, such as LQG balanced truncation,
Antoulas, 2005, Sec. 7.5. Moreover, solving Algebraic Ric-
cati Equations (ARE) is a computationally challenging
task. Over the past 45 years many methods and tech-
niques were developed to efficiently solve nonlinear matrix
equations of Riccati type. The methods include invariant
subspace methods Guo and Laub, 1979; Bunse-Gerstner
and Mehrmann, 1986, spectral projection methods Byers,
1987, rational and global Krylov subspace methods Saad
and Gv, 1990; Heyouni and Jbilou, 2009; Simoncini et al.,
2013 as well as the Newton-Kleinman method Kleinman,
1968; Burns et al., 2008; Feitzinger et al., 2009; Benner
and Saak, 2010; Singler and Batten, 2012. A good survey
for solving large Riccati and Lyapunov equations can be
found in Benner and Saak, 2013 and Bini et al., 2012.

Based on simple intuition, high order models often yield
high order optimal controllers, which are impractical for
real time implementation in a physical device. The capa-
bility of the physical device dictates the implementable
model order, which in many cases is low. Moreover, when
considering the finite time horizon LQG control problem,
one faces additional challenges. Linear differential equa-
tions involving the solution of an ARE have to be solved
in real time. Integrating the full order model is hence
unfeasible. Therefore, reduced order models, including a
reduced order approximate solution of ARE are needed.

Proper Orthogonal Decomposition (POD), also known
as KL-expansion and Principal Component Analysis, is
widely used in the engineering and mathematical commu-
nity for simulation and control, see Berkooz et al., 1993;
Kunisch and Volkwein, 2002; Hay et al., 2009; Volkwein,
2013 and the references therein. In this paper, we suggest
the use of POD to devise a projection method to compute
approximate solutions to ARE efficiently and accurately.
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In particular, a POD method is employed to approximate
the left singular vectors of the observability Gramian and
construct a projection. This is then used to obtain matrices
of low dimensions for which the algebraic Riccati equation
can be solved easily.

For ease of presentation, we assume that a finite dimen-
sional dynamical system Σ = (A,B,C) is given by

ẋ(t) = Ax(t) +Bu(t), (1)

y(t) = Cx(t), (2)

where A ∈ RN×N , B ∈ RN×m and C ∈ Rp×N and ẋ
denotes the usual time derivative of x. The standard inner
product in RN is used.

Consider the algebraic Riccati equation

ATP + PA− PBBTP + CTC = 0 ∈ RN×N (3)

arising, for instance, in optimal design of a linear quadratic
regulator, Kwakernaak and Sivan, 1972. Developing effi-
cient solution strategies for this nonlinear algebraic equa-
tion is still an ongoing research effort. In this work, the
focus is on projection methods to solve equation (3).

Many algorithms to solve Riccati equations exploit the
intrinsic connection to the Lyapunov equation

ATX +XA+ CTC = 0 ∈ RN×N . (4)

One should note that (4) is a linear matrix equation
obtained from (3) by ignoring the nonlinear term. The
connection between the Riccati and Lyapunov equation
can also be observed numerically. The recent work of
Simoncini et al., 2013 investigates the relationship for the
convergence speed of the Lyapunov solutions and Riccati
solutions. The authors have investigated the case where
both (3) and (4) are projected onto the same extended
Krylov subspace and found error bounds relating both
residuals.

For stable A, it can be shown (Antoulas, 2005, Prop.4.27)
that the exact solution to the Lyapunov equation is given
by the Observability Gramian

X =

∫ ∞
0

etA
T

CTCetAdt. (5)
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Proper Orthogonal Decomposition can be used to obtain
an approximation of (5). This is the starting point of our
new algorithm to solve ARE.

2. PROJECTION METHODS

Projection methods were demonstrated to be efficient
methods to compute solutions of Riccati and Lyapunov
equations Jaimoukha and Kasenally, 1994; Jbilou, 2006;
Jbilou and Riquet, 2006; Simoncini, 2007; Heyouni and
Jbilou, 2009; Simoncini et al., 2013. To this end, let us
assume the availability of a projection matrix

Vr = [v1, v2, . . . , vr] ∈ RN×r, V T
r Vr = Ir, (6)

where r � N is the reduced dimension and Ir is the
identity matrix in Rr×r. Once a suitable projector is
found, a reduced order model Σr = (Ar, Br, Cr) can be
constructed via

Ar = V T
r AVr, (7)

Br = V T
r B, (8)

Cr = CVr. (9)

One can compute the reduced order solution Pr of the
projected Riccati equation

AT
r Pr + PrAr − PrBrB

T
r Pr + CT

r Cr = 0 ∈ Rr×r (10)

with any of the methods described earlier. Having solved
the low order ARE, equation (10), define an approximate
solution to (3) through

P (N)
r := VrPrV

T
r ≈ P. (11)

In this work, we are interested in the convergence behavior

P
(N)
r → P as r → N . Numerical results in the literature

employ the norm of the residual

R(P̃ ) := AT P̃ + P̃A− P̃BBT P̃ + CTC ∈ RN×N (12)

as a standard measure for numerical accuracy of solutions
to ARE. Equation (10) can also be thought of as enforc-
ing the Galerkin orthogonality condition on the residual,

V T
r R(P

(N)
r )Vr = 0. For in general a full order solution

to ARE is not available, the residual (matrix) provides a
good measure for the accuracy of solutions. For practical
purposes, we compute the Frobenius norm of the residual.
The Frobenius norm of a matrix A is defined as ||A||F =√
tr(ATA). We shall investigate the performance of several

algorithms and track convergence for the residual norm.
As will be demonstrated, some of the projection based
methods we compared do not obey monotone decreasing
errors. This can be of concern, since the extra ‘work’ of
increasing the projection basis size does not result in a
smaller residual. Also, note that the residual in RN×N is
expensive (or impossible) to evaluate. For the extended
Krylov subspace method described below, an efficient way
to compute the residual norm is available. Deriving a cheap
evaluation of the norm of the residual independent of the
method will be part of a future publication.

When dealing with projection methods, one needs to
ensure that stability is preserved under projection. In some
applications, stability is enforced through post processing:
Whenever the reduced order model has unstable poles, a
restarted Arnoldi or Lanczos algorithm is used to remove
those. However, we have the following

Lemma 1. (Stability Preservation under Projection, Casta-
Selga et al., 2012): Let (Σ) = (A,B,C) be a continuous

time system with Re(λ(A+AT )) ≤ 0, where λ(A) denotes
any eigenvalue of A. The projected reduced order model
(Σr) = (Ar, Br, Cr) is stable if Vr ∈ RN×r has full column
rank.

Note that as a special case, if A is normal (symmetric,
skew-symmetric or orthogonal matrices form a subset of
normal matrices), then reduced order models obtained via
projection as presented in Lemma 1 are stable.

It seems reasonable that the accuracy and convergence
behavior of projection methods depends on the rich-
ness of the approximation space as well as the structure
and dimension of the projector Vr. This paper compares
promising methods to generate a projection matrix Vr
and presents a new approach based on POD. This builds
upon recent work of Singler, 2011 for computing the solu-
tion of infinite dimensional Lyapunov equations. First, an
overview of existing work is provided.

Early work on projection methods for solving Lyapunov
equations is given in Saad and Gv, 1990. The au-
thors used the standard Krylov subspace Kl(A, b) =
span{b, Ab,A2b, . . . , Al−1b} to approximate the matrix ex-
ponential times a vector by a polynomial in A times a
vector as eAb ≈ pl−1(A)b. In the case of Lyapunov equa-
tions, exponentials of AT occur in the kernel of the integral
representation of the observability Gramian (5). The idea
is that a good approximation of the integrand should be
sufficient for convergence of the Gramian. This is not
trivial, but Grasedyck, 2004 showed that under rather mild
assumptions a quadrature with sinc quadrature points and
appropriate weights yields good low rank approximations
of X. More early results on projected Lyapunov equations
are provided in Jaimoukha and Kasenally, 1994. The au-
thors therein sought low rank approximations of X and
compared the GMRES method and the block Arnoldi
method. Moreover, error bounds for both methods were
derived.

In Druskin and Knizhnerman, 1998, it was shown that the
enriched Krylov space

K2l(A, b) = Kl(A, b) +Kl(A
−1, b) (13)

yields better approximations for a product of a matrix
function in A and a vector b. This property has then
been exploited in the design of an iterative method for
the solution of the Lyapunov equation, see Simoncini,
2007. The proposed “Extended Krylov Subspace Method
(EKSM)” is then compared to the Cholesky factorized-
ADI method. The projection based EKSM was found to
be competitive and in some examples cheaper than the
Cholesky factorized-ADI method.

In this paper, a new POD based projection method to
compute approximate solutions of ARE is presented. We
first compute the left singular vectors of an approximate
observability Gramian via the algorithm proposed in Will-
cox and Peraire, 2002; Singler, 2011. Next, a reduced
order model is obtained via projection of (A,B,C) with
those left singular vectors. The dimension of the necessary
singular value decomposition is limited by min(N, pS),
with S being the number of snapshots collected during
the simulation of a linear system.
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2.1 Extended Krylov Subspace Method (EKSM)

Heyouni and Jbilou, 2009 used the extended Krylov sub-
space Kr = Kr/2(AT , CT ) +Kr/2(A−T , CT ) to obtain Vr,

where A−T = (A−1)T .

The procedure is summarized in Algorithm 1. Note, that
this algorithm is built for multi-input multi-output sys-
tems (MIMO) where m, p > 1.

Algorithm 1 : Extended Block Arnoldi (EBA) Algorithm
(Heyouni and Jbilou (2009))

Input: AT ∈ RN×N , CT ∈ RN×p and an integer r.
Output: Vr ∈ RN×r, an orthogonal projection matrix.

1: Compute the QR-decomposition of [CT , A−TCT ], i.e.
[CT , A−TCT ] = V1Λ; Set V0 = { }.

2: for j = 1, 2, . . . , r do

3: Set V
(1)
j : first p colums of Vj and V

(2)
j : second p

columns of Vj .

4: Vj = [Vj−1, Vj ]; V̂j+1 = [ATV
(1)
j , A−TV

(2)
j ].

5: Orthogonalize V̂j+1 with respect to Vj to get Vj+1,
i.e.

6: for i = 1, 2, . . . , j do
7: Hi,j = V T

i V̂j+1 ;

8: V̂j+1 = V̂j+1 − ViHi,j ;
9: end for

10: Compute the QR-decomposition of V̂j+1, i.e. V̂j+1 =
Vj+1Hj+1,j .

11: end for

At every iteration step of Algorithm 1, a new column is
added to Vr. The inversion is implemented by precomput-
ing a LU-decomposition of A and then solving triangular
systems. In Heyouni and Jbilou, 2009, the above algorithm
is embedded into a procedure to solve ARE as in Algorithm
2 below, yielding an hierarchical method. The authors

constructed a cheap evaluation of rm = ||R(P
(N)
r )||, which

serves as a stopping criterion for the algorithm. To achieve
this, the Arnoldi recurrence turned out to be crucial. With
this step, only matrices of size r are required to compute
the stopping criterion.

2.2 Gramian Based Projection

An approximate solution of the Lyapunov equation is
computed with lyap in Matlab as

X(N) = lyap(AT , CTC). (14)

Matlab uses the SLICOT SB03MD routine for this prob-
lem. At first, the Schur decomposition of AT is computed
and then the new system solved by forward substitution.
The algorithm is backward stable and requires O(N3)
operations, therefore becoming unfeasible for large N .

We then compute the singular value decomposition of the
approximate controllability Gramian

V ΣWT = X(N), (15)

where the columns of V = [v1 v2 . . . vN ] span the
rangespace of X(N). Truncation of V after r vectors yields
the projection matrix as Vr = [v1 v2 . . . vr].

For medium sized problems, this method performed very
well in numerical examples and we thus included it for

research purposes. However, for large systems, this direct
computation of the solution to the Lyapunov equation
became unfeasible. Krylov-based projection techniques
such as EKSM described earlier as well as the POD
method described below are used in this case.

2.3 POD Projection Method

Proper Orthogonal Decomposition is a powerful model
reduction technique based on measurements or simulations
of a system. In Willcox and Peraire, 2002, a snapshot based
approach was used to approximate solutions of Lyapunov
equations. In particular, the authors suggested to use
snapshots of simulations of the dual equations to compute
the observability Gramian (5). The dual equations of the
underlying optimal control problem are

ẋi(t) = ATxi(t), (16)

xi(0) = cTi , (17)

for all i = 1, . . . , p and t ∈ [0, T̄ ]. Here, T̄ specifies a final
time to stop simulations. In Singler, 2011 this approach
was extended to infinite dimensional systems and error
bounds for the convergence of a low rank solution of the
Lyapunov equation to the infinite dimensional Gramian
were obtained. Note, that the transpose observation ma-
trix is CT = [cT1 cT2 . . . c

T
p ], so one has to simulate the

system p times to get fully independent data. Therefore,
systems with few outputs p are more favorable for this
method. This is a priori not a disadvantage. Krylov sub-
space methods for p > 1 also require block multiplications
and block inversions which become increasingly expensive
as p grows.

By the theory of ordinary differential equations, the so-

lution to (16) - (17) at t = tj is xi(tj) = etjA
T

cTi for
i = 1, . . . , p. The method of Proper Orthogonal Decom-
position requires data of the system. Thus, simulate (16)-
(17) and take S snapshots xi(tj) at equally spaced time
intervals in [0, T̄ ]. Abusing notation, xi(tj) is used for
both the exact analytical solution as well as for the finite
dimensional approximation, stemming from discretization.
By the method of snapshots, for a given initial condition
cTi we assemble the snapshots in

Yi = [xi(0) xi(t1) . . . xi(T̄ )] ∈ RN×S . (18)

Simulations starting with every column of CT are con-
catenated in Y = [Y1, Y2, . . . , Yp] ∈ RN×pS . Since A is
assumed to have only eigenvalues with strictly negative
real parts, one can approximate

X ≈
∫ T̄

0

etA
T

CTCetAdt ≈ Y ŴY T =: X̃, (19)

where Ŵ is a matrix of weights, here chosen to be the
weights for the approximation of the integral with the
trapezoidal rule. Note, that the approximate observability
Gramian can be Cholesky-factored as

X̃ = ZZT , (20)

where Z = Y Ŵ 1/2 ∈ RN×pS . Since we seek the left
singular vectors of X̃ to construct Vr, there is no need
to form the Gramian explicitly. Instead, we follow the
approach in Volkwein, 2013, Algorithm 2, Ch.1. If N > pS,
compute the singular value decomposition V1Σ1W

T
1 =

ZTZ. Let Vr contain the first r columns of V1 and let Σr be
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the r×r leading submatrix of Σ1. Then Vr = ZVrΣ
−1/2
r . In

the case where N < pS, we actually compute the singular
value decomposition V2Σ2W

T
2 = ZZT = X̃ and obtain Vr

as the leading r columns of V2. For medium sized problems,
the latter case allows very accurate approximations of the
controllability Gramian involving many time snapshots,
without increasing the cost of computing the singular value
decomposition.

3. NUMERICAL RESULTS

In this section, dynamical systems Σ = (A,B,C) as given
in (1) are considered. We generate a projection matrix
Vr ∈ RN×r through EKSM, Gramian based projection
and the POD algorithm as described above. Then, the
reduced order models (Σr) = (Ar, Br, Cr) are computed
via projection and the reduced order Riccati equation
(10) is solved with care in Matlab. This function solves
the Hamiltonian eigenvalue problem associated with ARE
and is further described in Arnold and Laub, 1984. The

approximation of P is then given by VrP
(N)
r V T

r . Assessing
the quality of the approximations is done via comparison
of the Frobenius norm of the residual (12). This gives
a consistent measure for the quality of approximations.
A general projection algorithm is used to compare the

methods, see Algorithm 2. The approximate P
(N)
r does

not have to be computed explicitly, but only its Cholesky
factor, see the optional steps 7 and 8 of Algorithm 2.

The computational environment was a 2010 MacBook Pro
with a 2.66 GHz Intel Core i7 Processor and 4GB RAM.
Matlab was used as a software in the version of R2012b.
With ‘CPU time’ we mean the time needed to compute
Vr, measured by tic,toc.

Algorithm 2 :General Projected Riccati Algorithm

Input: A ∈ RN×N , B ∈ RN×m, C ∈ Rp×N . A projector
Vr = [v1, . . . , vr] ∈ RN×r and dtol.

Output: P
(N)
l , solution of ARE.

1: for l = 1, 2, . . . r do
2: Let Vl = [v1, . . . , vl]. Compute Al = V T

l AVl, Bl =
V T
l B, Cl = CVl.

3: Solve

AT
l Pl + PlAl − PlBlB

T
l Pl + CT

l Cl = 0. (21)

4: Compute full order P
(N)
l = VlPlV

T
l .

5: Compute the residual norm

rl := ||R(P
(N)
l )||F . (22)

6: end for
7: If desired: Compute the singular value decomposition
Pl = UΣUT where Σ = diag[σ1, . . . , σl] and σ1 ≥
. . . ≥ σl; Determine k such that σk+1 < dtol < σk, set

Σk = diag[σ1, . . . , σk] and compute Zl = VlUkΣ
1/2
k .

8: P
(N)
l ≈ ZlZ

T
l .

When comparing numerical results, we monitor accuracy,
convergence and computational effort. The following ques-
tions are relevant to us for assessing the quality of the
method:

(1) For given r how long does it take to generate the
projection matrix Vr ?

(2) What is the convergence behavior for the residual

||R(P
(N)
r )||F as r increases ?

3.1 ISS1R Flex Model

This model describes a structural subsystem of the Inter-
national Space Station (ISS) and is taken from Antoulas,
2005. During the assembly process of the ISS many in-
ternational partners are involved and robust stability and
performance of all stages has to be certified. Many flexible
structures, operational modes and control systems result in
a very complex dynamical system. For robustness and per-
formance assessment, it is critically important to identify
the potential for dynamic interaction between the flexible
structure and the control systems. As more components
are added to the space station, the original symmetry
gets lost, which poses additional simulation challenges.
The subsystem 1R is a flex model of the Russian Service
Module.

This dynamical system has m = 3 inputs, p = 3 outputs
and consists of N = 270 states. The system matrix
A is a non-symmetric dense matrix with 63843 nonzero
elements and therefore 88% fill-in. The mass matrix is
the identity. For r = 2, 4, . . . , 70, we computed a reduced
order model, solved the low order Riccati equation and
computed residual norms arising from those models. The
results are plotted in Figure 1 below. The POD based
approach employed simulations from t = 0s to T̄ = 15s
and snapshots were taken every 0.02s, amounting to a
combined 2253 snapshots of the three simulations of the
system.
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Fig. 1. Residual norms ||R(P
(N)
r )||F for ISS1R model.

Time to compute projector Vr: POD: 2.24s, EKSM:
0.24s, Gramian: 0.15s.

Some comments are in order. For a small sized system,
the Gramian approach with the lyap solver as described
above performs very well. In other words, projection with
the left singular vectors of the observability Gramian
is very effective. In this case the Lyapunov solution is
almost identical to the Riccati solution. In Figure 2 the
singular values of the Lyapunov and Riccati solution using
lyap and care are plotted. For this problem, the singular
values of both solutions are extremely close to each other
and only seem to spread with numerical error. We will
further investigate this for other problems. Note though,
that Simoncini et al., 2013 showed that the convergence
behavior of both solutions is related.
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Fig. 2. ISS1R model: Singular values of the observability
Gramian X(N) and Riccati solution P (N) using lyap
and care.

The EKSM is rather quick in computing the projection Vr,
yet shows higher errors in the residual. As noted above,
the POD method essentially reduces to a quadrature
for the controllability Gramian. As such, the number
and location of the time samples tj is important. We
observed that increasing the final time for simulations
gives better approximations of the controllability Gramian
and even more so increasing the number of snapshots while
maintaining T̄ .

Moreover, we note that the convergence of the POD
approach is rather monotone, where especially the EKSM
shows oscillations. For numerical purposes a monotone
decreasing error is of interest, since it guarantees that extra
work for computing an increased size reduced order model
is not wasted.

3.2 ISS12A Flex Model

This is a model of another structural component of the ISS.
It describes an advanced stage of the system, including
N = 1412 states and m = 3 inputs and p = 3 outputs.
The number of non-zero entries in A is 2118, so A is sparse.
Moreover, the mass matrix is the identity. For the POD
based algorithm, simulations of the linear system for all
three initial vectors cTi were performed from t = 0s to
T̄ = 20s. This amounts to an overall collection of S = 3003
snapshots. The results for the convergence of the residual
norm are given in Figure 3.

A plot of the singular values for the solution of the Riccati
equation and the Lyapunov equation is given in Figure 4
below. For larger problems it will of course not be possible
to compute the Riccati solution via care. For comparison
purposes, Matlab took 65.03s to compute the Riccati
solution. Again, the singular values of both solutions are
very similar and only separate closer to machine precision.
Consequently, the Gramian approach performs very well.

The Proper Orthogonal Decomposition based approach
takes 4.9s to compute the projector and provides a sig-
nificantly richer subspace than EKSM. For the POD ap-
proach, N < pS so we computed the singular value decom-
position of the 1412x1412 Gramian, as described above.
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Fig. 3. Residual norms ||R(P
(N)
r )||F for ISS12A model.

Time to compute projector Vr: POD: 4.9s, EKSM:
0.38s, Gramian: 19.1s
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Fig. 4. ISS12A model: Singular values of the observability
Gramian X(N) and Riccati solution P (N) using lyap
and care.

4. CONCLUSION

We presented a new approach to compute solutions of
algebraic Riccati equations via projection. The method is
based on Proper Orthogonal Decomposition to compute an
approximation of the solution to the Lyapunov equation
via the algorithm in Willcox and Peraire, 2002; Singler,
2011. Its dominant left singular vectors are used for
projection and are shown to be sufficiently rich for the
projection framework to solve algebraic Riccati equations.
We compared this new method to the Extended Krylov
Subspace Method in Heyouni and Jbilou, 2009 and a
Gramian based approach and demonstrated that the POD
based approach performs very well. Larger systems with a
mass matrix have been considered as well and performance
of the POD method was very satisfactory. Those results,
together with a cheap expression for computing the norm
of a Riccati residual will be part of a future publication.
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