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Abstract: Graph colorability theory is shown here to be instrumental for the improvement
of scalability and performance of recently introduced distributed non-cooperative sequential
Command Governor (CG) strategies. Such properties were limited in earlier distributed CG
schemes because the structure of constraints was not taken into account in their implementation.
Here, by exploiting the idea that agents that are not jointly involved in any coupling constraint
can simultaneously update their control actions, this is done by grouping all agents in the
network into particular subsets (Turns) and allowing all agents belonging to a single turn
to update simultaneously their commands while agents in other turns are instructed to keep
applying their current commands. Graph colorability concepts and results are used to determine
the minimum number of independent turns and distribute exclusively agents into them. A Turn-
Based distributed CG strategy is therefore proposed and its main properties analyzed. A final
example is also presented to illustrate the effectiveness of the proposed strategy by comparisons.

1. INTRODUCTION

The problem of interest here is the design of distributed su-
pervision strategies based on multi-agent Command Gov-
ernor (CG) ideas for networked interconnected systems in
situations where the use of a centralized coordination unit
is impracticable because requiring unrealistic or unavail-
able communication and/or computation infrastructures.

The distributed context under consideration is depicted
in Figure 1, where the supervisory task is distributed
amongst many agents, which are assumed to be able
to communicate each other through a communication
network. There, each agent is in charge of supervising and
coordinating one specific subsystem.

In particular, let ri, gi, xi, yi and ci represent respectively:
the nominal reference, the applied reference, the state,
performance and the coordination related output vectors
of the i−th subsystem. In such a context, the supervision
task can be expressed as the requirement of satisfying some
tracking performance, viz. yi ≈ ri, whereas the coordi-
nation task consists of enforcing some pointwise-in-time
constraints ci ∈ Ci and/or f(c1, c2, ...., cN ) ∈ C on each
subsystem and/or on the overall network evolutions. To

1 This work has been partially supported by the European Com-
mission, the European Social Fund and the Calabria Region. The
authors are solely responsible for the content of this paper and the
European Commission and Calabria Region disclaim any responsi-
bility for the use that may be made of the information contained
therein.

this end, each i−th supervisor is in charge of modifying its
nominal local reference ri into a feasible one gi, whenever
the joint application of all nominal references would pro-
duce constraint violations and hence loss of coordination.
Earlier works on distributed CG strategies relied on a non-
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Fig. 1. Multi-agent architectures

cooperative game theoretical approach and several strate-
gies have been proposed, both sequential (Casavola et al..
(2011-A)), (Tedesco et al. (2012-A)) where, according to
a prefixed order, only one agent at each sampling time is
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allowed to update its control action while all others keep
applying their previous applied commands, and parallel
(Tedesco et al. (2012-B)), (Casavola et al. (2014-A)),
(Tedesco et al. (2012-C)) where, on the contrary, all
agents update their control actions simultaneously at each
sampling time.

In this paper, a Turn-Based distributed CG approach
is proposed that generalizes the Sequential distributed
CG scheme introduced in (Tedesco et al. (2012-A)) for
the supervision and coordination of dynamic subsystems
characterized by decoupled dynamics but sharing coupling
constraints involving state and input evolutions.

In order to improve the scalability and optimality per-
formance of the earlier sequential CG schemes, the idea
that agents that are not jointly involved in any coupling
constraint can simultaneously update their control actions
without violating constraints is here exploited. The main
intuition of this paper is to use graph colorability the-
ory to systematically group agents into particular subsets
(turns). At each sampling time instant, on the basis of
a round-robin policy for the turns, only agents belonging
to a specific turn are allowed to update simultaneously
their commands, while all agents in all other turns keep
applying constantly their current commands until their
turn becomes active.

In this paper we will discuss and highlight the existing
link between the grouping policy and the graph minimal
vertex coloring problem. In the current application, the
graph characterizes the existing coupling interconnections
arising among the agents induced by the constraints.
Such a problem has been widely studied in the last
century (see Jensen and Toft (1994) for a survey on
the subject), efficient algorithms and heuristics exist and
several interesting results have been proved. Among many,
of particular interest here is the fact that, for many classes
of graph topologies and in particular for sparse graphs, the
minimal number of colors of a graph is bounded (and often
by a small integer) regardless of the number of nodes that
the graph consists of.

The use of such graph theoretical concepts allows one to
remarkably improve the scalability and the performance
of the proposed supervision scheme with respect to the
earlier version described in (Tedesco et al. (2012-A)).
Specifically, in the final example it is shown that the
resources (CPU time and data exchanges) required to
accomplish the coordination task do not increase with the
increasing number of agents and the performance almost
coincide with the one of the centralized solution.

2. SYSTEM DESCRIPTION AND PROBLEM
FORMULATION

Consider a set of N subsystems A = {1, . . . , N}. Each
subsystem is assumed to be a LTI closed-loop dynami-
cal system regulated by a local controller which ensures
asymptotic stability and good closed-loop properties when
the constraints are not active (small-signal regimes). Let
the i-th closed-loop subsystem be described by the follow-
ing discrete-time model

{

xi(t+1) = Φixi(t)+Gigi(t)
yi(t) = Hy

i xi(t)
ci(t) = Hc

i xi(t) + Ligi(t)
(1)

where: t ∈ ZZ+, xi ∈ IRni is the state vector (which
includes the controller states under dynamic regulation),
gi ∈ IRmi the manipulable reference vector which, if no
constraints (and no CG) were present, would coincide with
the desired reference ri ∈ IRmi and yi ∈ IRmi is the output
vector which is required to track ri. As the system is pre-
stabilized, the matrix Φi has all eigenvalues strictly inside

the unitary ball. Finally, ci ∈ IRnc
i represents the local

constrained vector.

Let the aggregate constrained vector c = [cT1 , . . . , c
T
N ]T ∈

IRnc

, with nc =
∑N

i=1
nc
i . It is assumed that at each time

instant c(t) must be contained in a convex and compact
polytopic set defined as follows:

Ac(t) ≤ b (2)

with A ∈ IRz×nc

and b ∈ IRz, z is the number of constraints
and where ≤ is meant component-wise.

The distributed CG design problem is the one of locally
determine, at each time step t and for each agent i ∈
A, a suitable reference signal gi(t) which is the best
approximation of ri(t) such that its application do not
produces constraints violation, i.e. Ac(t) ≤ b, ∀t ∈ ZZ+.

3. TURN-BASED DISTRIBUTED CG

3.1 Centralized CG

The main idea of classical centralized solutions to the CG
design problem (see Bemporad et al. (1997)) for a system
in the form

{

x(t+1) = Φx(t)+Gg(t)
y(t) = Hyx(t)
c(t) = Hcx(t) + Lg(t)

(3)

characterized by matrices Φ, G, Hy, Hc, L having proper
dimensions and subject to constraints (2) is to choose at
each time instant a set point g approximating r(t) such
that:

1) the associated steady-state constrained output

cg = Hc(I − Φ)−1Gg (4)

satisfies the constraints with a margin δ > 0, i.e.
Acg ≤ b− δ[1, ...., 1]T .

2) if the command g is kept constant from t onward,
constraints are never violated, i.e. Ac(x(t), k, g) ≤
b, ∀k ≥ 0, where

c(k, x, g) := Hc

(

Φkx+

k−1
∑

τ=0

Φk−τ−1Gg

)

+ Lg (5)

As proven in Bemporad et al. (1997), the latter two condi-
tions translates into confining g in a finitely-determinable
convex set which can be described by the following con-
straints

Acg ≤ bδ (6)

Ac(k, x(t), g) ≤ b k = 0, 1, ..., k0 (7)

where k0 is an integer that can be computed on the basis
of the system dynamics and bδ is a vector depending on
δ > 0. For details please refer to Bemporad et al. (1997).
It has been proven that this scheme always ensure con-
straints satisfaction. Moreover, under constant references
r, the applied command g(t) converges in finite time to a
constant reference r̂ which is the best approximation of r
compatible with the steady-state constraint (6).
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3.2 Constraints Associated to the i-th Agent

The first step towards the development of a distributed
CG is to note that, under local dynamics (1), the ag-
gregated system can be written as (3) where x(t) =
[xT

1 (t), ..., x
T
n (t)]

T , g(t) = [gT1 (t), ..., g
T
n (t)]

T , y(t) = [yT1 (t),
..., yTn (t)]

T , and Φ = diag(Φ1, ...,ΦN )G = diag(G1, ..., GN ),
Hy = diag(Hy

1 , ..., H
y
N ), Hc = diag(Hc

1 , ..., H
c
N ) and L =

diag(L1, ..., LN ). In this case cg in (4) and c(k, x, g) in (5)
are given by:

cg=
[

cT1,g1 , ...c
T
N,gN

]T
, c(k, x, g)=[cT1(k, x1, g1), ..., c

T
N(k, xN, gN )]

T

where
ci,gi = Hc

i (I − Φi)
−1Gigi

and

ci(k, xi, gi) := Hc
i

(

Φk
i xi +

k−1
∑

τ=0

Φk−τ−1

i Gigi

)

+ Ligi.

Please note that each ci,gi and ci(k, xi, gi) only depend
on the state and the command of the ith subsystem.
Moreover, conditions (6)-(7) become:

A
[

cT1,g1 , ...c
T
N,gN

]T
≤ bδ (8)

A
[

cT1(k, x1, g1), ..., c
T
N(k, xN, gN )

]T
≤ b, k = 0, 1, ..., k0 (9)

Using the classical CG approach, if at each time instant t
the new command g complies with the above conditions,
the constraints are never violated. Here, on the contrary,
the aim is at finding a distributed local strategy able to
take decisions subject to (8) and (9) on the basis of local
information only.

The main observation is that for this class of systems, the
i-th agent may concur only to the violation of constraints
where its constrained variables ci(t) are present. To put in
evidence these constraints, let aTj = [aTj,1, ..., a

T
j,N ] be the j-

th row of A, with sub-rows aTj,i ∈ IRnc
i , ∀i ∈ A, and bj ∈ IR

the j-th element of b. Then, for each i ∈ A it is possible
to define the block-matrices Ai = [Ai,1|......|Ai,N ], with

Ai,j ∈ IRzi×nc
i and vector b̃i ∈ IRzi collecting respectively

all and only the, say zi, rows aj of A and bj of b in
which the i-th agent is involved, i.e. such that the sub-rows
aTj,i 6= 0nc

i
. As a consequence, the constraints associated to

the i-th agent can simply be described as

Aic(t) ≤ b̃i (10)
As a matter of fact, in many cases the matrix A is quite
sparse and only a subset of agents are involved in the
constraints associated to the i-th agent. In this respect,
the following definition is in order:

Definition 3.1. (Neighborhood of the i-th Agent) The
neighborhood Ni of the i-th agent consists of all agents
whose subsystem evolutions are jointly constrained with
the i-th subsystem evolution as defined in (10), i.e.

Ni = {i} ∪ {j ∈ A : Ai,j 6= 0}. (11)

In this formulation, from the perspective of the i-th agent,
constraints (2) become

Ãic̃i(t) ≤ b̃i (12)

where c̃i(t) = Sc,Ni
c(t) denote the c-vectors associated to

the neighbors of the i-th agent and Ãi = AiS
T
c,Ni

is the
associated matrix. Notice that Sc,Ni

is a selection matrix
which extracts all rows of c related with agents in Ni.

Next, assume that at time t agent i receives from its
neighbors their state measurements and their previously
applied commands, i.e. x̃i(t) = Sx,Ni

x(t) and g̃i(t − 1) =
Sg,Ni

g(t − 1), where Sx,Ni
and Sg,Ni

are the selection
matrix extracting the elements of the x and g vectors
related to agents in Ni.

If at time t, all agents in Ni except the i-th were holding
the commands applied at time t− 1, the i-th agent could
select a local command gi satisfying constraints (10) by
fulfilling the following inequalities

Ãic̃g̃i ≤ b̃i,δ (13)

Ãic̃i(k, x̃i(t), g̃i) ≤ b̃i k = 0, 1, ..., k0 (14)

where g̃i is set equal to g̃i(t − 1) for all entries except gi,
and

cg̃i = Sc,Ni
cg̃ = H̃c

i (I − Φ̃i)
−1G̃ig̃i

c̃i(k, x̃i(t), g̃i) := H̃c
i

(

Φ̃k
i x̃i +

k−1
∑

τ=0

Φ̃k−τ−1

i G̃ig̃i

)

+ L̃ig̃i.

where: Φ̃i = Sx,Ni
ΦST

x,Ni
, G̃i = Sx,Ni

GST
g,Ni

, H̃c
i =

Sc,Ni
HcST

x,Ni
, L̃i = Sc,Ni

HcST
g,Ni

.

Interestingly enough, this idea can be easily extended. To
this end, let the following set of agent be defined

Definition 3.2. (Turn) A turn T ⊂ A is a subset of non-
neighboring nodes, i.e. ∀i, j ∈ T such that i 6= j, j /∈ Ni

(none of them is a neighbor of the others).

The following proposition proves that the same discussion
made for a single agent, can be extended to all agents
contained in a turn T

Proposition 1. Let Tt ⊂ A be a turn selected at time
t. Then, if at time t all agents not in Tt keep applying
their previously applied commands, i.e. gi(t) = gi(t −
1), ∀i /∈ Tt and all agents in i ∈ Tt update their commands
gi accordingly to (13)-(14), then the overall constraints (2)
are never violated.

Proof : It is sufficient to look at the structures of con-
straints (8)-(9) and (13)-(14). ✷

a)

b)

c)

Fig. 2. Particular lattice structures: a) four colors are
needed to cover the graph, b) three colors are needed,
c) only two colors are required

3.3 The Overall Algorithm

At this point, given a sequence of q turns T1, T2, T3...Tq,
and assuming that each agent is assigned to a single turn,
the problem of locally determining at each time t the best
gi(t) approximating ri(t) such that global constraints are
satisfied can be solved by allowing only the agents in the
current turn Tt to update their commands in accordance
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with constraints (8)-(9). This idea can be formalized as
follows:

Algorithm 1: The Turn-Based CG (TB-CG)

repeat at each time t
1 if i ∈ T

tmodq

1.1 receive x̃i(t), g̃i(t− 1) from neighbors;
1.2 solve

gi(t) = argmin
gi

||gi − ri(t)||
2
Ψi

(15)

subject to (13)-(14)
2 else
2.1 set gi(t) = gi(t− 1)

3 apply gi(t)
4 send gi(t) and xi(t) to the neighboring agents

where ‖x‖2Ψi
,Ψi = ΨT

i > 0, ∀i ∈ A, denotes the quadratic

form xTΨix. Please note that the latter algorithm allows
one to satisfy constraints using only local data. In fact,
each agent in the turn Tt only needs to know the com-
mands, the states and the dynamic models of its neighbors.

4. TURNS AND GRAPH COLORABILITY THEORY

A crucial point of the proposed algorithm is the way
the turn sets Tt are selected. A first general requisite to
guarantee some convergence property is that, periodically,
all agents of the network are selected, i.e. ∃t′ : ∀t >
0,∪t′

i=0Tt+i = A.

In order to make the overall system behaving ”fast”
in response to fast changing reference signals, a further
guideline is to choose a sequence of Tt that maximizes
the frequency with which agents are allowed to update
their local commands. Although not optimal w.r.t. some
specific performance criteria, from a practical viewpoint
a reasonable choice is to resort to a periodic scheduling
T1, ..., Tq of length q, with q as small as possible and such
that ∪i=1,..,qSi = A. In this way, one can ensure that each
agent can update its command with a frequency that is at
least 1/q.

It is worth pointing out that the problem of determining
the minimum q for which a collection of shifts T1, ..., Tq
exists such that ∪i=1,..,rTi = A is equivalent to the
minimal vertex coloring problem ( Jensen and Toft (1994))
for the graph Γ(A, E), whose set of nodes coincides with
A and where E ⊂ A × A is the set of edges connecting
neighbor agents, i.e. the edge (i, j) belongs to E if and only
if j ∈ Ni, more formally such a problem can formulated as
follows

Definition 4.1. Find the minimal assignment of colors to
each vertex of a Γ(A, E) such that, forall (i, j) ∈ A × A,
(i, j) ∈ E ⇒ {i, j have a different color}.

The connection with our turnation design problem is quite
evident. After the latter problem is solved and a color
is assigned to each agent, a minimal collection of turns
T1, ..., Tq is found such that ∪i=1,..,qTi = A by regrouping
all agents with the same color in a single turn Ti.

In view of the supervision scheme here proposed, it is
important to remark that, for many classes of graph
topologies and in particular for sparse graphs, the minimal

number of colors of a graph is bounded (and often by
a small integer) regardless of the number of nodes the
graph consists of. Is this the case, for instance, for lattices
where, as seen in Figure 2, easy coloring rules can be be
determined. A general result that it is important to recall
here is the Brooks’ Theorem (Brooks (1941)) that states
that for any graph with maximum degree (number of edges
for each nodes) ∆, the chromatic number (minimal number
of colors) is at most q = ∆+1. Please note that this ensures
that, in the case of sparse topologies, the number of turns
and then the frequency with which each agent updates its
command remain typically bounded by a small integer,
independently on the number of agents.

5. PROPERTIES

Thanks to the following Lemma it is possible to prove that
the scheme here proposed is equivalent to the sequential
scheme (S-CG) proposed in Tedesco et al. (2012-A), of
which it shares all the properties.

Lemma 1. Given a turn Tt, the solutions of all local
optimization problems

min
gi

||gi − ri(t)||
2
Ψi

subject to (13)− (14), ∀i ∈ Tt
(16)

are equivalent to the solution of the following single
optimization problem

min
gi,i∈Tt

∑

i∈Tt

||gi − ri(t)||
2
Ψi

subject to

Ãic̃g̃i ≤ b̃i,δ, ∀i ∈ Tt
Ãic̃i(k, x̃i(t), g̃i) ≤ b̃i, k = 0, 1, ..., k0, ∀i ∈ Tt

(17)

Proof : Each optimization problem (16) governs a single
command gi. Thanks to the definition of turn, if a con-
straint is influenced by gi, i ∈ Tt then it is not influenced by
any other gj, j ∈ Tt. As a consequence, a vector collecting
local feasible solutions for (16) for all i ∈ Tt is also a
feasible solution for problem (17). Moreover, because each
agent deals with a decoupled objective function in (16),
clearly

∑

i∈Tt

min
gi

||gi − ri(t)||
2
Ψi

= min
gi,i∈Tt

∑

i∈Tt

||gi − ri(t)||
2
Ψi

which means that problem (17) is an aggregation of |Tt|
decoupled optimization problems. ✷

The main consequence of the above Lemma is that we can
look at the proposed scheme as to a sequential scheme,
like those presented in (Tedesco et al. (2012-A))and
(Casavola et al.. (2011-A)), where each turn Tt may be
there interpreted as a super -agent that governs all gi, i ∈ Tt
by solving the optimization problem (17). This allows one
to recover several interesting properties of the scheme.

The main properties of the proposed Turn-Based CG
scheme are summarized in the following Theorem

Theorem 1. Consider the asymptotically stable systems
(1) along with the distributed TB-CG (Algorithm 1)
selection rule performed by agents in A distributed into
q turns (super -agents) Ti . Let assume that at time t = 0
an admissible solution g(0) exists for problem (2). Then:

1) for each agent i ∈ A, at each decision time t, the
minimizer in (15) uniquely exists and can be obtained
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by locally solving a convex constrained optimization
problem;

2) the overall system acted by the agents implementing the
TB-CG policy never violates the constraints (2) t ∈ ZZ+;

3) whenever r(t) ≡ [ rT1 ,. . . ,r
T
N ]T , ∀t, with ri a con-

stant set-point, the sequence of solutions g(t) =
[gT1 (t), . . . , g

T
N (t)]T asymptotically converges to a Pareto-

Optimal (PO) stationary (constant) solution of the fol-
lowing problem

min
g

[‖ g1 − r1 ‖2Ψ1
, . . . , ‖ gi − ri ‖

2
Ψ2

, . . . , ‖ gN − rN ‖2ΨN
]

subject to g=[gT1 ,...,g
T
i ,...,g

T
N ]T∈Wδ

(18)
where Wδ := {g ∈ IRm : Acg ≤ bδ} represents a viable
steady-state admissible region (see definition of viability
in Casavola et al. (2014-B); Casavola et al.. (2011-B)).
The PO solution is given by r whenever r ∈ Wδ, or by
any other solution r̂ ∈ Wδ otherwise. ✷

Proof : Item 1) is true by construction. Item 2) directly
follows from Proposition 1. For what concerns Item 3),
because of Lemma 1, the TB-CG scheme is equivalent
to the S-CG one carried out by q super -agents Ti which,
under viability properties converge to a PO solution for
the problem (Casavola et al. (2014-B))

min
g





∑

i∈T1

||gi − ri(t)||
2
Ψi
, . . . ,

∑

i∈Tq

||gi − ri(t)||
2
Ψi





subject to g=[gT1 ,...,g
T
i ,...,g

T
N ]T∈Wδ

(19)

The proof is concluded by noticing that a PO solution for
problem (19) is also PO for (18). ✷

6. ILLUSTRATIVE EXAMPLE

In order to show the effectiveness of the proposed method
a set of 21 decoupled particle masses representing vehicles
has been considered and depicted in Figure 3. The follow-

x

(1,2) (1,j)

F
i

y

F
i

x

(2,1) (2,2) (2,j)

(3,1) (3,2) (3,j)

y

F
1

y

F
1

x

(1,1)

Fig. 3. Planar particle masses. The red dashed edges
indicates presence of coupling constraints between two
masses according to equations (21)

ing equations describe the (i, j)-th mass dynamics
mẍi,j= F x

i,j , mÿi,j= F y
i,j (20)

where (xi,j , yi,j), i ∈ {1, 2, ..7}, j ∈ {1, 2, 3} are the
coordinates of the (i, j)-th mass position w.r.t a fixed
Cartesian reference frame and (F x

i,j , F
y
i,j), i ∈ A, the

components along the same reference frame of the forces
acting as inputs for the subsystems. The value m =
1 [Kg] will be assumed in the simulations. For CG design
purposes the models have been discretized with a sampling
time of Tc = 0.1 [sec] and an optimal LQ state-feedback
local controller is used as a precompensator for each mass.

Masses are subject to the following local and coupling
constraints



















































∣

∣F
p

i,j
(t)
∣

∣ ≤ 2 [N ] p = x, y

0.125[m] ≤ |xi,j+1(t) − xi,j(t)| ≤ 0.375[m]
0.125[m] ≤ |xi,j(t) − xi,j−1(t)| ≤ 0.375[m]
0.125[m] ≤ |yi+1,j(t) − yi,j(t)| ≤ 0.375[m]
0.125[m] ≤ |yi,j(t) − yi−1,j(t)| ≤ 0.375[m]
0.125[m] ≤ |xi+1,j+1(t) − xi,j(t)| ≤ 0.375[m]
0.125[m] ≤ |yi+1,j+1(t) − yi,j(t)| ≤ 0.375[m]
0.125[m] ≤ |xi,j(t) − xi−1,j−1(t)| ≤ 0.375[m]
0.125[m] ≤ |yi,j(t) − yi−1,j−1(t)| ≤ 0.375[m]
∀t ∈ ZZ+

(21)

The first set of inequalities represents input-saturation
constraints on the forces F x

i,j and F y
i,j acting as inputs to

the vehicles. They have to be taken into account in order
to avoid the generation of control sequences out of the
actuator ranges. The second set of constraints represents
collision avoidance prescriptions among the vehicles.

Such a constraints structure can be modelled by means of
the graph depicted in Figure 3, where each mass represents
a vertex while the red dashed edges denote existence of
constraints between each two masses. In this case the
minimal vertex coloring problem is solved by using only
three colors (blu, red, green). As a consequence, the whole
CG supervision action is spread among three groups of
agents which adopt the Turn-Based policy introduced in
Section 3. In particular, in the undertaken simulations,
each vehicle has been instructed to track a ”circular”
reference

rxi,j(t) = ρ cos
(

(−1)i+j2πt/75
)

+ r̄xi,j , t ∈ ZZ+

ryi,j(t) = ρ sin
(

(−1)i+j2πt/75
)

+ r̄yi,j , t ∈ ZZ+

(22)

with ρ = 0.125[m] is the radius and scalars r̄xi,j =

−i0.0884[m], r̄yi,j = −j0.0884[m]. Simulation results in-
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Fig. 4. Planar masses (colored spots) with desired refer-
ences (black dashed lines)

volve a comparison among three CG supervision strate-
gies: the standard CG (Centralized CG) (Bemporad et al.
(1997)), the distributed sequential agent-based CG (S-CG)
(Tedesco et al. (2012-A)) and the proposed turn-based
distributed sequential CG hereafter referred to as Color-
CG where agents perform Algorithm 1.

A video showing the positions of the masses during the
simulation (in that video T = 300[steps]) for each ap-
plied supervising strategy can be downloaded at the url
“http://youtu.be/msu1Lu8STus”. Within the given sim-
ulation horizon T , the centralized CG and the Color-
CG strategies are able to cover the entire circle. On the
contrary, masses supervised by the S-CG method are not
able to track in a proper way the desired reference. These
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behavior could be also analyzed by observing how the

quantity J(t) :=

7
∑

i=1

3
∑

j=1

(ri,j(t)− gi,j(t))
2
varies during

the simulations. In this respect, Figure 5 shows that Cen-
tralized CG and Color-CG have a very similar behavior
although the Color-CG makes use of a reduced amount
of resources (see Figures 7-8 ) and each agent only knows
local information. As expected the S-CG exhibits the worst
performance.
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0.08

time [steps]

CG

Color−CG

S−CG

Fig. 5. Trend related to J(t) during the simulation

Further simulations have been carried out by consider-
ing scenarios characterized by an increasing number of
masses. In particular, systems ranging from 4 masses up
to 256 masses (agents) have been taken into account.
Comparisons in this case have been performed in terms
of scalability of the proposed approaches. Simulation re-
sults have been reported in Figures 6-8. Also in this case,
proposed Color-CG and centralized CG exhibit the best
performance. Moreover, it is evident in Figures 7-8 that
one of the main advantages of such turn-based distributed
schemes is in the low amount of data exchanged for its im-
plementation and in the related negligible computational
burdens that do not increase with the number of agents.
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Fig. 6. Residual Cost 1
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Fig. 7. Information received/transmitted by assuming that
32 bit are needed to encode each scalar
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Fig. 8. Mean CPU time (seconds per step) per agent

7. CONCLUSIONS

In this work a novel Turn-Based sequential distributed CG
scheme has been proposed as a generalization of the earlier
sequential distributed CG scheme of (Tedesco et al. (2012-
A)).

The round-robin policy that in the earlier scheme allows
only a single agent at the time to update its command,
here is applied turn-wise, where a turn is a group of agents
that can simultaneously update their commands without
consequences on the fulfillment of the constraints.

Graph minimal vertex coloring problems has been shown
to be instrumental for the determination of turns and
the implementation of the Turn-based CG strategy, whose
main properties concerning optimality, stability and feasi-
bility have been discussed.

In the final example, the performance of the proposed
scheme has been compared with those pertaining to both
the centralized and the agent-based distributed schemes
presented in (Tedesco et al. (2012-A)). It was found
that the proposed scheme achieves better scalability and
performance.
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