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Abstract: This work proposes a Neural Network controller for uncertain bilateral teleoperators
with variable time-delays. The controller employs a Radial Basis Function (RBF) network and
dynamically finds the an estimation of the neural network interconnection weights. Furthermore,
assuming bounded delays, it is analytically shown that, if the human operator and the
environment do not inject forces in the local and the remote manipulators, respectively, position
error and velocities asymptotically converge to zero. Simulations with a couple of nonlinear
manipulators depict the performance of the proposed controller.
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1. INTRODUCTION

The practical scenarios of bilateral teleoperators span
multiple areas that range from medical to aeronautical
applications. Controlling these systems has attracted the
attention of the research community since the days of N.
Tesla, with his U.S. Patent Method of and Apparatus for
Controlling Mechanism of Moving Vessels or Vehicles, to
our date. The complexity of the teleoperator nonlinear
dynamics and the time-delays in the communications are
among the most important control challenges. A major
breakthrough to the treatment of these problems has been
the use of scattering signals (wave variables) to transform
the pure time–delays of the communications into a passive
transmission line (Anderson and Spong, 1989; Niemeyer
and Slotine, 1991). Despite the fact that scattering-based
schemes have paved the way of modern teleoperation con-
trol, they are prone to position drift (Chopra et al., 2006).
In order to improve their performance, several approaches
have been reported: transmitting wave integrals Niemeyer
and Slotine (2004), wave filtering Tanner and Niemeyer
(2005), wave prediction Munir and Book (2002), power
scaling Secchi et al. (2007), amongst others. Refer to
(Hokayem and Spong, 2006), for a historical survey, and
to (Nuño et al., 2011), for a control tutorial.

On one hand, the use of simple PD controllers, without em-
ploying the scattering transformation, has been proposed
in (Lee and Spong, 2006; Nuño et al., 2008) for constant
time-delays. Later, Nuño et al. (2009) have shown that
these proportional plus damping controllers are capable of
providing position tracking for bilateral teleoperators with
variable time-delays. On the other hand, Chopra et al.
(2008) have proposed the use of adaptive schemes to over-

come the effects of position drift in uncertain teleoperators.
Along the same line Nuño et al. (2010) report a differ-
ent adaptive scheme that is capable of synchronizing the
local and remote positions despite constant time-delays.
The main, simple but essential, difference between the
controller in (Nuño et al., 2010) and the one in (Chopra
et al., 2008) is the use of a linear combination of the
velocity and the position error —instead of the position—
in the, so-called, synchronizing signal. In the recent work
(Hashemzadeh et al., 2012) an adaptive controller together
with a high-gain sliding term is proposed for teleoperators
with variable delays. Furthermore, based on the small gain
theorem and assuming that the physical parameters are
known, (Polushin et al., 2013) proposes a controller for the
asymptotical stabilization of a cooperative teleoperation
system with variable time-delays.

The scattering-based schemes and the simpler PD con-
trollers need to exactly compensate the gravity effects
and the adaptive controllers rely on the property that the
teleoperator dynamics are linearly parameterizable with
regards to its physical parameters and they require an ex-
plicit a priori knowledge of the dynamical model structure.
Due to the universal approximation property of the Neural
Networks (NN), part of the nonlinear teleoperator dynam-
ics can be approximated using a model free controller (Hua
et al., 2013). The use of NN for single robot control dates
back to the 90’s (Lewis et al., 1996) and, since such date,
several works have proposed different NN controllers to
solve regulation and tracking problems for single robots
(Patiño et al., 2002; Yildirim, 2004; Lee and Choi, 2004;
Li et al., 2013).
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This work proposes a Radial Basis Function (RBF) NN
controller that ensures position tracking in uncertain bi-
lateral teleoperators with variable time-delays in the com-
munications without any explicit knowledge of the tele-
operator dynamics. Compared to (Hua et al., 2013), our
work deals with variable delays and the stability proofs are
properly established. Simulations are provided to verify
the theoretical results in this paper.

Notation. Bold capital letters are used for matrices
and bold lower case letters for vectors. R := (−∞,∞),
R>0 := (0,∞), R≥0 := [0,∞). |x| stands for the standard
Euclidean norm of vector x. For any function f : R≥0 →
R

n, the L∞-norm is defined as ‖f‖∞ = sup
t∈[0,∞)

|f(t)|, and

square of the L2-norm as ‖f‖22 =
∫∞

0
|f(t)|2dt. The L∞

and L2 spaces are defined as the sets {f : R≥0 → R
n :

‖f‖∞ <∞} and {f : R≥0 → R
n : ‖f‖2 <∞}, respectively.

For any matrix A := [aij ] ∈ R
n×n, its trace is defined as

tr(A) :=
∑n

i=1 aii and it satisfies tr(A⊤A) :=
∑n

i,j=1 a
2
ij .

When clear from the context, the argument of signals and
operators is removed. The subscript i takes the values l
and r for local and remote manipulators, respectively.

The following lemma, that is instrumental in the stability
proofs, has been borrowed from (Nuño et al., 2009).

Lemma 1. (Nuño et al., 2009) For any vector signals y, z ∈
R

n, any variable time-delay 0 ≤ T (t) ≤ ∗T < ∞ and any
constant δ > 0, the following inequality holds

−

∫ t

0

y⊤(σ)

∫ σ

σ−T (σ)

z(θ)dθdσ ≤
δ

2
‖y‖22 +

∗T 2

2δ
‖z‖22.

⋄

2. BILATERAL TELEOPERATOR MODEL

The nonlinear dynamic behavior of a n-DOF robot manip-
ulator can be derived from the Euler-Lagrange equations
of motion d

dt
∂L
∂q̇ − ∂L

∂q = τ , where L(q, q̇) is the system

Lagrangian which relates the kinetic and the potential
energy as L(q, q̇) = 1

2 q̇
⊤M(q)q̇ − U(q), where U(q) is

the potential energy, M(q) ∈ R
n×n is the inertia matrix

and q̇,q ∈ R
n are the joint velocities and positions, respec-

tively. In compact form, these equations can be written as

M(q)q̈+C(q, q̇)q̇+ g(q) + d(t) = τ (1)

where q̈ ∈ R
n is the joint acceleration vector, C(q, q̇) ∈

R
n×n is the Coriolis and centrifugal effects matrix defined

as: C(q, q̇) := Ṁ(q)q̇ − 1
2

∂
∂q q̇

⊤M(q)q̇; g(q) := ∂U(q)
∂q ∈

R
n is the gravitational force vector, d(t) is an unknown ex-

ternal perturbation and τ ∈ R
n is a generalized controller

force vector.

Throughout the paper, the following standard assumptions
are adopted:

A1. M(q) is symmetric positive definite and bounded for
all q.

A2. The external perturbation d(t) is bounded. Hence,
there exists d ∈ R>0 such that |d(t)| ≤ d.

The dynamical system (1) possesses some important and
well–known properties (Kelly et al., 2005; Spong et al.,
2005):

P1. ∀x 6= 0 ∈ R
n : x⊤[Ṁ(q)− 2C(q, q̇)]x = 0.

P2. ∃kc ∈ R>0 : |C(q, q̇)q̇| ≤ kc|q̇|
2.

A bilateral teleoperator can be modeled as a pair of n-
DOF manipulators with serial links of the form (1). Its
nonlinear dynamics, together with the human operator
and environment interactions, are given by

Ml(ql)q̈l +Cl(ql, q̇l)q̇l + gl(ql) + dl(t) = τ l − τh (2)

Mr(qr)q̈r +Cr(qr, q̇r)q̇r + gr(qr) + dr(t) = τ r − τ e,

where τ l, τ r ∈ R
n are the local and remote control

signals and τh, τ e ∈ R
n are the joint torques produced

by the forces exerted by the human and the environment,
respectively. It is assumed that the manipulators contain
fully actuated revolute joints and that friction can be
neglected.

3. PROPOSED CONTROLLER

The objective in this paper is to design a robust controller
such that the local and remote position errors

el := ql − qr(t− Tr(t)) er := qr − ql(t− Tl(t)), (3)

asymptotically converge to zero despite the variable time
delays Ti(t) and without any explicit knowledge of the
teleoperator dynamical parameters.

It is assumed that the interconnecting delays Ti(t) satisfy
the following:

A3. The variable time-delay Ti(t) has a known upper
bound ∗Ti, i.e., 0 ≤ Ti(t) ≤ ∗Ti < ∞, and its first
and second time-derivatives are bounded.

In order to simplify the presentation, let us rewrite the
teleoperator dynamics (2) as

Mi(qi)q̈i+Ci(qi, q̇i)q̇i+gi(qi)+di(t) = τ i−τh/e, (4)

where the subindex i ∈ {l, r}.

The universal approximation property ensures that, for
a network composed of N artificial neurons and for any
continuous function ai ∈ R

n,

Mi(qi)ȧi+Ci(qi, q̇i)ai+gi(qi)+di(t) = W∗
iφi(xi)+εi(xi)

(5)
where W∗

i ∈ R
n×N is the ideal constant network weight

matrix, φi ∈ R
N is the RBF vector, εi ∈ R

n is a bounded
approximation error which satisfies |εi| ≤ ε̄i, for ε̄i > 0,
and xi := col(q⊤

i , q̇
⊤
i ,a

⊤
i , ȧ

⊤
i ) ∈ R

4n (Patiño et al., 2002;
Lee and Choi, 2004).

Each jth element of the RBF vector φi is defined using
the following Gaussian distribution

φij(xi) := e
−

|xi−µij |
2

2σij

where µij ∈ R
4n is the mean, σij ∈ R is the variance and

j ∈ [1, . . . , N ]. It should be noted that these RBF networks
can be replaced by any linearly parameterized network,
e.g., polynomial, splines and wavelets, without changing
the main results in this work (Lewis et al., 1996).

Using (5), the dynamics of (1) can be expressed as

Mi(qi)(q̈i + ȧi) +Ci(qi, q̇i)(q̇i + ai) = W∗
iφi(xi)+

+ εi(xi) + τ i − τh/e,

which, defining ǫi := q̇i + ai, can be further written as

Mi(qi)ǫ̇i +Ci(qi, q̇i)ǫi = W∗
iφi(xi) + εi(xi) + τ i − τh/e.
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The proposed robust controller is given by

τ i =− Ŵiφi −Kiǫi −
αi

|ǫi|+ bie−cit
ǫi, (6)

where Ŵi ∈ R
n×N is the estimation of the network

interconnection weights, bi, ci > 0 and Ki = K⊤
i > 0 ∈

R
n×n.

The closed-loop system (1) and (6) is

Mi(qi)ǫ̇i +Ci(qi, q̇i)ǫi +Kiǫi +
αi

|ǫi|+ bie−cit
ǫi

= W̃iφi + εi − τh/e.

(7)

where W̃i = W∗
i − Ŵi is the network weight estimation

error, which satisfies ˙̃
Wi = − ˙̂

Wi.

At this point we are ready to state our main result.

Proposition 1. Consider the bilateral teleoperator (2), sat-
isfying Assumptions A1–A3, controlled by (6) with the
following estimation laws

˙̂
Wi = Γiǫiφ

⊤
i ,

α̇i =
|ǫi|

2

|ǫi|+ bie−cit
,

(8)

where Γi = Γ⊤
i > 0 ∈ R

n×n.

If the human operator and the remote environment forces
are zero and defining ai := λei, with λ ∈ R>0 set such
that

1 > λ(∗Tl +
∗Tr) (9)

holds, then the local and remote position errors (3) asymp-
totically converge to zero. Furthermore, under these con-
ditions, local and remote velocities also asymptotically
converge to zero. ⋄

Proof. Consider the following function

Vi =
1

2

[

ǫ⊤i Mi(qi)ǫi + tr(W̃⊤
i Γ

−1
i W̃i) + (αi − ε̄i)

2
]

.

Evaluating Vi along the closed-loop system (1) and (6),
using Property P1, yields

V̇i =− ǫ⊤i Kiǫi −
|ǫi|

2

|ǫi|+ bie−cit
αi + ǫ⊤i W̃iφi+

+ ǫ⊤i εi − tr(W̃⊤
i Γ

−1
i

˙̂
Wi) + (αi − ε̄i)α̇i.

Using the fact that ǫ⊤i W̃iφi = tr(W̃⊤
i ǫiφ

⊤
i ) and the

estimation laws (8), it holds that

V̇i = −ǫ⊤i Kiǫi + ǫ⊤i εi −
|ǫi|

2

|ǫi|+ bie−cit
ε̄i.

Now, since ǫ⊤i εi ≤ |ǫi||εi| ≤ |ǫi|ε̄i and

|ǫi| −
|ǫi|

2

|ǫi|+ bie−cit
=

|ǫi|

|ǫi|+ bie−cit
bie

−cit ≤ bie
−cit,

it can be further shown that

V̇i ≤ −ki|ǫi|
2 + ε̄ibie

−cit,

where ki has been defined as the smallest eigenvalue of Ki.

Since ai := λei, then

ǫi = q̇i + λei. (10)

Defining the function

V =
1

kl
Vl +

1

kr
Vr + λ|ql − qr|

2,

yields

V̇ ≤ βle
−clt+βre

−crt−|ǫl|
2−|ǫr|

2+2λ(ql−qr)
⊤(q̇l−q̇r),

where βi :=
ε̄ibi
ki

.

At this point, it is useful to note that

qi − qi(t− Ti(t)) =

∫ t

t−Ti(t)

q̇i(θ)dθ. (11)

Substituting (10) and using (11) on V̇ and doing some
algebraic manipulations yields

V̇ ≤βle
−clt + βre

−crt − λ2(|el|
2 + |er|

2)− |q̇l|
2 − |q̇r|

2−

− 2λq̇⊤
l

∫ t

t−Tr(t)

q̇r(θ)dθ − 2λq̇⊤
r

∫ t

t−Tl(t)

q̇l(θ)dθ.

Integrating V̇ , from 0 to t and using the fact that

βi
∫ t

0
e−ciηdη ≤ βi

ci
, yields

V(t)− V(0) ≤
βl

cl
+
βr

cr
− λ2(‖el‖

2
2 + ‖er‖

2
2)− ‖q̇l‖

2
2−

− ‖q̇r‖
2
2 − 2λ

∫ t

0

q̇⊤
l (η)

∫ η

η−Tr(η)

q̇r(θ)dθdη−

− 2λ

∫ t

0

q̇⊤
r (η)

∫ η

η−Tl(η)

q̇l(θ)dθdη.

Invoking Lemma 1 (see Appendix A) to the last double
integral terms, with δl > 0 and δr > 0, respectively, yields

V(t)− V(0) ≤
βl

cl
+
βr

cr
− λ2(‖el‖

2

2
+ ‖er‖

2

2
)− ψl‖q̇l‖

2

2
− ψr‖q̇r‖

2

2

where

ψl := 1− λδl −
λ∗T 2

l

δr
, ψr := 1− λδr −

λ∗T 2
r

δl
.

Solving simultaneously for ψi > 0 and for δi > 0, it is
straightforward to show that there always exist a possible
solution if λ is set fulfilling 1 > λ(∗Tl +

∗Tr).

Hence, setting λ such that (9) holds ensures that there
exists ψi > 0 and thus

V(t) + λ2(‖el‖
2

2
+ ‖er‖

2

2
) + ψl‖q̇l‖

2

2
+ ψr‖q̇r‖

2

2
≤ V(0) +

βl

cl
+
βr

cr
.

Since V(t) ≥ 0 for all t ≥ 0, ei, q̇i ∈ L2 and V ∈ L∞. This
last and the fact that V is positive definite and radially
unbounded with respect to ǫi, (αi−ε̄i) and |ql − qr|, shows

that ǫi, αi and |ql − qr| are bounded. Additionally, W̃i is
a bounded operator and, from (10), ǫi ∈ L2.

Assumption A3, |ql − qr| ∈ L∞ and q̇i ∈ L2 imply
that ei ∈ L∞. This last, from (10), and ǫi ∈ L∞ in
turn imply that q̇i ∈ L∞. Furthermore, Assumption A3
and q̇i ∈ L∞ support the fact that ėi ∈ L∞. Invoking
Barbǎlat’s Lemma, with ei ∈ L∞ ∩ L2 and ėi ∈ L∞, it is
proved that lim

t→∞
|ei(t)| = 0.

Now, since the RBF vector φi is, by construction, bounded
then all the previous bounded signals ensure from the
closed-loop system (7) that ǫ̇i ∈ L∞. This last and
ǫi ∈ L∞ ∩ L2 show, applying Barbǎlat’s Lemma, that
lim
t→∞

|ǫi(t)| = 0.

Finally, from (10) it holds that q̇i = −λei + ǫi. Hence,
lim
t→∞

|q̇i(t)| = 0. This concludes the proof. �
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4. SIMULATION RESULTS

To show the effectiveness of the proposed scheme, some
simulations, in which the local and remote manipulators
are modeled as a pair of 2 DOF serial links with revolute
joints, are presented. Their corresponding nonlinear dy-
namics are modeled by (2). In what follows αi := l22im2i +

l21i(m1i+m2i), βi := l1i l2im2i and δi := l22im2i . The inertia
matrices Mi(qi) are given by

Mi(qi) =

[

αi + 2βic2i δi + βic2i
δi + βic2i δi

]

.

c2i is the short notation for cos(q2i). qki
is the articular

position of link k of manipulator i, with k ∈ {1, 2}. The
Coriolis and centrifugal effects are modeled by

Ci(qi, q̇i) =

[

−2βis2i q̇2i −βis2i q̇2i
βis2i q̇1i 0

]

.

s2i is the short notation for sin(q2i). q̇1i and q̇2i are the
respective revolute velocities of the two links. The gravity
forces gi(qi) for each manipulator are represented by

gi(qi) =







1

l2i
gδic12i +

1

l1i
(αi − δi)c1i

1

l2i
gδic12i






.

c12i stands for cos(q1i +q2i). lki
and mki

are the respective
lengths and masses of each link. For simplicity, the external
disturbance d̂i is set to zero.

The physical parameters for the manipulators are: the
length of links l1i and l2i , for both manipulators, is 0.38m;
the masses of the links are m1l = 3.9473kg, m2l =
0.6232kg, m1r = 3.2409kg and m2r = 0.3185kg. The
initial conditions are q̇i(0) = 0 and q⊤

l (0) = [−0.7π; 0],
q⊤
r (0) = [−0.3π;−0.15π].

For simplicity, both time-delays are equal and are given
by Tl(t) = Tr(t) = 0.4 + 0.2 sin(ω1t) + 0.1 sin(ω2t), with
ω1 = 10rad/s and ω2 = 25rad/s. Clearly, ∗Ti = 0.7. The
time-delay and its derivatives are shown in Fig. 1.

Fig. 1. Variable time-delay employed in the simulations.

The NN has two neurons and thus Ŵi ∈ R
2×2 and

εij : R
8 7→ R

2. The controller gains are set as: Ki = 30I2;

Γl = 0.1

[

20 0
0 30

]

; Γr = 2

[

20 0
0 30

]

; bi = 10; ci = 0.05,

where I2 is the identity matrix of size two. µij ∈ R
8 is given

by µi1 = [2 2 0 0 0 0 0 0]⊤ and µi2 = [1 1 0 0 0 0 0 0]⊤,
for σij ∈ R the values are σi1 = 10 and σi2 = 2. Further,
λ is set fulfilling (9) as λ = 0.7.

The human operator is modeled as the spring–damper
system τ = Kh(qh − ql) − Kdq̇l where Kh = 100 and
Kd = 1. Fig. 2 depicts the desired human position qh.

Fig. 2. Trajectory of the human operator.

Two different simulations have been performed, one in
which the remote manipulator moves freely in its envi-
ronment and another in which the remote manipulator
interacts with a stiff wall.

4.1 Remote Manipulator in Free Space

Figs. 3–5 show the behavior of the angular local and
remote joint positions and the evolution of the NN weights.
From Fig. 3 it can be seen that, despite the difference
in initial conditions and variable time-delays, position
tracking is asymptotically achieved. Fig. 4, for the local
controller, and Fig. 5, for the remote controller, depict
the time evolution of the NN weights. It should be noted
that, since the estimation gains for the two neurons are
the same, the response of the two neurons is the same.
This is why, instead of four and two signals in the weight
matrix and the RBF vector, respectively, one can only see
two and one signals.

4.2 Remote Manipulator Interacting with a Wall

In this set of simulations, a stiff wall is added in the
remote environment. The wall is located in the xz−plane
at y = −0.1m and it is modeled as a spring–damper
Cartesian system with stiffness equal to 50000Nm and
damping equal to 200Nm/s.

In this case, Fig. 6 and Fig. 7 show the position tracking
capabilities of the proposed controller in the joint space
and in the Cartesian y-axis, respectively. From these
figures it is concluded that, despite variable time–delays
and a stiff interaction with the environment, position
error converges to zero and hence position tracking is
established. Fig. 8 and Fig. 9 present the local and the
remote time evolution of the estimated NN weights.
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5. CONCLUSIONS

This paper reports a robust neural network controller, us-
ing radial basis function vectors, that is capable of provid-
ing position tracking in bilateral teleoperators with uncer-
tain parameters and variable time-delays. These claims are
analytically proven using the standard Barbǎlat’s Lemma.
Simulations using two 2-DOF manipulators support the
theoretical results of this work.

Future research includes the extension of this controller
to the control of multiple manipulators, following the idea
reported in Nuño et al. (2013).
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Fig. 3. Local and remote positions in free space.
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Fig. 4. Evolution of the local weight matrix and the local
RBF vector in free space.

Fig. 5. Evolution of the remote weight matrix and the
remote RBF vector in free space.

Fig. 6. Local and remote joint positions when the remote
manipulator interacts with a wall.

Fig. 7. y-axis Cartesian position of the local and the remote
manipulators when interacting with a stiff wall.

Fig. 8. Evolution of the local weight matrix and the local
RBF vector when interacting with a stiff wall..

Fig. 9. Evolution of the remote weight matrix and the
remote RBF vector when interacting with a stiff wall.
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