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Abstract: The objective of this work is to generalize input excitation designs suggested for system 

identification of ill-conditioned 2 2  systems to cases with more than two inputs and outputs. The methods 

are evaluated using a four inputs-four outputs distillation column/stripper system as a case study. The 

performance of the various procedures is evaluated through the model fit and different plant-friendly 

indices. The obtained models, and thus the quality of the associated input excitations, are also evaluated 

through cross validations.   
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1. INTRODUCTION 

Typically, 75% of the cost associated with an advanced control 

project goes into model development (Gevers, 2005). Hence, 

efficient modelling and system identification techniques suited 

for industrial use and tailored for control design applications 

are crucial (Ljung, 1999; Hjalmarsson, 2005).  

Unlike single-input single-output (SISO) systems, multi-input 

multi-output (MIMO) systems contain multiple interactions. 

In some cases the interactions are so strong that the system 

becomes difficult to handle. Such systems are ill-conditioned 

and they are characterized by a strong directionality. As a 

result, there may be difficulties in exciting the various 

“directions” adequately in system identification. It is desirable 

to make the identification (equally) informative for all relevant 

directions through explicit input excitations. It has been found 

that it is easier to obtain good information about the high-gain 

direction than the low-gain direction (Koung and MacGregor, 

1993). Explicit excitation of the low-gain direction is required 

to obtain a model including the low-gain properties; otherwise, 

the model may be inadequate for control design (Koung and 

MacGregor, 1993; Häggblom and Böling, 1998).  

The excitation signals can be grouped into three major 

categories: general-purpose signals, optimized test signals and 

advanced dedicated signals. It has been shown that the 

advanced dedicated signals are system specific and difficult to 

construct (Pintelon and Schoukens, 2012). Typically, three 

types of perturbations are used: step, PRBS (pseudo-random 

binary sequence) and sinusoidal inputs. In this contribution, 

combinations of PRBS and step signals are considered. 

A considerable amount of literature exists on identification of 

ill-conditioned systems (e.g., Koung and MacGregor, 1993; 

Häggblom and Böling, 1998, 2013, Lee at al, 2003; Zhu and 

Stec, 2006; Rivera et al., 2009). However, most studies are 

limited to 2 2  systems. In this study, the suggested methods 

are generalized to systems with more inputs and outputs. The 

methods are tested on a 4 4  ill-conditioned system (Alatiqi 

and Luyben. 1986). The methods are compared in the 

following ways: fit of the identified models to data, condition 

number and singular values of the obtained models, plant-

friendliness of the excitation signals, and an extensive cross 

validation. As plant friendliness factors we consider the crest 

factor (CF) and the performance index for perturbation signals 

(PIPS).  

2. INPUT EXCITATION 

For system identification, the system has to be perturbed 

beyond its normal operation. Yet, this input excitation should 

be plant friendly. This is essential in order to keep the 

variations of the inputs and the outputs within specified limits. 

However, this also limits the information available for system 

identification. Collecting data from industrial systems is 

complex and costly (Katayama et al., 2006). Thus, there is a 

trade-off between how much one is prepared to “pay” for the 

information and the information needed for system identi-

fication (Gevers, 2005). From this it follows that the input 

design is crucial (Häggblom and Böling, 1998). 

2.1  Directional Inputs 

Common practice is to use uncorrelated PRBS signals for input 

excitation, one at a time or simultaneously. However, this does 

not excite the system in all directions adequately, especially in 

the low-gain direction (Häggblom and Böling, 1998). 

Consider a singular value decomposition of the steady state 

gain matrix, i.e., T T

1
(0)

n

i i ii
G U V U V


   . If only the 

steady state of the system is considered, the input 
1i

i iu u V    will produce the output i

iy y U   with the 

norm   1iy  . To properly excite all directions i , 1, ,i n , 

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 9382



it is necessary to apply inputs 
iu  that vary (symmetrically) 

between 1i

i iu V 

    and 1i

i iu V 

    (Häggblom and Böling, 

2013). The excitations can be introduced one direction at a 

time, or all directions simultaneously if they are designed to be 

uncorrelated. This can achieved by any kind of input signal, 

e.g., sequence of steps, PRBS or multi-sinusoidal. 

The duration of an experiment affects the overall cost of an 

experiment. The experiment length can be shortened by 

applying the input excitations simultaneously. Thus, it is of 

interest to study whether simultaneously applied directional 

inputs are sufficiently informative as compared to directional 

excitations one at a time or more standard input designs. 

2.2  Plant-Friendly Inputs 

Plant friendliness has been expressed in many ways in the 

control literature. One way is to express the plant friendliness 

of an input signal as  100 1 ( 1)i tn N     , where tn  is 

the total number of switches and N  is the total input signal 

length (Parker et al., 2001). This means that a constant signal 

is 100 % “plant friendly”, whereas a signal that changes at 

every instant is 0 % “plant friendly.” For example, a single step 

change is a very plant friendly signal, whereas a Gaussian 

random signal is a least plant friendly signal. 

However, from the system identification point of view, a single 

step change is least useful because it does not excite the system 

sufficiently. In this respect, a random signal is much better. 

Therefore, there is a trade-off between a good input excitation 

for identification and its plant friendliness.   

2.3  Details on Identification Experiments 

Eight different types of input excitations are studied and they 

are summarized in Table 1. The first six experiments are 

designed in a similar fashion as in Häggblom and Böling 

(2013) and the last two are similar to the design in Zhu and 

Stec (2006). The input excitations are step and PRBS signals. 

The dominating time constant of the example process is on the 

order of 50 min. In the case of step excitations, this motivated 

a step length of 330 min for each step change. 

The PRBS signals were designed using the bandwidth 

expression (Lee, 2006) 

 
1

L H

high low


  

 
     (1) 

where 
high  and 

low  are high and low dominating time 

constants, respectively, /low   is the closed-loop time 

constant of interest, and 
high  is the settling time. The 

dominating time constants of the example process are 

estimated to be 15low  min and 50high   min, whereas 

and   are chosen as 2 and 3, respectively. A minimum 

switching time 
swT  = 16 min is used for the PRBS signals. Two 

PRBS lengths, 63 and 255, of the form 2 1n  , where n  is an 

integer, are considered. When a PRBS of length 63 is used, it 

is applied separately for the 4 inputs in the example process, 

resulting in the total experiment length 4080eLT  min in both 

cases. 

Table 1. Experiment designs 

Experiment 

# 

Input excitation Signal description Applied gain 

directionality  

Average 

CF(u) 

Average 

PIPS(u) 

(%) 

1 stepSeq Sequential step changes of inputs 

one at a time 

No 2.487 40.22 

2 stepDir Step changes in gain directions Yes 2.452 40.24 

3 prbsSeq Sequential PRBS perturbation of 

all inputs 

No 2.012 49.70 

4 prbsUnc Simultaneous uncorrelated PRBS 

inputs 

No 1.000 100.00 

5 prbsSeqDir PRBS according to gain 

directions, one at a time 

Yes 1.984 49.73 

6 prbsSimDir Simultaneous PRBS excitation of 

all gain directions 

Yes 1.153 97.31 

7 prbsDirCorSeq Sequential high-amplitude 

correlated PRBS and low-

amplitude uncorrelated PRBS 

Yes* 1.084 95.90 

8 prbsDirCorSim Simultaneous high-amplitude 

correlated PRBS and low-

amplitude uncorrelated PRBS 

Yes* 1.404 70.75 

 * only low-gain directional information is utilized. 
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Two experiments are designed using step changes. In the first 

experiment, step signals are applied sequentially, one at a time 

in each input. In the second experiment, the step changes are 

applied simultaneously to all inputs in such a way that the 

various gain directions are excited sequentially. In the rest of 

the experiments, PRBS signals are used. In the third 

experiment, the PRBS signals are applied one at a time to each 

input, and in fourth experiment, uncorrelated PRBS signals are 

applied simultaneously to all four inputs. The uncorrelated 

PRBS signals are constructed according to the guidelines in 

Lee (2006). The same PRBS is used for all inputs, but they are 

suitably shifted to make them uncorrelated. In the fifth 

experiment, PRBS signals are applied simultaneously to all 

inputs, but correlated in such a way that the various gain 

directions are successively excited. The sixth experiment is 

similar to the fifth experiment, but the gain directions are 

excited simultaneously in such a way that they are uncorrelated 

with each other. 

The last two experiments, i.e., the seventh and the eighth 

experiment, are designed according to the guidelines for 2 2  

systems by Zhu and Stec (2006). According to them, it is 

sufficient to excite the low-gain direction explicitly; the high-

gain direction is excited by a low-amplitude uncorrelated 

signal, which is added to the high-amplitude low-gain signal. 

The low-gain direction is estimated based on prior knowledge. 

In this study, the true low-gain direction is used. The signals 

are scaled so that comparable signal-to-noise ratios are 

obtained in all cases. In a practical case, the information to do 

this may not be available, but here the purpose is to compare 

ideal case performance in a fair way. 

All experiments are summarized in Table 1, and a represen-

tative part of one input for each experiment (each subfigure) is 

shown in Figure 1. Figure 2 shows all four inputs and four 

outputs for one of the experiments. 

3. EVALUATION OF INPUT SIGNALS 

3.1  Fit percentage  

The normalized root mean square error (NRMSE) is a measure 

of the model fit to data. The NRMSE fitness value is calculated 

for each fitted output by (Ljung, 2006) 

 

2

2

ˆ( )
1 100  [%]

( )

i ii

ii

y y
NRMSE

y y

 
  
 
 




 (2) 

where iy  and ˆ
iy  are the measured and estimated output at the 

ith instant, respectively,  and y  is the mean value.  

3.2  Crest Factor 

The crest factor (CF) is defined as the ratio between the  -

norm and the 2 -norm, 

 
2

( )

( )
x

x
CF

x

  (3) 

where the 
p

-norm of a sequence ( )x t  in  the discrete time 

interval [0, ]N  is defined as 

 

1/

0

1
( ) ( )

p
N

p

p x x t
N

 
  
 
  (4) 

The  -norm represents max ( )x t , or the absolute peak value 

of the signal, and the 2 -norm is the root mean square (rms) 

value of the signal.  

3.3  Performance Index for Perturbation Signals 

The performance index for perturbation signals (PIPS) for 

linear system is defined as 

 

Fig. 1. Input excitation signals of one input for all 

experiments. 
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Fig. 2. Inputs and simulated outputs for one experiment. 
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 
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2 2

max min

200   [%]
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x

x x
PIPS
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



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where max, ,rms meanx x x  and minx  are the rms, mean, maximum 

and minimum values of the signal, respectively (Godfrey 

1999). 

 A measure related to PIPS is the peak factor (PF), defined as 

max min

2 2 rms

x x
PF

x


 . However, in this work only CF and PIPS are 

considered as plant-friendly signal measures. 

4. CASE STUDY DISTILLATION COLUMN/STRIPPER 

A distillation column/stripper system presented by Alatiqi and 

Luyben (1986) is used as a case study. The transfer function 

matrix of the system is given in Eq. (7). The time constants of 

the system are in the range 5…48 min and the time delays are 

in the range 0.02…18 min. The system is ill-conditioned with 

a condition number 125.2. The steady-state relative gain array 

(RGA) is    

1.077 0.296 -0.118 -0.256

4.505 1.772 0.207 -5.484
(0)

0.020 0.019 1.086 -0.124

-4.603 -1.086 -0.175 6.864

 
 
  
 
 
 

 (6)          

The input designs in Table 1 were applied to this system. 

White noise with the variance 0.03 was added to all outputs. 

Matlab’s System Identification Toolbox (Ljung, 2007) was 

used for model fitting.  

In a distillation column, the dynamics in lower gain directions 

are typically much faster than the dynamics in higher gain 

directions. By means of step tests it was found that the system 

has a dominating time constant of 15 min in the low-gain 

direction and a dominating time constant of 50 min in the high-

gain direction. To capture both dynamics, at least a second 

order model for each output is needed. Therefore, each transfer 

function was identified as a second-order transfer function 

with a time delay. 

5. RESULTS AND DISCUSSION 

To compare the performance of the different input excitations 

listed in Table 1, models were identified from the input-output 

data of each experiment and compared via cross validations. 

In the cross validation, each model is used to simulate the 

outputs of all other experiments. The agreement between 

simulations (“fits”) and data is quantified by Eq. (2). Table 2 

shows the average fit and the worst-case fit for every model. 

As can be seen, the models obtained from experiments where 

all directions were explicitly excited (stepDir and prbsSeqDir) 

are most robust. A notable exception is experiment 

prbsSimDir, where all directions were excited simultaneously 

Table 3. Condition number and singular values 

Model  

from 

Condition 

number 
Singular values 

Exp. 1 118.66 20.32 10.17 5.04 0.17 

Exp. 2 124.60 20.23 10.11 5.05 0.16 

Exp. 3 166.75 19.31 10.35 5.07 0.12 

Exp. 4 108.13 18.99 10.37 5.06 0.18 

Exp. 5 116.44 18.33 9.76 5.07 0.16 

Exp. 6 543.22  47.56 8.21 4.94 0.09 

Exp. 7 114.19 17.45 10.24 3.87 0.15 

Exp. 8 129.18 19.66 10.47 5.17 0.15 

True 

Value 
125.20 20.23 10.11 5.05 0.16 

 

Table 2. NRMSE of cross validations 

Model 
Input 

excitation 

Average 

fit (%) 

Worst 

case fit 

(%) 

1 stepSeq 83.97 48.41 

2 stepDir 85.31 70.52 

3 prbsSeq 84.56 58.85 

4 prbsUnc 84.57 59.94 

5 prbsSeqDir 85.43 70.97 

6 prbsSimDir 82.56 55.92 

7 prbsDirCorSeq 81.62 55.88 

8 prbsDirCorSim 81.04 52.23 
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in an uncorrelated way. It seems that the model fits did not 

adequately capture the directional properties. This also seems 

to be the problem with the models obtained from experiments, 

where only the low-gain direction was explicitly excited 

(prbsDirCorSeq and prbsDirCorSim). 

The condition number and the singular values of the steady-

state gain matrix of the obtained models as well as the true 

model are shown in Table 3. The models performing well in 

the cross validation, have a condition number and singular 

values very close to those of the true model. Also here, Exp. 6 

(prbsSimDir) is very far off.      

The singular values of the identified models and the true 

system model are shown in Figure 3 as a function of frequency. 

The figure shows that most models fit the system quite well for 

lower frequencies, but less so for higher frequencies. A likely 

explanation is that lower-order models than the true system 

order were fitted. Another reason might be that the input 

signals were mainly designed based on steady-state 

information.  

It is of interest to study projections of the outputs, defined 
T( ) ( )y t W y t  , where the orthogonal matrix W  is obtained 

from the singular value decomposition 
TG W V  . This 

means that T( ) ( )y t V u t   , where ( )iy t  is the ith output 

direction. Figure 4 shows the low-gain direction output 
4 ( )y t  

vs. the high-gain direction output 
1 ( )y t  for all eight experi-

ments. As can be seen, the experiments where the low-gain 

direction was explicitly excited, resulted in a better variability 

in the low-gain direction. Note, however, that ( )y t  is scaling 

dependent in this formulation — larger input values result in 

larger ( )y t  values. This might explain why experiments 7 

and 8 seem to have the best variability, although an effort was 

made to use the same overall input norm in all experiments. 

Table 4 shows the standard deviations of ( )iy t , 1,...,4i  , for 

all experiments. The standard deviations can be interpreted as 

follows: The more equal the standard deviations in the four 

gain directions are for an experiment, the better balanced the 

input excitations are in the various gain directions. The ratio 

between the maximum and the minimum standard deviation, 

which is also included in the table, can be used as a scaling-

Table 4. Standard deviation of projections along 

gain directions 

Exp. 
High 

gain 

Middle

gain 1 

Middle

gain 2 

Low 

gain 

Max/ 

    min 

1 0.502 0.463 0.291 0.015 33.467 

2 0.252 0.268 0.204 0.179 1.497 

3 0.316 0.336 0.227 0.029 11.586 

4 0.573 0.672 0.443 0.058 11.586 

5 0.275 0.457 0.236 0.123 3.715 

6 0.447 0.967 0.479 0.231 4.186 

7 0.788 1.307 0.671 0.337 3.878 

8 0.767 1.259 0.649 0.359 3.507 

 

 
Frequency (rad/min) 

Fig. 3. Singular values of estimated models with 

measurement noise (
2 0.03s  ). 
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independent measure of this balance. According to this 

measure, Exp. 2 (stepDir) is best balanced, but all experiments 

employing directional inputs are better balanced than the other 

experiments.  

6. CONCLUSION 

Constructing tailor-made input excitations in a smart way is 

crucial to a successful identification experiment. For an ill-

conditioned system, input design is especially critical due to 

widely different singular values of the gain matrix. The 

usefulness of a number of input design methods for ill-

conditioned MIMO systems was investigated in this paper. 

The main conclusion is that all gain directions have to be 

properly excited. Simplified methods that work for 2 2  

systems may not be adequate for more inputs and outputs.  
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