
Autonomous Rendezvous Control and

Determination of Unknown Target Orbit ⋆

Lijia Xu ∗ Yong Hu ∗ Tiantian Jiang ∗

∗ Science and Technology on Space Intelligent Control Laboratory,
Beijing Institute of Control Engineering,

100190 Beijing, P.R.China
(e-mail: predest@sina.com).

Abstract: This paper studies the space rendezvous problem with the target spacecraft in an
unknown elliptical orbit. By the measurements of the relative position and velocity between the
chaser spacecraft and the target spacecraft, a control strategy is proposed to achieve autonomous
rendezvous. In addition, the orbital information can be estimated in the rendezvous process,
and then the orbital elements are calculated by the estimate information. Finally, the proposed
approach is illustrated by simulations.
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1. INTRODUCTION

Autonomous rendezvous and docking have become an
important trend for future space missions, which will
bring many benefits, such as reduction of costs, improved
flexibility of the space task, and so on.

The related work of this issues has added insights into
the rendezvous or formation control (Wong et al. (2002);
Inalhan et al. (2002)) with the target in an arbitrary
elliptical orbit. In this case, the relative motion dynamics
are nonlinear and with time-varying parameters which are
the functions of the orbital elements. In previous work, the
target orbital elements are considered as priori knowledge
and the chaser spacecraft is able to receive real-time in-
formation by communication with the target spacecraft or
ground stations. One method is to compensate the non-
linear terms with time-varying parameters by designing
feedback control with known orbital information, such as
Singla et al. (2006), Karlgaard and Schaub (2011), and
Singla and Subbarao (2008). Another method (Zhou et al.
(2011); Gao et al. (2012)) is to design control law based
on the simplified relative motion equations by using the
true anomaly of the target spacecraft as an independent
variable instead of time (Yamanaka and Ankersen (2002)).
The initial orbital information also needs to be known.

However, the above-mentioned methods are obviously not
feasible for unknown and non-cooperative targets such
as damaged spacecrafts or space debris with no commu-
nication between them. To address this issue, Lu and
Xu (2009) develop a control strategy for the spacecraft
autonomous rendezvous and it is achieved that the final
relative position and velocity are bounded. Furthermore,
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it is worth mentioning that Characteristic Modeling (Wu
et al. (2007)) for this uncertain system is a very effective
method, the intelligent adaptive control based on the char-
acteristic model can meet the engineering requirements
and has been applied in the rendezvous and docking con-
trol for Shenzhou spacecraft (Xie et al. (2013)). However,
the common deficiency is that the target orbital informa-
tion can not be obtained which may be key information
for other space missions. To the authors’ best knowledge,
there are no related methods have been proposed for con-
trol of autonomous rendezvous while the target orbital el-
ements are estimated by the relative position and velocity
in the rendezvous process.

In this paper, we consider the problem of autonomous
rendezvous with the target spacecraft in an unknown
elliptical orbit. The main work can be divided into two
parts. One is control design for autonomous rendezvous.
Since the out-of-plane and in-plane motions can be seen
as decoupled, control laws are designed respectively to
track the reference trajectories. A brief stability analysis
is given. The second is determination of the unknown
target orbit. During approaching, orbital information can
be estimated by measurements. Orbital elements can be
calculated from the estimate information directly. Finally,
a numerical example is given to show the effectiveness of
the proposed methodology.

2. PROXIMITY RELATIVE MOTION

In this section, the proximity model we use for the relative
motion control is set forth.

2.1 Coordinate System

The target-orbital coordinate system is introduced to
establish the relative motion between the target spacecraft
and the chaser spacecraft.
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Fig. 1. Coordinate for the relative motion

The target-orbital reference frame is attached to the center
of mass of the target spacecraft. Ox-axis and Oz-axis
are inside the orbital plane, Oz-axis is oriented toward
the center of the planet, Ox-axis points forward and is
perpendicular to Oz-axis. Oy-axis is normal to the orbital
plane, completing the right-handed system. The frame is
illustrated in Fig. 1, rT , rc are the vectors from the center
of gravity to the target spacecraft and chaser spacecraft,
and ρ is the vector from the target spacecraft to the chaser
spacecraft.

2.2 Relative Motion Dynamic

The target spacecraft is in an arbitrary elliptical orbit. It
is assumed that the distance between the chaser spacecraft
and the target spacecraft is much smaller than the distance
between the target spacecraft and the center of the planet.
Then, the chaser motion relative to the target spacecraft in
the target-orbital coordinate system can be described as
the well-known TH equations (Yamanaka and Ankersen
(2002))

ẍ − 2θ̇ż − θ̈z − θ̇2x + kθ̇3/2x = ux

ÿ + kθ̇3/2y = uy

z̈ + 2θ̇ẋ + θ̈x − θ̇2z − 2kθ̇3/2z = uz

(1)

where x, y, and z represent the relative positions of the
chaser spacecraft with respect to the target spacecraft,

k = µ
h3/2 = µ1/4

[a(1−e2)]3/4
is a defined constant, µ is the

gravity constant, h is the orbital angular momentum of
the target orbit, a and e are the semimajor axis and
eccentricity of the target orbit, θ̇ and θ̈ are, respectively,
the orbital angular velocity and angular acceleration of the
target spacecraft. The explicit expressions of them will be
explained next.

2.3 Orbital Information in Equations

The time-varying parameters in (1), i.e., θ̇, θ̈, θ̇2, and

kθ̇2/3, are given in this subsection.

The Kepler’s equation is

E − e sinE =

√

µ

a3
(t − tp) (2)

where tp renders the time of perigee passage, t is a current
time, and E is the eccentric anomaly. The equations about
E and the true anomaly θ satisfy

sin θ =

√
1 − e2 sinE

1 − e cosE
, cos θ =

cosE − e

1 − e cosE
, (3)

and the expressions of θ̇ and θ̈ satisfy the following
equations

θ̇ = k2(1 + e cos θ)2, (4)

θ̈ = −2k4e sin θ(1 + e cos θ)3, (5)

θ̇2 = k4(1 + e cos θ)4, (6)

kθ̇3/2 = k4(1 + e cos θ)3. (7)

From (2)-(7), it can be observed that the four time-varying

parameters θ̇, θ̈, θ̇2, and kθ̇2/3 are determined by three
orbital elements a, e, and tp, which are the main orbital
influencing factors for autonomous rendezvous. Therefore,
the further developments contained in this paper will focus
on control for rendezvous and estimation of the three
orbital elements.

3. RENDEZVOUS CONTROL

In this section, we develop control laws for autonomous
rendezvous.

It is noted that the out-of-plane motion (i.e., the Oy-
axis subsystem) and the in-plane motion (i.e., the Ox -
Oz-axis subsystem) are independent. Therefore, they can
be considered separately. For out-of-plane and in-plane
motion, we design different control laws to track designed
reference trajectories. The common target is to achieve
autonomous rendezvous and pave the way for estimation
of the orbital elements. Details are shown in the following
subsections.

3.1 Generation of Reference Trajectories

We first introduce an approach to generate the reference
trajectories.

To achieve autonomous rendezvous, a pre-designed refer-
ence trajectory for translation motion needs to take initial
relative position and velocity, and the final anticipated
relative position and velocity into account. Moreover, the
trajectory should be smoothly and available to be tracked
under the limitation of the control ability. Here, we adopt
Bézier polynomial (Westervelt et al. (2007)), that is

r(s) =

M
∑

k=0

αk
M !

k! (M − k)!
sk(1 − s)M−k (8)

where r(s) : [0, 1] → R, M is the degree of the polynomial,
and αk can be selected by boundary conditions and all
kinds of constraints.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9710



Translate variable s into time t by

s =
t − t0
tf − t0

(9)

where t0 and tf are the initial and final time of rendezvous.
Then, we can get the reference trajectory of Ox-axis

xr = r(s), ẋr =
dr

ds
ṡ, ẍr =

d2r

ds2
ṡ2. (10)

The reference trajectories for Oy-axis and Oz-axis can be
generated in the same way.

Next, we will present the control laws for out-of-plane
motion and in-plane motion.

3.2 Control Design for Out-of-plane Motion

The out-of-plane motion is simple and the estimate of
kθ̇3/2 has an impact on the control design for in-plane
motion, so we consider it first.

Out-of-plane motion equation in (1) is

ÿ + kθ̇3/2y = uy. (11)

We define w0(t) = kθ̇3/2, then (11) becomes

ÿ = −w0(t)y + uy (12)

where w0(t) is a time-varying parameter. Next, we will
design a trajectory tracking control law and a time-varying
parameter estimation method.

The estimation of the time-varying parameter w0(t) is
carried out by derivation-free weight update law (Yucelen
and Calise (2011))

ŵ0(t) = r1ŵ0(t − τ) + q̂(t) (13)

where ŵ0(t) is an estimate of w0(t), 0 ≤ r1 < 1, τ > 0,
and q̂(t) satisfies

q̂(t) = r2E
T
y PyByy (14)

where r2 > 0, By = [ 0 1 ]
T
, Ey = [ ey ėy ]

T
, ey = y − yr

is the tracking error, yr is the reference trajectory which
has been given in the last subsection, and Py ∈ R2×2 is
the positive-definite solution of the Lyapunov equation

AT
y Py + PyAy + Qy = 0 (15)

where Qy = QT
y > 0, Ay =

[

0 1
−k1y −k2y

]T

, and k1y, k2y >

0.

Then, the control law for the out-of-plane motion is
designed as

uy = ÿr − k1yey − k2y ėy + ŵ0(t)y. (16)

Remark 1. The form in (13) and (14) can estimate the
time-varying parameter w0(t). It uses the information of
delayed weight estimate w0(t − τ), the current position
information y, and trajectory tracking errors Ey. Detailed
analysis about the estimation ability and closed-loop sta-
bility are in the section of stability analysis.

3.3 Control Design for In-plane Motion

In this subsection, we introduce the control design for in-
plane motion.

Since the relative motion is coupled in Ox-axis and Oz-
axis, a decoupling method will be introduced. We treat the
system states, time-varying parameters, and other terms
as an extended state, then, the extended state observer
(ESO) (Han (2009)) is used to estimate the extended
state. In particular, the estimated extended state will be
used in the orbit determination later.

The motion of Ox-axis in (1) is

ẍ = 2θ̇ż + θ̈z + θ̇2x − kθ̇3/2x + ux. (17)

Denote ϕx(t) = 2θ̇ż + θ̈z + θ̇2x, u′

x = ux − ŵ0(t)x, and
weight update error w̃0(t) = w0(t) − ŵ0(t), then (17)
becomes

ẍ = ϕx(t) − w̃0(t)x + u′

x. (18)

We define x1 = x, x2 = ẋ, and x3 = ϕx(t) − w̃0(t)x, then
(18) can be rewritten as

ẋ1 = x2

ẋ2 = x3 + u′

x.
(19)

Since the relative position x and relative velocity ẋ are
available for measurement, we adopt a reduced order ESO,
that is

ẋ0 = −βxx0 − β2
xx2 − βxu′

x
x̂3 = x0 + βxx2

(20)

where x̂3 is the estimate of x3, x0 is a state of ESO, and

βx is a high-gain value. In general, we set βx = β̄x

ǫ , where

β̄x is a positive constant, and ǫ is a small and positive
constant.

Then, the control law for (17) is designed as

ux = ẍr − k1xex − k2xėx + ŵ0(t)x − x̂3 (21)

where k1x, k2x > 0.

Similarly, consider the Oz-axis motion in (1)

z̈ = −2θ̇ẋ − θ̈x + θ̇2z + 2kθ̇3/2z + uz (22)

and design control law for Oz-axis as

uz = z̈r − k1zez − k2z ėz − 2ŵ0(t)z − ẑ3 (23)

where k1z, k2z > 0, ẑ3 is the estimate of the extended state
z3, which is defined as z3 = −2θ̇ẋ − θ̈x + θ̇2z + 2w̃0(t)z.
The extended state z3 is estimated by the reduced order
ESO

ż0 = −βzz0 − β2
zz2 − βzu

′

z
ẑ3 = z0 + βzz2

(24)

where u′

z = uz + 2ŵ0(t)z, and the symbols z0, z2, and βz

have the similar definitions of x0, x2, and βx in ESO of
Ox-axis.

3.4 Stability Analysis

In this subsection, we show the stability of the closed-loop
system under the control laws mentioned above.
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Theorem 1. Consider the rendezvous motion system given
by (1), the control laws given by (16), (21), and (23) with
the parameter and state estimation components given by
(13),(14), (20), and (24). Then, the estimate errors (w̃0(t),
x̃3(t), and z̃3(t)) and the tracking errors (Ey(t), Ex(t), and
Ez(t)) are ultimately bounded.

Proof. Here, we give a brief proof of the theorem.

First, we analyze the out-of-plane subsystem.

We consider the following Lyapunov-Krasovskii function

Vy(Ey, w̃(t)) = ET
y PyEy + λ

t
∫

t−τ

w̃2
0(ς)dς (25)

where λ > 0. Based on the analysis by Yucelen and Calise
(2011), we can obtain that the tracking error Ey(t) and
the weight update error w̃0(t) are ultimately bounded. The
error trajectory approaches the ultimate bound exponen-
tially in time. Therefore, there exists constants ty > 0,
ǫy > 0, and δy > 0, such that t ≥ ty, then ‖ Ey(t) ‖≤ ǫy

and |w̃0(t)| ≤ δy.

Then, we consider the in-plane subsystem.

By (17)-(21), we can write the closed-loop system of Ox-
axis

Ėx = AxEx + Bxx̃3
˙̃x3 = −βxx̃3 + ẋ3

(26)

where Ex = [ ex ėx ]
T
, Ax =

[

0 1
−k1x −k2x

]

, and Bx =

[ 0 1 ]
T
.

According to previous work on the analysis of ESO by Xue
and Huang (2011) and Hang and Guo (2012), we can get
similar properties of ESO. Defining a compact region

Ω = {(ξ, x̃3)| ‖ξ‖ ≤ ρ, |x̃3| ≤ γx(ρ)}

where ξ = [ x ẋ y ẏ z ż ]
T

is the system state, ρ is a
positive number, and γx(ρ) is a known finite increasing
function with respect to ρ. It can be proved that the state
trajectory of the closed-loop system can not reach the
boundary of Ω.

Furthermore, when t ≥ tx (tx > 0), |x̃3| ≤ δx, δx = O(ǫ)
is the infinitesimal of higher order about ǫ.

Next, we will calculate the bound of the tracking error.

Note that Ax is Hurwitz when k1x > 0 and k2x > 0. There
exist positive matrix Px and positive constants c1x, c2x,
such that

AT
x Px + PxAx = −I, c1xI ≤ Px ≤ c2xI (27)

where I is the identity matrix.

Define the following Lyapunov function

Vx(Ex) = ET
x PxEx. (28)

Derivation of (28) is

V̇x(t) = −ET
x Ex + 2x̃3B

T
x PxEx

≤ −‖Ex‖2
+ 2 |x̃3| ‖Px‖ ‖Ex‖

≤ −‖Ex‖2
+ (r‖Ex‖2

+
c2
2x

r
|x̃3|2)

= −(1 − r)‖Ex‖2
+

c2
2xδ2

x

r

≤ −1 − r

c2x
Vx(t) +

c2
2xδ2

x

r

(29)

where 0 < r < 1.

According to the Comparison Principle (Khalil (2002)), we
have

Vx(t) ≤ e−
(1−r)

c2x

(t−tx)Vx(tx) +
c3
2xδ2

x

r(1 − r)
. (30)

Obviously, Ex(t) is ultimately bounded, and using ‖Ex‖2 ≤
Vx

c1x

, we get the ultimate bound of Ex is ǫx =
c
3/2
2x

δx√
r(1−r)c1x

.

For Oz-axis subsystem, we have the similar results. That
is, the estimate error |z̃3| ≤ δz when t ≥ tz (tz > 0), and
the ultimate tracking error ‖Ez‖ ≤ ǫz, where δz and ǫz are
small positive constants.

Hence, it can be concluded that the estimate errors and
tracking errors are ultimately bounded.

4. ORBITAL ELEMENTS ESTIMATION

In this section, we present the estimation method for the
unknown time-varying parameters in (1) except kθ̇3/2, i.e.,

θ̇, θ̈, and θ̇2, and calculate the orbital elements from the
estimate data.

4.1 Parameters Estimation

Up to now, we have obtained the estimate parameter ŵ0(t)
from (13) and (14), and the estimated extended states x̂3

and ẑ3 from (20) and (24).

In order to improve the estimation precision, we set the
start time ts ≥ max{tx, ty, tz}.
Next, we will utilize nonlinear Kalman filter to estimate
the time-varying parameters.

Define the time-varying parameters in (1)

w1(t) = θ̇, w2(t) = θ̈, w3(t) = θ̇2, (31)

then, (31) can be expressed as the nonlinear state equa-
tions

Ẇ (t) = F [W (t), t] + ν
Φ = ΨW (t) + υ

(32)

where W (t) = [ w1(t) w2(t) w3(t) ]
T

is the state vector of

the equations, Ψ =

[

2ż z x
−2ẋ −x z

]

is the parameter matrix

of the equations, F [W (t), t] =

[

0 1 0
0 0 0

2w1(t)w2(t) 0 0

]

is

the nonlinear function matrix about the states of the
equations, Φ = [ x̂3 ẑ3 ]

T
is the measurement value vector
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of the equations, ν = [ ν1 ν2 ν3 ]
T

and υ = [ υ1 υ2 ]
T

are
treated as zero-mean continuous-time white noise vectors
since the estimate errors are much smaller than the states,
which are denoted as

ν ∼ (0, Qw), υ ∼ (0, Rw)

where the covariance matrices Qw and Rw can be given
appropriate values according to the bound of estimate
error above-mentioned.

Linearize and get the Jacobi matrix of F [W (t), t]

∂F [W (t), t]

∂W (t)
=

[

0 1 0
0 0 0

2w2(t) 2w1(t) 0

]

, (33)

then the continuous-time extended Kalman filter equations
(Simon (2006)) are

˙̂
W (t) = F [Ŵ (t), t] + K(t)[Φ − ΨŴ (t)]
K(t) = P (t)ΨT r−1

w (t)

Ṗ (t) =
∂F [W (t), t]

∂W (t)

∣

∣

∣

∣

W (t)=Ŵ (t)

· P (t)

+P (t) ·∂FT [W (t), t]

∂W (t)

∣

∣

∣

∣

W (t)=Ŵ (t)

−P (t)ΨT r−1
w (t)ΨP (t) + qw(t)

(34)

where Ŵ (t) is the estimate of W (t).

Remark 2. The continuous-time Kalman filter is proposed
to illustrate the effectiveness for the estimation of the time-
varying parameters. In practice, we can use the discrete-
time Kalman filter instead of the continuous-time one.

4.2 Orbit Determination

In this subsection, we can use those estimate parameters
to calculate orbital elements and finally determinate the
target orbit.

So far, the four time-varying parameters w0(t), w1(t),
w2(t), and w3(t) all have been estimated. By the analysis
in subsection 2.3 , we know that they are the functions of
the three orbital elements a, e, and tp. Therefore, we can
use the estimate parameters to find out the three orbital
elements.

There are various kinds of data processing methods can
be used to deal with it, such as Levenberg-Marguardt,
Quasi-Newton, Conjugate-Gradient, etc. Obviously, it’s
not a difficult problem to obtain the orbital elements from
the known estimate parameters. Therefore, the paper here
will not show specific steps to achieve that. But in the
numerical simulations, the orbital elements a, e and tp will
be calculated to complete the whole simulation.

5. NUMERICAL SIMULATIONS

The rendezvous control laws and orbit determination
method in this paper are illustrated in this section by
simulations of a particular rendezvous mission.

The unknown initial orbital elements of the target space-
craft are listed in table 1.
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Fig. 2. Position tracking curves

Then, the time of perigee passage tp can be calculated,
which is equal to 2022s.

Furthermore, it is assumed that the chaser spacecraft is at
a distance of

[ x(0) y(0) z(0) ] = [−1000m 500m −1000m ]

from the target spacecraft, and the initial relative velocity
is

[ ẋ(0) ẏ(0) ż(0) ] = [ 0m/s 0m/s 0m/s ] .

The anticipated final relative position and velocity are all
equal to 0, and the rendezvous time is assumed to be
10000s.

Once the relative motion has been established between the
two spacecrafts, the reference trajectories can be generated
by Bézier polynomial (Subsection 3.1).

Under the proposed control laws (16), (21) and (23), the
position tracking curves x, y, z are shown in Fig. 2. As
we expected, the chaser spacecraft approaches the target
spacecraft along the reference trajectories, and the final
position errors are less than 0.5 m, the relative velocity
errors are less than 0.1 m/s. The control signals ux, uy,
uz of the chaser spacecraft are shown in Fig. 3, which is
10−3m/s2 order of magnitude.

During the process of rendezvous, the four time-varying
parameters, i.e., w0(t), w1(t), w2(t), and w3(t), can be
estimated by (13), (14), (20), (24) and (34). The estimate
curves are shown in Fig. 4, and the estimation precisions
satisfy the theoretical analysis results.

Based on the above estimate data and functional relations,
the orbital elements a, e, and tp can be calculated by
data processing methods. The calculated orbital elements
are listed in table 2 which are very close to the true

Table 1. Target orbital elements

Orbital elements Value

Eccentricity 0.7
Semimajor (km) 22926

Initial true anomaly (deg) -100
Inclination (deg) 30

Longitude of the ascending node (deg) 0
Argument of perigee (deg) 0

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

9713



0 2000 4000 6000 8000 10000
−1

0

1

2

3

4

5
x 10

−3

Rendezvous Time (s)

C
on

tr
ol

 S
ig

na
ls

 (
m

/s
2 )

 

 
u

x

u
y

u
z

Fig. 3. Control signals of the chaser spacecraft

0 2000 4000 6000 8000 10000
−2

−1

0
x 10

−6

w
0(t

)

 

 
True parameter
Estimate parameter

0 2000 4000 6000 8000 10000
0

1

2
x 10

−3

w
1(t

)

0 2000 4000 6000 8000 10000
−1

0

1
x 10

−6

w
2(t

)

0 2000 4000 6000 8000 10000
0

2

4
x 10

−6

w
3(t

)

Rendezvous Time (s)

Fig. 4. Estimate parameter curves

values. Then, the elliptical orbit of target spacecraft is
determined.

Table 2. Calculated orbital elements

Orbital elements Calculated value

Eccentricity 0.691
Semimajor (km) 22863

Time of perigee passage (s) 2103

6. CONCLUSION

In this paper, we present a strategy which can not only
control autonomous rendezvous but also estimate the
orbital elements. An example of rendezvous motion is
provided to show the implementation of the control and
estimation methods. The simulation results show that the
actual trajectories track the reference trajectories tightly,
and the estimated orbital elements can determine the
target orbit.
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