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Abstract: This note considers the problem of learning a warning system from observations of
a system which has not encountered any error as yet. That is, can we infer a warning rule from
a system remaining in normal operation regime, without making any (stochastic) assumptions?
While this problem appears to be paradoxical, methods which were studied in online learning
theory can be used to find such a strategy. To illustrate that this is indeed possible, the classical
linear PERCEPTRON rule is reinterpretated.

The design of methods for detection of faults has been
studied intensively over at least 4 decades, see e.g. the sur-
vey of Basseville [1988]. Firstly, consider the setup where a
model for both nominal behaviour as well as atypical ones
is given. If these models are deterministic, then the issue of
determining wether a new case belongs to either situation
is direct. If the setup is stochastic, then determining to
which situation a new case belongs is essentially answered
by statistical decision theory. In practice, these boil down
to performing a statistical test, and deciding wether the
resulting level is significant enough for the application
at hand. In many cases, one resorts to the Uniformly
Most Powerful (UMP) Likelihood-Ratio (LR) tests, or a
variation on this theme (see e.g. Kay [1998], Van Trees
[2004]).

Note that a different approach uses the device of p-
values. When only the distribution of the nominal case
(the null-distribution) is specified, a p-value indicates how
much a new case deviates from this model. The LR test
however requires specification of both the distributions
characterising the NOMINAL, as well as the distribution
governing the ALARM cases. The payoff of the latter is
that it comes with a sounder theoretical support (e.g. the
Neyman-Pearson lemma). Both schools are still prevalent
in present day (see e.g. the discussion in Lehmann [1993]).

Let’s refer to this step as the decision task.

The subsequent question is then how to learn or infer the
models for either NOMINAL and FAULTY cases. There
exist a number of essentially different approaches for doing
so:

• (Parameteric) If a model is specified up to a few
parameters, for the normal behaviour of the sig-
nals, then it is not too difficult to find out when a
new measurement does not follow it close enough.
Such atypical points are obvious candidates for faulty
behaviour. That is, faulty measurements follow the
model dual to the nominal model. Note that in case
only a few parameters need to be estimated, this can
be done using NOMINAL observations following the
postulated model.
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• (Non-parametric) If such a model cannot be specified,
or is represented using a large number of unknowns,
then one has to make different assumptions to sep-
arate nominal behaviour from faulty behaviour. A
common one is to make I.I.D. assumptions on the
data: that is assume that the data is sampled inde-
pendently from an identical distribution. The devise
of mixing (see e.g. Vidyasagar [2002] for a survey)
relaxes this condition to dependent data, typically
found in a control or signal processing setting. This
case is also referred to as non-parametric, see e.g.
Lehmann [2006].

• (Classification) There is a different line of research for
addressing this task. Let nominal measurements be
labeled as yt = −1, and faulty ones have a yt = +1
label. Then, based on the measurements and their
corresponding labels, one tries to find an optimal
rule which separate this two classes of examples.
This line of thinking is often followed in a setting
of machine learning algorithms, see e.g. Mohri et al.
[2012], Hastie et al. [2001]. Most of those approaches
need customisation when handling imbalances of the
classes. In the ALARM setting, there is a natural
imbalance as ALARMS are by nature much less
frequent than NOMINAL behaviour. In fact, we are
looking to the extreme case where one can only
observe one type of data. Hereto, so-called one-class
classification methods were proposed as a technique
to reduce such problem to a traditional classification
problem. The principal thinking again is to build
the least complex model explaining the NOMINAL
data. In case of Support Vector Machines (SVMs)
(see e.g. Hastie et al. [2001]), complexity is interpreted
in terms of margin, leading to the one-class Support
Vector Machine, see e.g. Shawe-Taylor and Cristianini
[2004].. However it was observed that this approach
is in practice no viable alternative to the parametric
or non-parameteric approaches, while often requiring
much heavier computations and careful tuning.

Let’s refer to this step as the learning task.

This paper explores a new approach integrating both the
decision task, and the learning task. Specifically, we will
phrase the problem as an online learning problem, and
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point out the resulting advantages. The key idea is to
update the model whenever it makes a mistake. That is,
when it predicts an ALARM while there was none, the
learner is asked to update its rule. Such strategy is by
now quite standard in the area of theoretical machine
learning (Cesa-Bianchi and Lugosi [2006], Mohri et al.
[2012]), but it is still highly non-conventional in a context
of identification and automatic control. The surprising bit
of the consequent theory is that no stochastic assumptions
need to be made in order to give formal results.

This ideas find a natural application in a systems and
control setting as follows. Successful control applications
demand a proper monitoring system. However, since the
data is generated by complex feedback loops, stochastic
assumptions as independent sampling on the involved
signals are often problematic. It is often desirable to work
with techniques which work well with arbitrary signals,
that is, in a ‖ · ‖∞ sense. The theory of online learning
provides such a framework, and the connection with H∞
is studied in Hassibi et al. [1996]. A main open question
however is how to handle effectively the fault detection
case, and whether are there opportunities where the non-
stochastic nature of the online learning schemes can enrage
insights in control and recursive identification? This then
provides the motivation for the work in this paper. Further
integration of this line of thinking within engineering
applications as in Gertler [1998] is left as future work.

This paper is organised as follows. The next section for-
malises the setup and gives the form of the answer. Section
1 states the basic result and gives a proof. The first sub-
section examines how one can extend the PERCEPTRON
rule to handle the fault detection case, while the second
subsection gives a way to improve the technique using
the devise of nuclear norms. Section 2 provides numerical
examples, and Section 3 concludes the paper.

1. ALARM RULE

Protocol of learning from a passive teacher:

Given f0
FOR t = 1, 2, . . .
(1): A measurement xt comes in.
(2): The learner issues ALARM or NOT, based on xt and ft−1.
(3): In case of a conjectured ALARM, the teacher checks.
(4): The learner adjusts ft−1 → ft based on feedback (FP or TP).

END

Table 1. The protocol for learning a detection
rule. The aim of the learner is to control the
number of missed true ALARMS. That is, the
number of False Negatives (FN), while keeping
the number of False Positives (FP) as low as

possible.

The present problem is expressed formally as follows. The
protocol of the learning the ALARM rule is spelled out in
Alg. (1), while the actions of the teacher are spelled out in
Table (2). A False Positive (FP) occurs when the learner
conjectures an alarm, while careful checking reveals that
there is none. A True Positive (TP) happens when the
learner predicted ALARM is confirmed by an expert. A
False Negative (FN) is the converse, that is the learner
thinks that everything works fine in this case, while the

Predicted NOMINAL Predicted ALARM

NOMINAL Do Nothing Adjust rule
ALARM Do Nothing HORN

Table 2. Is it possible to learn the prediction
rule when only considering the following ac-
tions? Especially, when the learner says that
everything is normal, no ALARM can be de-
tected. Only when an ALARM is predicted,
the operator checks the situation. One might
think of this as setting as ’learning from a lazy

teacher’.

situation needs an ALARM in actual fact. A True Negative
happens when the learner predicts quite rightly that there
is no problem.

Assume that xt ∈ Rd for a reasonably small d > 0. Let
the function y : Rd → {0, 1} denote wether the teacher
would raise ALARM (y(xt) = 1) or NOT (y(xt) = 0). Let
the hypothesis of our learner at time t be represented as a
vector wt−1 ∈ Rd, such that

ft−1(xt) = I(wTt−1xt ≥ 0), ∀t, (1)

where I is the indicator function where I(z) = 1 if z is true,
and I(z) = 0 otherwise. Now the aim is to find a strategy
which results in a sequence (wt−1)t where w0 = 0d, such
that the number of False Negatives (FN) n− defined as

n− =
∑

t=1,2,...

y(xt) (1− ft−1(xt)) , (2)

is (nearly) zero , while the number n+ of False Positives
(FP) defined as

n+ =
∑

t=1,2,...

(1− y(xt)) ft−1(xt), (3)

is minimal. Thirdly, all cases of t : y(xt) = 1 occur in
the end, that is they are not to be used for learning the
rule at first instance. This setting is unlike the traditional
classification setting where labels are symmetrical. For
completeness, the protocol for classification is given in Alg.
(3).

Protocol of learning a classifier:

Given g0
FOR t = 1, 2, . . .
(1): A measurement xt comes in.
(2): The learner predicts a label gt−1(xt) ∈ {−1,+1}.
(3): The teacher reveals the true label z(xt) ∈ {−1,+1}.
(4): The learner adjusts gt−1 → gt if z(xt)gt−1(xt) < 0.

END

Table 3. The protocol for mistake driven learn-
ing of a binary classifier.

The realisation that learning from only one class can
be done, comes from interpreting the update rule of the
PERCEPTRON, see Fig. (1.b). It is seen that a mistake
on case xt prompts a signed update of the rule as wt± xt.
The sign is determined by wether it is a FP or FN. Now,
observe that a sign can also be imposed by considering the
inverse sample −xt. That is, if a sequence {(xt, y(xt))}t
works well, then the sequence {(y(xt)xt, 0)}t results in the
same estimate. However, the latter sequence only requires
samples with labels ’0’ .
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Fig. 1. (a) Example of observations being either ALARM
(red) or NOMINAL (blue). The traditional approach
when no ALARM samples are available, is to fit
a model (solid line) to the NOMINAL data. The
PERCEPTRON however focusses only on the mar-
gin (dashed line). (b) Visualisation of the PERCEP-
TRON rule. The dashed straight line is the true rule,
the solid line is the learned rule represented as wt at
a certain time instant t. By symmetry of the rule, one
can interchange yt = +1 (False Negative) mistakes by
yt = −1 mistakes (False Positive), while maintaining
exactly the same net outcome.

Now, the desired properties are spelled out. The question
becomes which parameter to choose in order to obtain
these properties. This question is here answered as follows.
While for traditional learning approaches, the margins are
taken symmetrical around the decision rule, in this case a
proper choice of an asymmetric margin is more plausible.
That is, since both classes (ALARM or NOMINAL) have
a very different frequency of occurrence, it is reasonable
to modify the symmetry of the margin in order to satisfy
the constraints on n+ and n−. The next subsection works
out how this idea can be implemented using a very simple
classifier: the PERCEPTRON learning rule.

1.1 AN ASYMMETRIC PERCEPTRON

A first approach to taylor the PERCEPTRON rule to
the present context is to tune the asymmetry in order to
guarantee properties on the to different types of mistakes.
The assumption which makes this analysis possible is the
assumption that such a rule exists. That is, we have to
assume that a perfect ALARM rule exists, and in that
case our algorithm will perform with certain guarantees.

PERCEPTRON+

Let w0 = 1d and b0 = 0
FOR t = 1, 2, . . .
(1): A measurement xt ∈ Rd comes in.
(2): If wT

t−1xt + bt−1 > 0, then issue ALARM. Else, do nothing.

(3): In case of ALARM, query y(xt) ∈ {0,+1}.
(4): If y(xt) = 1 let wt = wt−1 and bt = bt−1.

Else wt = wt + xt and bt = bt−1 + 1.
END

Table 4. The protocol for learning a detection
rule. The aim of the learner is to control the
number of missed true ALARMS. That is, the
number of False Negatives (FN), while keeping
the number of False Positives (FP) as low as

possible.

The main result is a modification of this simple rule which
exploits the fact that there are in the beginning only

one-sided mistakes possible. The first result is a straight-
forward application of the Perceptron mistake algorithm.
Consider the classification setting where z(xt) ∈ {−1, 1},
but where only one-sided mistakes occur, that is, only
values of z(xt) = −1 occur.

Lemma 1. Assume that there exists a w̄ such that for all
possible xt one has{

(w̄Txt) ≥ 1 y(xt) = 1

(w̄Txt) ≤ −1 y(xt) = 0.
(4)

Then one has for all −1 ≤ c ≤ 1 ∈ R that

n+(1− c)2 + n−(1− c)2 ≤ R2‖w‖22 +R2c2. (5)

Proof: First, observe that there are many decision rules
separating the data points under the above assumptions.
For example, every rule given as

f(w̄, c) = I(w̄Txt + c > 0), (6)

for −1 ≤ c ≤ 1 can be used. Note that the new rule is now
shifted away from the origin, requiring in general an extra
intercept term

f(w̄, c) = I(w̃T x̄t > 0), (7)

where x̃t = (xTt , 1)T ∈ Rd+1 and w̃ = (w̄T , c)T ∈ Rd+1.
Note that ‖w̃‖22 = ‖w̄‖22 +c2. This rule has now margins of
size (1− c) in case y(xt) = 0, and (1+ c) in case y(xt) = 1.
Now the derivation of Block and Novikoff is repeated for
arbitrary values of this c. By unfolding the recursion of the
learning rule one has

wt = (1− c)2
∑
s∈Mt

xs, bt = (1− c)2
∑
s∈Mt

1. (8)

Since for any d ∈ Mt, one has y(xs) = 0. The resulting
rule is given as

ft(xt) = I(wTt−1xt + bt−1 > 0), (9)

such that a FP of the rule occurs if (1 − y(xt))(w
T
t−1xt +

bt−1) > 0. Note that the value of c is immaterial as long
as c > −1. Denote w̃t = [wt, bt], then

w̃Tt w̃ ≤ ‖w̃‖2‖w̃t‖2 ≤ ‖w̃‖2R
√
n+(1− c)2 + n−(1 + c)2.

(10)
Conversely, one has

w̃Tt w̃ ≥ n+(1− c)2 + n−(1 + c)2 (11)

Combining the inequalities gives the result. Q.O.D.

The resulting optimal rule is hence given by the solution
to

min
c,n+

n+s.t. n+(1+c)2+n−(1−c)2 ≥ R2‖w̄‖22+R2c2, (12)

That is, what is the optimal asymmetry allowing for the
least number n+ of FP while ensuring at most n− FN. This
optimisation allows for a closed form solution of c. First,
observe that any solution lies obtains equality instead of
’<’. Then, lets introduce a Lagrange parameter β ∈ R,
rewriting the problem as

min
c,n+

max
β

n+ + β
(
n+(1 + c)2

+n−(1− c)2 −R2‖w̄‖22 −R2c2
)
. (13)

In case a feasible solution exists (Slater’s condition), the
problem is equivalent to

max
β

min
c,n+

L(β, n+, c)

= n++β
(
n+(1 + c)2 + n−(1− c)2 −R2‖w̄‖22 −R2c2

)
.

(14)
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This result in the following first order conditions

∂L(β, n+, c)

∂n+
= 0⇔ β =

−1

(1 + c)2
,

∂L(β, n+, c)

∂c
= 0⇔ 2cβ(n++n−−R2)+2β(n+−n−) = 0,

(15)

or

c∗ =
n− − n+

(n+ + n− −R2)
. (16)

Note the fact that c∗ > −1 for any n+ > n−. This is
quite agreeable since it means that the optimal c∗ can be
realised in a PERCEPTRON algorithm once the number
of FP’s is more prevalent than the FN. This is typically
true in the present setting. Hence the constraint becomes

n+

(
2n− −R2

n+ + n− −R2

)2

+ n−

(
2n+ −R2

n+ + n− −R2

)2

−R2‖w̄‖22 −R2c2 > 0. (17)

From these derivations, the following result follows

Lemma 2. If n+ ≥ n− > R2

2 , then

−1 < c∗ < 1. (18)

And hence the optimal c is realisable in the PERCEP-
TRON rule.
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Fig. 2. Evolution of the optimal c and the bound for various
values of n+.

1.2 A FILTRON RULE

The above ALARM rule is based on finite dimensional
vectors xt. However, many engineering settings suggests
the use of filters to compute such a rule. Then the question
becomes how to learn such a filter from observations. Ideas
of the symmetrical PERCEPTRON are moved towards
this new context, that is, this subsection treats only
the simple case where margins are equal at both sides.
This subsection will spell out some of the ideas, provide
evidence for the result, and motivate later integration with
the above asymmetrical rule.

At first, the form of the general solution is given. Suppose
that one is monitoring a system based on a signal {ut}t.
The reference filter is given as

yt = I

( ∞∑
τ=0

h̄τut−τ > 0

)
. (19)

We will denote the infinite vector h̄ = (h̄0, h̄1, h̄2, . . . ),
so that one can write equivalently yt = I(h̄ ∗ ut > 0).
Straightforward application of the above derivations would
yield a guarantee which deteriorates linearly in d (the
length of the filter). This is clearly a bad idea when d→∞.
That is, when up sampling twice, the norm of the impulse
response increases approximately twice as well.

However, there exists a nice way around this using basic
results in systems and realisation theory, see e.g. Kailath
[1980]. This is based on the (symmetrical) Hankel matrix,
defined as

Hd(h) =


h0 h1 h2 . . . hd−1
h1 h2 h3
h2 h3 h4
...

. . .
hd−1 . . . h2d−1

 . (20)

Given an impulse response vector h, the rank of the
corresponding Hd for arbitrary large value of d equals the
McMillan degree of the minimal realisation, see e.g. Fazel
et al. [2001], Recht et al. [2010], Liu and Vandenberghe
[2009] and references. Secondly, we spell out how the
convolution of h with a signal ut can be rephrased using
this matrix. Let zt be defined as follows

zt =

n∑
τ=0

h̄τut−τ = trace
(
Hd(h̄)Ud(t)

)
, (21)

where Un(t) is defined as the symmetrical matrix

Ud(t) =



ut
ut−1

2

ut−2
3

. . .
ut−d+1

dut−1
2

ut−2
3

ut−3
4

0
ut−2

3

ut−3
4

ut−4
5

0

...
. . .

ut−d+1

d
0 0 . . . 0


. (22)

Some elementary matrix algebra shows that

‖Un(f)‖2F =

d∑
τ=0

τu2t−τ
τ2

≤ R2 ln(d+ 1). (23)

where one has u2t ≤ R2 for any t. Note that this assumes
that the impulse response h is (or can be approximated)
of finite length d < ∞. This is not too restrictive, as
the prediction has some margin (allowing approximations)
anyway.

The FILTRON rule is spelled out in table (5). This
algorithm comes with the following guarantee:

Lemma 3. Assume that there exists a h̄ such that one has
for any t that{

trace(Hd(h̄)TUd(t)) ≤ −1 yt = 0

trace(Hd(h̄)TUd(t)) ≥ 1 yt = 1,
(24)

and such that Hd(h̄) is of rank bounded by r.

n+ + n− ≤ ‖Hd(h̄)‖2∗R2 ln(1 + d) (25)

Proof: The evolution of

trace(Hd(h̄)THd(ht)), (26)
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FILTRON

Let w0 = 1d and b0 = 0
FOR t = 1, 2, . . .
(1): A new signal ut ∈ Rd comes in.
(2): If P∗(ht−1) ∗ ut > 0, then issue ALARM. Else, do nothing.
(3): In case of ALARM, query yt ∈ {0,+1}.
(4): If yt = 0, raise a FP and update the rule as
ht = ht−1 + (ut, . . . , ut−d+1)T .
Else ht = ht−1.
END

Table 5. the FILTRON algorithm. Note that
we include P∗(ht−1) for predicting wether a
new case is NOMINAL or deserves an alarm.
This is the PROXIMAL mapping for the Nu-
clear norm. The resulting scheme is not a pro-
jected gradient descent scheme, as the result
of this projection is only used to make predic-
tions, and is not used in the recursion itself.

is bounded from both sides. Note that by unfolding the
recursion, one has

Hd(ht) =
∑

s∈Mt−1

ztUd(s), (27)

where we defined zt = 2yt − 1 for all t. So that

trace(Hd(h̄)THd(ht)) = trace

 ∑
s∈Mt−1

ztHd(h̄)TUd(s)


= zt

∑
s∈Mt−1

trace
(
Hd(h̄)TUd(s)

)
≥ n+ + n−. (28)

The upper-bound follows from the following result on the
trace result (the cyclic property and the inequality see e.g.
Coope [1994]), Let A,B ∈ Rd×d be squared matrices, then

traceAABB ≤ traceAA traceBB. (29)

Let A = Hd(h̄) and B = Hd(ht), then

trace(Hd(h̄)THd(ht))
2 ≤ ‖Hd(h̄)‖2F ‖Hd(ht)‖2F . (30)

Now we use the inequality that for any matrix A of rank
r, one has ‖A‖F ≤ ‖A‖∗ ≤

√
r‖A‖F . Hence

n+ + n− ≤ ‖Hd(h̄)‖∗‖Hd(ht)‖F . (31)

Working out the last term using eq. (27), the definition of
a mistake and eq. (23) gives

‖Hd(ht)‖2F ≤ (n+ + n−)R2 ln(d+ 1). (32)

Combining this inequality with eq. (30) yields the result.
Q.O.D.

The same reasonings as in the previous section are directly
applied to handle asymmetrical margins, or learn only
from FPs.

Note that this bound is qualitatively different from
what straightforward application of the PERCEPTRON
derivation would give us. The main difference is in
the norm ‖Ud(t)‖2F which results in a ln d factor. In
case the vector PERCEPTRON rule were use, the term
‖(ut, . . . , ut−d+1)‖22 which grows linear in d would be un-
avoidable. In order to indicate that this difference is not
compensated by use of the Nuclear norm of the Hankel
matrix as compared to the 2-norm ‖h0‖22, the norms of
different examples are given in the experimental section. A
proper theoretical investigation of the order of the nuclear

norm of the Hankel matrix of small rank will be presented
later.

2. NUMERICAL EXPERIMENTS

Two numerical examples are presented in order to illus-
trate the results. They are based on artificial setups, and
need further tuning in more realistic cases. Nevertheless,
they are included as they give some insights in the meth-
ods.

2.1 LMS versus PERCEPTRON+

Firstly, we illustrate the difference between a classical
approach based on LMS, and that one of the PERCEP-
TRON. The following experiment was conducted. n =
5000 data points xt ∈ Rd are generated from a standard
distribution with identity variance and zero mean, and
they are assigned to NOMINAL or ALARM by use of a
rule of a linear rule 1Td xt ≥ 1. It is made sure that the
decision rule has a margin of size ρ > 0. The results for
various dimensions d and margins ρ are given in Table 6.

(d, ρ) LMS RLS PERCEPTRON+

(2, 1) (0.1555, 0.0200) (0.0594, 0.0001) (0.0005, 0.0068)
(2, 0.1) (0.2312, 0.2305) (0.1037, 0.1572) (0.0023, 0.0105)
(5, 1) (0.3473, 0.2909) (0.1148, 0.0793) (0.0014, 0.0067)
(5, 0.1) (0.3472, 0.3744) (0.1305, 0.3412) (0.0166, 0.0396)
(10, 1) (0.6055, 0.2626) (0.1372, 0.2954) (0.0050, 0.0128)
(10, 0.1) (0.5870, 0.2823) (0.1405, 0.4769) (0.0298, 0.0545)
(50, 1) (0.9837, 0.0160) (0.1513, 0.6198) (0.0386, 0.0540)
(50, 0.1) (0.9846, 0.0147) (0.1535, 0.6676) (0.0716, 0.0954)

Table 6. Numerical performances observed in
the first experiment, relating a traditional ap-
proach of adapting to the data in the NOM-
INAL case, versus the performances obtained
by the PERCEPTRON+ case. The modelling
approach can be done in many different ways,
here we implement an adaptive LMS filter
and an RLS approach. Given are the fractions
FN/(TP+FN) and FP/(TN+FP ) recorded
during the adaption/learning process. It is seen
immediately that the proposed rule deals or-
ders of magnitudes better with this situation,
especially for increasing d and for the portion
of FN (missed ALARMS). Note that a LMS
approach of comparable complexity gives very

poor results.

2.2 PERCEPTRON versus the FILTRON

Secondly, numerical evidence is provided for the task of
inferring a filter with the FILTRON as opposed to a
straightforward application of the PERCEPTRON to this
case. This experiment constructs a signal ut as white noise
of unit variance and zero mean. The ultimate rule is given
as

yt = I
(
h̄ ∗ ut ≥ 0

)
, h(q) =

1 + 0.9q−1

1− 0.9q−1
. (33)

A typical difference of the result is given in Fig. (4). The
norms of the true filter h̄ are given as follows. The 2-
norm ‖h̄‖22 = 1.6510, the Frobenius norm of the asso-
ciated Hankel matrix H(h̄) is ‖H(h̄)‖2F = 3.0477, while
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Fig. 3. Typical observed case in the first experiment, here
for d = 5 and ρ = 1. While traditional methods try to
find regularities (i.e. a model) in the NOMINAL data,
the PERCEPTRON only focusses on the separating
hyperplane.

the Nuclear norm is ‖H(h̄)‖2∗ = 3.0477 as well. Note that
neither scales up too bad in terms of d (here d = 25).
On the average, the performances of the PERCEPTRON
rule and the FILTRON rule go as follows. The PERCEP-
TRON achieves a portion of FP/(FP + TN) = 0.0243
and FN/(FN + TP ) = 0.0199. The FILTRON achieves
FP/(FP + TN) = 0.0159 and FN/(FN + TP ) = 0.0133.
This number is achieved after seeing n = 5000 samples.
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Fig. 4. (a) Resulting estimate when applying the standard
PERCEPTRON rule. (b) Resulting estimate when
applying the FILTRON rule. One sees by comparison
with the previous picture that the estimate is much
smoother, resulting from use of the nuclear norm
and its relation to the rank of the Hankel matrix
associated to the filter.

3. CONCLUDING REMARKS

This paper investigates the question wether one can learn
an ALARM rule without having encountered a FAULT
as yet. It turns out that one can by avoiding making
stochastic assumptions. Doing so would imply that we
can merely state results about typical situations, while
a FAULT is by definition not. However, by resorting to
the modern theory of online learning and mistake-driven
learning one can get around this point. Furthermore, two
variations of the PERCEPTRON rule are introduced.
Firstly, the standard rule is adapted to the asymmetrical
case in order to provide guarantees on the number of FN
and FP as desired. Secondly, the rule is extended to the
filter case by making use of the Nuclear norm heuristic of
the Hankel matrix associated to the filter estimate.

There are ample of questions left for open at this point.
The main theoretical issue is why the PROX mapping
P∗(ht−1) in the FILTRON algorithm of Table 5 is reducing

the number of mistakes, as empirical evidence seems to
suggest. Answers are by now appearing for use of the
Nuclear norm in the batch case (see e.g. Recht et al.
[2010]), but it is as such completely unknown what hap-
pens in online cases (see e.g. Cesa-Bianchi and Lugosi
[2006] for a survey of results). It is also well-known that the
PERCEPTRON rule can handle the non-departing case as
well - see e.g. Mohri et al. [2012]. Extension of this work
to the present setting provides a new challenge. Finally, it
is clear that deeper insight in the methods will be gained
from more extensive simulation and study of case studies.
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