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Abstract: This paper presents a sizing and control optimisation architecture for the design
and evaluation of a small-scale stand-alone hybrid PV-wind-battery system for the production
of hydrogen (Hs3) using proton exchange membrane (PEM) technology. Three objectives are
considered simultaneously namely cost, efficiency and reliability. For this task an optimisation
approach is developed combining a single objective genetic algorithm (GA) with a multi-
objective GA (MOGA) to optimise nine system sizing variables and six power management
system control set-point variables. The nine sizing and six control variables are combined to
form a solution vector. The optimisation algorithm searches the search space, with user defined
boundaries, for non-dominated solution vectors. The result is a set of solution vectors which
are useful in the selection of components for the design and evaluation of these systems. The
optimisation approach developed sufficiently searches the bounded search space and provides
results in the form of a set of non-dominated solution vectors. These results are useful in
understanding how the different components of such a non-linear complex system affect each
other as well as the three objectives considered in this study.
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1. INTRODUCTION

Hybrid renewable energy (RE) Hs systems have non-linear
complex characteristics and a large number of design vari-
ables. The sizing of these systems is dependent on time of
day, local weather conditions, operating policy, and eco-
nomic data (Human et al. (2012)). Throughout literature
these systems are usually minimised for cost as is seen in
a review by Fadaee and Radzi (2012). Optimising for cost
negatively affects the expensive components such as the
PEM electrolyser employing platinum catalysts. A limited
number of studies evaluate additional objectives such as
COq emissions, and/or unmet load [UL]. Bernal-Agustin
and Dufo-Lépez (2009a) performed interdependent control
and multi-objective sizing optimisation with objectives
being cost, CO4 emissions, and UL. Control optimisation
included cost only with a different cost objective function.
Early on Seeling-Hochmuth (1997) recognised the need to
consider other objectives such as efficiency and reliability.
It is evident from both works mentioned above that the siz-
ing and control variables are interdependent and influence
one another as well as all three of the objectives. Classical
optimisation techniques have been introduced in the field
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of renewable energy systems. These are computationally
expensive and do not allow for the consideration of large,
complex systems with many system variables. Heuristic
optimisation algorithms in the field of RE systems have
become increasingly common and are applied in numerous
research works as is seen in Bands et al. (2011). The most
popular heuristic optimisation algorithms are listed in
Fadaee and Radzi (2012) to be the GA and particle swarm
optimisation (PSO). The GA is selected for this study for
it’s flexibility, ease of implementation on non-differentiable
functions, working with discrete search spaces, and solving
of global optimisation problems.

Wind and solar energy resources are considered by Mo-
riarty and Honnery (2007) to be the only viable solution
for Hy production while Carmo et al. (2013) shows that
proton exchange membrane (PEM) based electrolysis is
the preferred technology for Hy production from intermit-
tent RE sources. PEM technology poses some drawbacks
when operated with intermittent RE as seen in Sherif
et al. (2005). In order to mitigate these drawbacks Li
et al. (2009) shows that the combination of a high cost,
high efficiency, short term LAB storage, with less efficient
long term Hs storage systems, capable of storing large
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amounts of energy inexpensively, is the optimal solution.
Both the PEM electrolyser, and LAB have efficiency and
reliability considerations when subjected to intermittent
operation. Additionally both the control and sizing of
components have an effect on system cost, efficiency, and
reliability, making sizing and control optimisation interde-
pendent. Although these systems are expensive and have
comparatively low efficiencies, Nelson et al. (2006) states
that on-going research and improving system efficiency
will make this technology economically viable in future.
Various optimisation software packages are available for
RE system simulation. These are given in Bernal-Agustin
and Dufo-Lépez (2009b) with very little of these packages
including Hy components and even less having optimisa-
tion capability.

In this paper an optimisation approach integrating both
single and multi-objective optimisation techniques is de-
veloped and implemented. A single objective GA optimis-
ing six control variables is implemented in cascade with
a MOGA, optimising nine sizing variables. The purpose
of the optimisation approach is to find a set of non-
dominated solution vectors which is useful for the design
and evaluation of systems with similar configurations. The
paper is outlined as follows: A description of the RE
system is provided next in section 2. This is followed by a
detail description of the developed optimisation approach
including a brief description of the system model in sec-
tion 3. Detail of the optimisation objectives is also given.
Section 4 presents results obtained from the initial optimi-
sation exercise. Results presented here only demonstrate
the functionality of the optimisation approach developed.
Detail analysis of the findings is to be presented following
further progress.

2. SYSTEM DESCRIPTION

The system consist of a wind turbine (WT) generator,
photovoltaic (PV) generators, a PEM electrolyser, and
LAB storage. Back-up diesel generator or grid-tie con-
nection is not considered and thus 100 % of the energy
is to be supplied by the RE sources. This combination
of components is the most common from a review of
literature and existing systems from Fadaee and Radzi
(2012). The configuration of the system considered in this
paper is illustrated in Fig. 1. The WT and PV sources
generate power and converted through a power conversion
device to a DC bus. A DC bus is elected as both the
batteries and PEM electrolyser operate with DC voltage.
The LAB bank is managed by a charge controller which
supplies energy when the RE sources are not sufficient, and
stores energy when there is a surplus of RE. The power
between the various devices is managed through a power
management system for which the control set-points are
optimised. Sizing variables optimised include PV slope, PV
module series and parallel connections; WT power rating;
PEM electrolyser operating voltage, current density, and
membrane area; and LAB Ah rating and series and parallel
connections. Control variables optimised include minimum
and maximum battery SOC; electrolyser minimum and
maximum current densities; and two scaling variables to
control the power flow between the LABs and electrolyser.
In this paper only the production of Hy from RE and

H, storage
Lead-acid battery bank

Fig. 1. Schematic of the PV-WT-LAB H, production
system

not the usage is considered. Hy production and usage are
considered to be decoupled through its storage.

3. OPTIMISATION
8.1 Multi-objective optimisation

The standard form for a multi-objective problem is given
by minimising objective function vector

F(z) = {fi(z),... fx ()},

where Z = {z1,...,2,},
for g;(z) <0, j=1,...,m (1)
hi(z) =0, k=1,....p
i < % < v, i=1,...,n,

where F(Z) is the set of K objective functions, Z represents
the n-dimensional decision variable vector, and g;(Z) and
hi(Z) respectively are m-dimensional inequality and p-
dimensional equality constraint functions. Decision vari-
ables are restricted by upper and lower bound values, Z;¢
and Z;,. The objective is to find a vector z* in the solution
space X that optimises the K objective functions.

Pareto optimality is essential in solving multiple objective
problems. A Pareto optimum set is defined as a set of
solutions which are non-dominated, meaning that for a set
of Pareto solution vectors, there exists no other solution
vector in the entire solution set that results in the im-
provement of at least one objective fitness value without
a deterioration of the remaining objective fitness values.
Fig. 2 illustrates a set of possible solutions for an optimi-
sation problem considering the two minimising objectives
f1 and f5. Solutions ”1” to ”5” are non-dominated solution
vectors lying on the Pareto front. These solution vectors
form the Pareto optimal set. Solution vectors 6 to 15 are
dominated and do not form part of the Pareto optimal set.

8.2 System model

System design, analysis, and optimisation requires a math-
ematical system model. The model is developed in the
Matlab® and Simulink” simulation environments and
constructed from individual component models integrated
into a single system simulation. Components modelled
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Fig. 2. lllustration of the Pareto optimal front.

include PV cells, WT generator, LAB, PEM electrolyser,
power electronic converters, and power management sys-
tem. For the optimisation exercise the models are required
to be generic. Models selected include the main component
dynamics which affects component efficiency and reliabil-
ity. The PEM electrolyser and LAB are identified to have
reliabilities affected by the sizing and control parameters
and for that reason these two components are modeled to
include reliability components.

Wind speed and irradiation data use statistical distri-
butions to simulate the inputs. Irradiation input data
available for the site is monthly average daily irradiation
measured on a horizontal surface. Using distributions from
Bendt et al. (1981) an average monthly clearness index
is determined and finally hourly irradiation on a tilted
surface (G[kW/m?]). Clearness index (kr) is the relation-
ship between the terrestrial and extraterrestrial radiation.
Extraterrestrial radiation is calculated from the work of
Duffie and Beckman (1991). Wind distributions use a
Weibull distribution function described in Borowy and
Salameh (1994). Shape and scale factors for the Weibull
distributions are derived from available measured data and
in turn used to generate a wind speed distribution profile.

PV cell characteristics have a strong dependency on solar
radiation and module temperature. The PV model imple-
mented is a single diode equivalent circuit model providing
voltage-current characteristics and is referred to as the four
parameter model described in Duffie and Beckman (1991).
A lumped thermal model given in Lebbal and Lecoeuche
(2009) is included. Power from a WT is mainly dependent
on wind speed and hub height. The instantaneous value of
power in the wind, P,, is given by

1
Py = 5pV3Cy, (2)

with V' the wind speed [m/s] and C, the fraction of
upstream wind power captured by the rotor blades. Most
models from literature are empirical models using rated
power, cut-in-, cut-out-, and rated-wind speeds to provide
the power from a WT as a function of the wind speed. For
this work the power-wind speed curve from a commercially
available 3kW turbine is normalised. This ensures that the
WT model remains generic by multiplying the normalised
power-wind speed curve values with the component rating.

The LAB performance model implemented is the CIEMAT
model discussed in detail by Gergaud et al. (2003). Addi-

tionally a cycle-counting algorithm implemented by Bind-
ner et al. (2005) is added to incorporate a reasonable
accurate lifetime model for reliability calculations. The
generic property of the CIEMAT model makes it appro-
priate for optimisation exercises. Battery voltage-current
relationship is modelled as a function of battery rating,
state of charge (SOC), charge and discharge currents, and
temperature. This model includes gassing voltage and end
of charge voltage. Battery life is modelled by an adoption
of Miner’s rule which involves a combination of conven-
tional battery lifetime information from the data sheet and
a cycle counting algorithm that determines the number
of cycles from the depth of discharge (DOD). Number of
cycles vs. DOD data is provided by battery manufacturers
and imported into a lookup table. The fractional life used
in a given cycle is calculated to be 1/Cr where Cr is the
fractional discharge. End of battery life is defined as the
point where the battery has reached 80 % of the nominal
capacity. When the sum of the fractional life values add
up to 20 % the battery life is considered to be over and
requires replacement.

The PEM electrolyser model is an electrochemical model
described in detail in Carmo et al. (2013). The model
provides the voltage-current relationship for specific elec-
trolyser parameters as voltage drops across the electrol-
yser components. The model includes temperature effects
with a lumped parameter temperature model from Lebbal
and Lecoeuche (2009). For the power conversion device a
generic three parameter model from Ulleberg and Glockner
(2002) is implemented which relates the input power to the
output power as a function of output voltage. The model
is based on empirical efficiency curves and is numerically
robust and generic. The model requires three parameters
obtained from power curves. The three parameters used
are obtained from work done in Ulleberg and Glockner
(2002).

The power controller distributes power between the dif-
ferent components based on predefined criteria for several
operating modes denoted OMO (off mode), OM1, OM2,
OM3, OM4, OM12, OM13, and OM14. Each operating
mode is subject to the state of six conditions shown in
Fig. 3, numbered one to six in the diamond shaped decision
blocks. Actions as a result of these conditions are based
on controller set-points which are the optimised control
variables.

Fig. 3. Power controller logic diagram
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3.8 Optimisation architecture

The sizing and control optimisation architecture imple-
mented in the current work comprises of a single-objective
algorithm and a multi-objective algorithm both optimising
for the same objective functions: efficiency, cost, and relia-
bility. Control optimisation implements a single objective
GA while sizing optimisation implements a MOGA. For
both sizing and control all three objectives are evaluated.
The first objective is evaluated for control while all three
objectives are evaluated for sizing. When the optimisa-
tion criteria are met, the second objective is evaluated
for control with all three objectives evaluated for sizing
again. This is repeated for the third objective. The result
is three Pareto optimal sets, each having control variables
optimised for one objective at a time. These are combined
to form a single set of non-dominated Pareto optimal
solutions. The flow of the optimisation approach developed
is given in Fig. 4. A description of each of the steps is

Generate random
initial sizing vector

no=1 Generate random
initial control vector
population

P Control opli for
" each sizing vector

Each sizing vector has a
control vector forming a
n=ngtl combined sizing and | &

II
control vector called a

solution vector T

1

RS
i

System simulation

- |
Evaluate all objectives Generate new conrol

for the solution vectors:
fir oo S

1

Store non-dominated
solution vectors and
their objective values NO

Evaluate objective f;
for each sizing vector

vectors from existing
using selection, cross-
over, and mutation.

Generate new sizing
vectors from existing
using selection, cross-
over, and mutation.

Optimal control vector
selected for each
sizing vector with
optimum value for

objective k
|

END:
Pareto optimum set
consisting of K x

decision vectors

Fig. 4. Optimisation flow diagram.

provided next:

(1) Set objective function to first objective, k = 1, and
start the first iteration, g = 1.
(2) Generate initial random set of sizing vectors.
(3) Optimise control for objective function f(k) using the
single objective GA for each sizing vector.
(a) Generate random initial set of control vectors.
(b) Calculate fitness values for each vector for objec-
tive function f(k).
(¢) Implement operators: selection, crossover, and
mutation.
(d) Repeat GA until number of generations or set-
point tolerance is achieved.
(4) Calculate fitness values for all objectives functions
(flu"'7fK)~
(5) Determine non-dominance of the current solution
vectors.
(6) Store non-dominated objective function values and
corresponding solution vectors.

(7) Implement operators: selection, crossover, and muta-
tion.

(8) Repeat steps (3) to (7) for N, generations.

(9) Select the next objective function for control optimi-
sation, k = k + 1.

(10) Repeat steps (2) to (9) K times to optimise all
objective functions for control.

(11) At the end of the optimisation exercise the Pareto

solution set contains a maximum of g = Ny x K
solution vectors for evaluation of both sizing and
control.

3.4 Objective functions

The objectives to be minimised are the negative of the
average system efficiency per annum [%], the total life-
cycle cost (TLCC) per kilogram of produced Hy [R/kg],
and the inverse of the overall system reliability based on
reliability indicators of the electrolyser and LAB bank.
Determining these objectives is the topic of the paragraphs
to follow.

Efficiency is determined to be the average system efficiency
measured over a simulation period of one year. It is defined
as the ratio of energy available in the Hs produced by
the system to the input energy from the renewable energy
sources and is given by

n _ Eout
system —
Y E

(3)

in

The objective function to be minimised is the negative of
efficiency given by

fl = —MNsystem- (4)

Cost is determined as the TLCC of the system per kilo-
gram of Hy produced for a 25 year lifetime. TLCC dis-
counts all costs through the lifetime of the system to
an equivalent present value which includes initial, oper-
ation and maintenance (O&M), and replacement costs.
The financial model used is from Farr (2011). Component
economic specifications along with component expected
lifetimes are provided in Table 1.

Table 1. Component economic specifications.

Component | PV | WT | Ely | LAB | PCD
C; [R/W] | 36 | 21.7 | 10 | 215 | 65
Cognr [%] 1 1 2 1 1
Life [yr] 25 25 10 4 10
Total cost per component is calculated by
Ccomp = CI + CO&:JV[ + CR (5)

with C; the sum of the component initial investment,
Cognv O&M cost, and Cg the replacement costs. Initial
investment cost per component is calculated for the PV
by

CI = Cz X Ncompv (6)

with C; the normalised PV cost [R/module] and Neopmyp
the number of PV modules. For all other components the
initial investment cost is calculated using

CI - Ci X Pcompa (7)
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with C; the normalised component cost [R/W] and Peomp
the rating of the component [W]. O&M cost per compo-
nent is calculated by

(1+d)¥ -1

d1+d)" ®)

Cogm = Cogn, X Cr X

with Cognr, the O&M cost in the first year, d the
discount rate, and Y the lifetime in years of the system.
Replacement costs are calculated by

Cr=Crx(1+d)~". (9)

The final system cost per kilogram [mp,] is the sum of
the cost of all components over the lifetime of the system
divided by the amount of Hy produced for the same period.
The objective function to be minimised is the sum of all
the component costs given by

— Z Ccomp .

mmy,

f2 (10)

Reliability is the probability that a system or component
will accomplish its designated task over a period of time
when subjected to specified operating conditions. The
current work is not concerned with the probability of a
component failure, but rather requires a relative indication
of the contribution to degradation as a result of operating
actions known to contribute to degradation. Reliability in
this case is redefined as the quantification of certain iden-
tified degradation mechanisms for a component subjected
to intermittent operation. The PEM electrolyser and LAB
are the components that degrade due to operating condi-
tions. The life expectancy of a LAB is measured in number
of cycles which is dependent on the depth-of-discharge. A
cycle counting algorithm calculates the percentage LAB
capacity lost per annum with LAB reliability given by
Rpp = exp(—qras.,..) (11)

with gram,,,, the average capacity lost between the two
banks. Electrolysers have a terminal voltage increase as
a result of degradation inside the electrolyser. Clarke
et al. (2009) attributes rapid electrolyser degradation to
the highly fluctuating power input. The extent to which
lifetime degradation is directly contributed to variability
in power input, is to date not quantified. Ulleberg (1998)
uses number of starts and average run time to compare
simulation for different operating strategies. Electrolyser
reliability is therefore related to the average on-time given
by

Rely = exp(_Tely,maa: + Tely,avg)7 (12)
with Ty, maee the maximum possible on-time per cycle for
each specific site and T%;y,qvg the actual measured average
on-time per cycle. Both components are essential for the
system to function properly and is considered a series
network with the overall system reliability given by the
multiplication of battery and electrolyser reliabilities. The
objective function to be minimised is the inverse of the
overall system reliability given by

f3 = (Rery % Rpp) . (13)

4. RESULTS

Several runs of the optimisation approach are performed,
each having a Pareto optimal set of solution vectors. In
this paper all solution vectors are combined and the non-
dominated solutions eliminated to form a single Pareto
optimal set. This Pareto set is illustrated for all three
objectives in Fig. 5. The density of solution vectors on

20

Fig. 5. Pareto front for the three objectives.

the Pareto front is determined to evaluate the ability of
the optimisation approach to adequately search the entire
search space. For each solution vector (Fi,...,F}) on the
Pareto front the average normalised distance to all other
solution vectors is determined with the minimum of these
averages selected as a closed ball defined by

B(Fpy,7) = {FpeR|d(Fp,Fp,) < 1}, (14)
for b solution vectors, with Fy, the centre of the closed ball,
and d the distance function which associates a distance
d(Fp,Fp,)=|Fp - Fy, | for every pair of solution vectors. For
each solution vector (Fy,) the number of solution vectors
with d < r is counted providing a measure of solution
vector density on the Pareto front.

The colour of the graph indicates the spread of solution
vectors over the Pareto front and is directly related to the
number of solution vectors inside each closed ball defined
by (14) and indicated by the colour bar in Fig. 5. Dark red
areas are densely populated while blue areas are sparsely
populated. This is a result of the optimisation approach
converging to non-dominated solutions. Solutions with at
least one optimum objective value has a higher probability
of being dominated and this is visible in the graph. For a
better illustration of the results and analysis of the Pareto
set, the objective function values for f3 for for the Pareto
set are grouped from low to high into five equal groups
and plotted against f; and fy in Fig. 6. Low values for
f3 (lower 20 % of values) corresponds to low cost and low
efficiency while the high values for f3; (upper 81 - 100 %
of values) correspond to high efficiency and also high cost.
For these results the optimal zone would be 50 - 60 %
efficiency, resulting in relatively moderate cost and low
inverse reliability.

5. CONCLUSIONS AND FUTURE WORK

This paper presents an optimisation approach for the
combined control and sizing optimisation of a small-scale
stand-alone hybrid PV-wind-battery system for the pro-
duction of He using PEM technology. Control and sizing
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Cost [Rrkg]

Fig. 6. Cost vs. efficiency for five ranges of inverse reliabil-
ity with trend lines.

parameters are evaluated for the three objectives, cost,
efficiency, and reliability. A system model including power
control is developed in the Matlab® and Simulink”™
simulation environment. A smalls-scale stand-alone RE
system is evaluated. From the distribution of solution vec-
tors on the Pareto front it is shown that the optimisation
approach converges to an isolated area on the Pareto front
indicating that there is an optimal zone from which solu-
tions can be determined based on the relative importance
of the objectives. From the results the expected conflict-
ing nature of the objectives selected, especially the cost
and efliciency, is clearly visible. Ongoing research includes
refining the optimisation process, both in execution time
and locating minima on the Pareto front. Future work will
include a Pareto front sensitivity analysis to determine the
control and sizing parameters it is most sensitive for. The
results are to be evaluated using multivariate statistical
analysis techniques. Furthermore a comparison with other
commonly used optimisation algorithms such as particle
swarm optimisation is also warranted.
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