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∗ heerol@anadolu.edu.tr ∗∗ aiftar@anadolu.edu.tr

Abstract: Decentralized controller design problem for linear time-invariant retarded
commensurate-time-delay systems is considered. The continuous pole placement algorithm,
which has recently been introduced for static state vector feedback controller design for retarded
time-delay systems, is first extended to design dynamic output feedback controllers. This
algorithm is then used in the proposed decentralized controller design algorithm. An example
is also presented to demonstrate the proposed approach.
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1. INTRODUCTION

Many systems may involve time-delays in their dynamics,
inputs, and/or outputs. The controller design for such
systems, which are called time-delay systems, is more
difficult than for finite-dimensional systems in general
(e.g., see Loiseau et al. (2009)).

A decentralized control structure may be necessary, or
at least preferable, for many large-scale systems (Šiljak
(1991)). Although the subject of decentralized controller
design for finite-dimensional systems has been discussed in
the literature for the past four decades, the same problem
for time-delay systems has found place in the literature
rather recently (e.g., see Bakule (2008) and references
therein).

In the present work, we propose a decentralized controller
synthesis procedure for linear time-invariant (LTI) re-
tarded commensurate-time-delay systems. This procedure
is based on the decentralized pole assignment algorithm
of Davison and Chang (1990), which was proposed for
finite-dimensional systems. In this algorithm a centralized
controller is designed for each control agent sequentially.
Therefore, the algorithm requires a centralized controller
design procedure, which is to be used by each control
agent. For this purpose, we use the continuous pole place-
ment algorithm of Michiels et al. (2002). This algorithm,
however, was proposed for static state vector feedback.
Therefore, after stating our problem formally in Section 2,
in Section 3 we extend the continuous pole placement
algorithm to design dynamic output feedback controllers.
This algorithm is then used in the decentralized controller
design algorithm proposed in Section 4.

Throughout the paper, C, R, and N denote the sets of,
respectively, complex numbers, real numbers, and non-
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negative integers. For s ∈ C, Re(s) denotes the real part
of s. For µ ∈ R, C−

µ := {s ∈ C | Re(s) < µ}. R[·]
denotes the ring of polynomials in · with real coefficients.
For k, l ∈ N, Fk and Fk×l respectively denote the spaces
of k-dimensional vectors and k × l-dimensional matrices
with elements in F , where F is R, C, or R[·]. i denotes
the imaginary unit. Ik and 0k×l respectively denote the
k × k-dimensional identity and the k × l-dimensional zero
matrices. When the dimensions are apparent, we use I and
0 to denote respectively the identity and the zero matrices.
For a matrix or vectorM , MT and M∗ respectively denote
the transpose and the complex-conjugate transpose of M .
For a (vector) function x(·), ẋ(·) denotes the derivative of
x(·). Finally, ‖ · ‖, det(·), and rank(·) respectively denote
the 2-norm, the determinant, and the rank of (·) and
bdiag(· · · ) denotes a block diagonal matrix with (· · · ) on
the main diagonal.

2. PROBLEM STATEMENT

Consider a decentralized LTI retarded commensurate-
time-delay system Σ with ν control agents,

ẋ(t) =
σ
∑

i=0



Aix(t− hi) +
ν
∑

j=1

Bj,iuj(t− hi)





yj(t) =
σ
∑

i=0

Cj,ix(t− hi) , j = 1, . . . , ν

(1)

where x(t) ∈ R
n is the state vector at time t and

uj(t) ∈ Rpj and yj(t) ∈ Rqj are, respectively, the input
and the output vectors at time t, accessible by the jth

control agent (j = 1, . . . , ν). The matrices Ai, Bj,i and
Cj,i (i = 0, . . . , σ, j = 1, . . . , ν) are constant real matrices,
h0 := 0 (thus, i = 0 in (1) corresponds to the delay-free
part), and hi := ih, i = 1, . . . , σ, are the time-delays, which
are assumed to be commensurate with a common divisor
h > 0.
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In order to obtain a more compact representation of (1), let
us introduce the delay operator, τ , by h, i.e., τf(t) = f(t−
h) for any function f of time t. Then, define the matrix
operators whose elements are in R[τ ]:

A(τ) :=

σ
∑

i=0

Aiτ
i , Bj(τ) :=

σ
∑

i=0

Bj,iτ
i , (2)

and

Cj(τ) :=

σ
∑

i=0

Cj,iτ
i , (3)

for j = 1, . . . ν. Also define

B(τ) := [B1(τ) B2(τ) · · · Bν(τ) ] (4)

and

C(τ) :=
[

CT1 (τ) CT2 (τ) · · · CTν (τ)
]T

. (5)

Then, the system Σ can be compactly represented as

ẋ(t) = A(τ)x(t) +B(τ)u(t)

y(t) = C(τ)x(t)
(6)

where u(t) :=
[

uT1 (t) · · · uTν (t)
]T

∈ R
p and

y(t) :=
[

yT1 (t) · · · yTν (t)
]T

∈ Rq, where p :=
∑ν

j=1 pj

and q :=
∑ν

j=1 qj .

Definition 1. For any given µ ∈ R, the set of µ-modes of
the system Σ, described by (1) or, equivalently, by (6), is
defined as

Ωµ (Σ) := {s ∈ C | Re(s) ≥ µ and φΣ(s) = 0} (7)

where φΣ(s) := det
(

sI − Ā(s)
)

is the characteristic func-

tion of the system Σ, where Ā(s) is obtained from the
operator matrix A(τ), defined in (2), by replacing the op-
erator τ by the function e−hs, i.e., Ā(s) :=

∑σ

i=0 Aie
−shi .

Definition 2. For any given µ ∈ R, the system Σ is said
to be µ-stable if Ωµ (Σ) = ∅. Furthermore, a controller
K is said to µ-stabilize the system Σ, if the closed-loop
system obtained by applying the controller K to system Σ
is µ-stable.

Definition 3. λ ∈ C is said to be a µ-centralized fixed
mode (µ-CFM) of Σ if Re(λ) ≥ µ and

det
(

λI − Ā(λ) − B̄(λ)KC̄(λ)
)

= 0

for all K ∈ Rp×q, where, similar to Ā(s), B̄(s) and C̄(s)
are respectively obtained from the operator matrices B(τ)
and C(τ), respectively defined in (4) and (5), by replacing
the operator τ by the function e−hs.

Definition 4. λ ∈ C is said to be a µ-decentralized fixed
mode (µ-DFM) of Σ if Re(λ) ≥ µ and

det



λI − Ā(λ) −
ν
∑

j=1

B̄j(λ)KjC̄j(λ)



 = 0

for all Kj ∈ Rpj×qj , j = 1, . . . , ν, where B̄j(s) and C̄j(s)
are respectively obtained from the operator matricesBj(τ)
and Cj(τ), respectively defined in (2) and (3), by replacing
the operator τ by the function e−hs.

Note that, λ is a µ-CFM or a µ-DFM of Σ, only if it is a
µ-mode of Σ. For any finite µ ∈ R, µ-CFMs and µ-DFMs
of a retarded time-delay system, like Σ, can be determined
by finite amount of computation (e.g., see Erol and İftar
(2013)).

The objective in this work is to introduce a controller syn-
thesis technique to design decentralized controllers, where
only feedback from yj to uj is allowed for j = 1, . . . , ν,
so that the closed-loop system is µ-stable, for some given
real µ (normally µ ≤ 0). For this purpose, we propose
to adapt the decentralized pole assignment algorithm of
Davison and Chang (1990) to the present case. In this
algorithm a centralized controller synthesis is used for each
control agent sequentially. Thus, to use this algorithm,
we first need to adopt a centralized controller synthesis
algorithm. For this, we propose to use the continuous
pole placement algorithm, introduced by Michiels et al.
(2002). This algorithm was originally presented for static
state vector feedback controllers. However, in our case, the
whole state vector is not generally available to any control
agent. Furthermore, using static feedback almost never
produce useful results to control a decentralized time-delay
system. Therefore, in the next section, we first extend
the continuous pole placement algorithm of Michiels et al.
(2002) to the case of centralized dynamic output feedback
controllers.

3. CENTRALIZED DYNAMIC OUTPUT FEEDBACK
CONTROLLER DESIGN BY CONTINUOUS POLE

PLACEMENT

As mentioned at the end of the previous section, the
purpose of the present section is to extend the continuous
pole placement algorithm of Michiels et al. (2002) to the
case of centralized dynamic output feedback controllers.
Throughout this section, we will consider a centralized
retarded commensurate-time-delay system of the form (6),
where the whole output, y(t), is available for feedback to
the whole input u(t). The controllers we will consider are
of the following form:

ż(t) = Fz(t) +Gy(t)

u(t) = Hz(t) +Ky(t)
(8)

where z(t) ∈ Rm is the state vector of the controller at
time t, where m ∈ N is the controller dimension, and
F ∈ Rm×m, G ∈ Rm×q, H ∈ Rp×m, and K ∈ Rp×q. Note
that when m = 0, such a controller reduces to a centralized
static output feedback controller.

It was shown by Kamen et al. (1985) that a system of the
form (6) can be µ-stabilized by a controller of the form (8)
(with a sufficiently large m) if and only if the system does
not have any µ-CFMs. Since our final aim is to use the
centralized synthesis approach of the present section in a
decentralized framework, even though the overall system
can be µ-stabilized (i.e., it does not have any µ-DFMs -

see Erol and İftar (2013)), the system from a particular
input channel to the corresponding output channel may
have µ-CFMs. To mitigate the problem caused by the µ-
CFMs, we will first obtain the controllable and observable
part of the given system, and then apply the stabilization
algorithm to this part only. To identify the controllable
and observable part, we first need to present the following
definition and lemma from Lee et al. (1982).

Definition 5. The system (6), equivalently the pair
(A(·), B(·)), is said to be controllable if the matrix

[

B(τ) A(τ)B(τ) . . . (A(τ))
n−1

B(τ)
]
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is full rank over R[τ ]. Also, the system (6), equivalently
the pair (C(·), A(·)), is said to be observable if the matrix

[

CT (τ) AT (τ)CT (τ) . . .
(

AT (τ)
)n−1

CT (τ)
]

is full rank over R[τ ]. Furthermore, the triple
(C(·), A(·), B(·)) is said to be controllable and observable if
the pair (A(·), B(·)) is controllable and the pair (C(·), A(·))
is observable.

Lemma 1. Consider the system (6). There exist a uni-

modular transformation matrix T (τ) ∈ R[τ ]
n×n

such that
the transformed system has the following canonical form




ẋco(t)

ẋcō(t)

ẋc̄(t)



 =





Aco(τ) 0 A13(τ)

A21(τ) Acō(τ) A23(τ)

0 0 Ac̄(τ)









xco(t)

xcō(t)

xc̄(t)





+





Bco(τ)

Bcō(τ)

0



 u(t)

y(t) =
[

Cco(τ) 0 Cc̄(τ)
]





xco(t)

xcō(t)

xc̄(t)





where the triple
(

Cco(·), Aco(·), Bco(·)
)

is controllable and
observable. Furthermore, the system (6) is zero-state
equivalent to the system

ẋco(t) = Aco(τ)xco(t) +Bco(τ)u(t)

y(t) = Cco(τ)xco(t)
(9)

which is both controllable and observable.

Proof. See Lee et al. (1982). 2

We will refer to the system (9) as the controllable and ob-
servable part of the system (6). The modes of the rest of the
system, i.e., the roots of det

(

sI − Ācō(s)
)

det
(

sI − Āc̄(s)
)

= 0, will be called structural fixed modes (SFMs) of the
system, where Ācō(s) and Āc̄(s) are respectively obtained
from the operator matrices Acō(τ) and Ac̄(τ) by replac-
ing the operator τ by the function e−hs. Note that, any
SFM is a CFM of the original system (6). Unlike, finite-
dimensional systems, however, the controllable and observ-
able part of the system may still have fixed modes, which
are also CFMs of the original system (6) (Erol (2014)).
Here, these modes will be called unstructural fixed modes
(UFMs).

During the continuous pole placement algorithm, when a
controlled mode approaches to a fixed mode, the sensi-
tivity of the controlled mode with respect to changes in
the controller parameters become considerably small and
this causes very large changes in the controller parameters
even for very small desired displacements for the controlled
modes (Michiels et al. (2002)). This is one of the major
reasons for the failure of the continuous pole placement
algorithm. By using the transformation given in Lemma 1,
SFMs can be separated from the system. Thus, this prob-
lem will be avoided for SFMs by using only the controllable
and observable part in the stabilization algorithm instead
of the whole system. However, it should be noted that,
even if such a decomposition is done, UFMs, if any, may
still cause problem. Presence of a real µ-CFM to the left
of any real controlled mode may result in the failure of the

stabilization algorithm. Because, when only the real parts
of modes are controlled, approach of a real mode to this
µ-CFM would cause sensitivity matrices with considerably
small norms which result in very large changes in the
controller parameters. Also, a similar situation occurs for
any real transmission zero located between µ and any real
controlled mode (Erol (2014)). In the rest of the paper, we
will assume that the controllable and observable part (9)
does not have any µ-CFMs (i.e., the system (6) does not
have any UFMs with real part greater than or equal to µ)
or any real transmission zeros greater than or equal to µ.

Before presenting our algorithm, let us first define

Āeco(s) :=

[

Āco(s) 0
0 0m×m

]

, B̄eco(s) :=

[

B̄co(s) 0
0 Im

]

,

and C̄eco(s) :=

[

C̄co(s) 0
0 Im

]

, where Āco(s), B̄co(s), and

C̄co(s) are respectively obtained from the operator ma-
trices Aco(τ), Bco(τ), and Cco(τ), appearing in (9), by
replacing the operator τ by the function e−hs. Also define

Ke :=

[

K H
G F

]

∈ R(m+p)×(m+q), where F , G, H , and K

are the matrices of the controller defined by (8), which are
structured in a canonical form (e.g., see Chapter 6 of Chen
(1984)) with

m̂ := m(p+ q) + pq (10)

free parameters. Let K̃e ∈ Rm̂ be the vector of the free
parameters, k̃e1, . . . , k̃

e
m̂, of the controller.

The characteristic function of the closed-loop system (ob-
tained by applying the controller (8) to the system (9)) is
then obtained as

φΣ,K(s) = det
[

sI − Āeco(s) − B̄eco(s)K
eC̄eco(s)

]

. (11)

Therefore, finding a controller (8) which µ-stabilizes (9)

is equivalent to finding a K̃e ∈ Rm̂ such that all roots
of φΣ,K(s) = 0 have real parts less than µ. In the sequel
we will refer to the roots of φΣ,K(s) = 0 with Re(s) ≥ µ
as the µ-roots of (11). Now, let si ∈ C be a mode of the
closed-loop system, i.e., φΣ,K(si) = 0. Then

(

siI − Āeco(si) − B̄eco(si)K
eC̄eco(si)

)

vi = 0

N(vi) = 1
(12)

where vi ∈ C
nco+m is a non-zero vector, where nco is the

dimension of xco in (9), and N(·) is a normalizing function,
for example, one can choose N(v) = v∗v. Differentiating

(12) with respect to a component k̃eψ
(

ψ = 1, . . . , m̂
)

of

K̃e, we obtain a linear system of equations as follows

(

siI − Āeco(si) − B̄eco(si)K
eC̄eco(si)

) ∂vi

∂k̃eψ

+

(

I −
∂Āeco(si)

∂si
−
∂B̄eco(si)

∂si
KeC̄eco(si)

−B̄eco(si)K
e ∂C̄

e
co(si)

∂si

)

vi
∂si

∂k̃eψ

−

(

B̄eco(si)
∂Ke

∂k̃eψ
C̄eco(si)

)

vi = 0

and
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(

∂N(vi)

∂vi

)

∂vi

∂k̃eψ
= 0 ,

which represent nco + m + 1 equations in nco + m + 1

unknowns, where the unknowns are
∂si

∂k̃eψ
and the nco +m

components of
∂vi

∂k̃eψ
.

Assume that k ≤ m̂ modes, say s1, . . . , sk, are desired to
be shifted towards the µ-stable region C−

µ . These modes
will be referred to as the controlled modes. Now define the
sensitivity matrix Θk as follows

Θk := [θi,ψ] ∈ C
k×m̂ where θi,ψ :=

∂si

∂k̃eψ
. (13)

Let ∆S̃dk :=
[

∆sd1 . . . ∆sdk
]T

∈ Ck be the desired displace-

ment of the k controlled modes. Assuming that ∆S̃dk is in

the range space of Θk, the corresponding change ∆K̃e for
K̃e can be computed from

Θk∆K̃
e = ∆S̃dk . (14)

We note that ∆S̃dk must be chosen such that all elements of

∆K̃e are real. This is achieved by choosing ∆S̃dk such that
complex-conjugate modes remain as complex-conjugate or
both become real and no real mode becomes a complex
mode unless another real mode becomes its complex-
conjugate. As in Michiels et al. (2002), when rank(Θk) =

k, a solution to (14), with minimal ‖∆K̃e‖, is given by

∆K̃e = Θ†
k∆S̃

d
k , (15)

where Θ†
k is the Moore-Penrose inverse of Θk (Penrose and

Todd (1956)).

Now, we can present the following.

Algorithm 1.

1) Initialize the controller dimension as m = 0.

2) Initialize K̃e = 0m̂×1, where m̂ is as in (10).
3) Compute (e.g., by the method of Wu and Michiels

(2012)) the (µ − ε)-roots of (11) for some ε > 0. If
there are no µ-roots, stop: µ-stability is achieved with
the current K̃e. Otherwise, let η be the real part of
the rightmost root and k be the number of roots with
real part greater than or equal to η − ε (note that
k ≥ 1). If k > m̂, increase m so that k ≤ m̂ and go
to step 2. Otherwise, define the rightmost k roots as
the controlled modes and continue with step 4.

4) Compute the sensitivity matrix, Θk, defined in (13).
Let ρ := rank (Θk).

5) If ρ = k, choose the desired displacement of the k

controlled modes, ∆S̃dk , such that all k controlled

modes move towards C−
µ . Compute ∆K̃e by (15) and

go to step 7.
6) If ρ < k, check if a ∆S̃dk in the range space of Θk

can be chosen so that all k controlled modes move
towards C

−
µ . If so, using this ∆S̃dk , compute a suitable

∆K̃e which satisfies (14) and go to step 7. Otherwise,
increase the controller dimension m by one and go to
step 2.

7) Update K̃e as K̃e + ∆K̃e and go to step 3.

4. PROPOSED DECENTRALIZED CONTROLLER
DESIGN APPROACH

As stated in Section 2, our objective is to design decen-
tralized controllers for the system Σ, described by (1), so
that the closed-loop system is µ-stable. The controllers we
will consider for this purpose are of the form

żj(t) = Fjzj(t) +Gjyj(t)

uj(t) = Hjzj(t) +Kjyj(t)
, (16)

for j = 1, . . . , ν, where zj(t) ∈ R
mj is the state vector of

the jth controller at time t, where mj ∈ N is the dimension
of the jth controller, and Fj ∈ Rmj×mj , Gj ∈ Rmj×qj ,
Hj ∈ Rpj×mj and Kj ∈ Rpj×qj . Note that when mj = 0,
for any j, the controller for the jth control agent reduces
to a static output feedback controller. It was proven by
Momeni et al. (2010) that a decentralized retarded time-
delay system Σ of the form (1) can be µ-stabilized by
decentralized controllers of the form (16) if and only if
Σ has no µ-DFMs.

Now, suppose that decentralized controllers of the form
(16) has been designed for the first r control agents,
where r < ν. Let mr :=

∑r

j=1mj , p
r :=

∑r

j=1 pj , and

qr :=
∑r

j=1 qj . Define

B̂r(τ) := [B1(τ) B2(τ) . . . Br(τ) ] ,

Ĉr(τ) :=
[

CT1 (τ) CT2 (τ) . . . CTr (τ)
]T

,

Âer(τ) :=

[

A(τ) 0
0 0mr×mr

]

, B̂er(τ) :=

[

B̂r(τ) 0
0 Imr

]

,

Ĉer (τ) :=

[

Ĉr(τ) 0
0 Imr

]

,

and K̂e
r :=

[

K̂r Ĥr

Ĝr F̂r

]

∈ R(mr+pr)×(mr+qr), where F̂r :=

bdiag (F1, . . . , Fr), Ĝr := bdiag (G1, . . . , Gr), Ĥr :=

bdiag (H1, . . . , Hr), and K̂r := bdiag (K1, . . . ,Kr). Also

define ξr(t) :=
[

xT (t) zT1 (t) · · · zTr (t)
]T

∈ Rn+mr

.

Then, for the (r+1)th control agent, the resultant system,
with input uk+1 and output yk+1, is described by

ξ̇r(t) =
(

Âer(τ) + B̂er(τ)K̂
e
r Ĉ

e
r (τ)

)

ξr(t)

+

[

Br+1(τ)
0mr×pr+1

]

ur+1(t)

yr+1(t) =
[

Cr+1(t) 0qr+1×mr

]

ξr(t)

(17)

We will denote the above system by Σr. Note that Σ0,
as described above, is same as the system Σ with only
u1 as its input and y1 as its output. Also note that, Σν
denotes the overall closed-loop system with all the control
loops closed. Since Σr, for r = 0, . . . , ν−1, is a centralized
control system, it can be decomposed as in Lemma 1 and
its controllable and observable part can be obtained. We
will denote the controllable and observable part of Σr by
Σcor . Now, we propose the following algorithm to design
decentralized controllers for the system Σ in order to µ-
stabilize it.

Algorithm 2.

1) Fix upper limits, m̄1, . . . , m̄ν , on the dimensions of
the decentralized controllers.
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2) Let r = 0.
3) If Σcor is µ-stable, let mr+1 = 0 and choose a random

non-zero Kr+1 ∈ Rpr+1×qr+1 such that the closed-
loop system obtained by applying the static output
feedback ur+1(t) = Kr+1yr+1(t) to Σcor is µ-stable
(by the continuity of the modes with respect to the
feedback gains, there exists such a Kr+1 - see Momeni
and Aghdam (2008)) and go to step 5. Otherwise,
continue with step 4.

4) Apply Algorithm 1 to Σcor to design a controller of the
form (16) with j = r+1 of dimension not greater than
m̄r+1 to µ-stabilize it. If such a controller can not be
designed, use the last controller with dimension m̄r+1

which moves as many controlled modes as possible
towards C−

µ .
5) If r = ν−1 go to step 6. Otherwise, set r = r+1 and

go to step 3.
6) If the overall closed-loop system Σν is µ-stable, stop:

the desired decentralized controller has been ob-
tained. Otherwise, increase the upper limits, m̄1, . . . ,
m̄ν , and go to step 2.

The above algorithm is an extension of the decentralized
pole assignment algorithm of Davison and Chang (1990) to
the time-delay case, where the continuous pole placement
algorithm of Michiels et al. (2002), as extended in Section
3, is used to design a centralized controller for each control
agent at each step. The reason for choosing upper limits
in step 1 is to avoid using unnecessarily high-dimensional
controllers for the lower indexed control agents. The reason
for applying a static output feedback controller in step 3,
whenever Σcor is µ-stable, is to make sure that any µ-mode
of Σ, which is not a µ-DFM, is a mode of Σcos , for some
s > r (so that it can be eventually moved towards C

−
µ ). As

indicated by Davison and Chang (1990), if such a feedback
loop is not closed, some µ-modes may not appear as the
modes of Σcor for any r, even if they are not µ-DFMs.

Remark. A reviewer for the present paper has indicated
that the results of Ravi et al. (1995) might be useful in
determining the upper limits, m̄1, . . . , m̄ν , in step 1. These
results, however, are valid only for finite-dimensional sys-
tems and it is not apparent how to extend them to
the time-delay case. The same reviewer also questioned
whether, rather than using the approach of Davison and
Chang (1990), it would be possible to use an approach,
such as the one by Stanković et al. (2007), which designs all
the controllers simultaneously. This is of course possible,
but is beyond the scope of the present work.

5. EXAMPLE

Let us consider a LTI retarded time-delay system described
as in (1) with ν = 2, σ = 1, h = h1 = 1,

A0 =







7 9 7 9
0 −1 4 −2

−11 −6 −7 −11
−22 −12 −4 −27






, B1,0 =







−4
−3
2
4






,

A1 =







−4 6 −8 −1
0 4 0 0
5 −3 9 1
10 −6 6 8






, B1,1 =







2
1
−1
−2






,

B2,0 = [ 3 0 −3 −5 ]
T
, B2,1 = [ 1 0 −1 −1 ]

T
,
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Fig. 1. Real parts of the rightmost modes (left) and the
controller parameter (right), as a function of the
iterations, for the first control agent.

C1,0 = [ 0 1 4 −2 ] , C1,1 = [ 1 −1 1 0 ] ,

C2,0 = [ 1 −1 2 −0.5 ] , C2,1 = [ 1 0 0 1 ] .

By using the programs of Wu and Michiels (2012),
for ǫ = 1, we obtain the −ǫ-modes of the system as
Ω−1(Σ) =

{

0.7990, 0.1523,−0.1904 ± 5.4367i,−0.2104 ±

4.8730i,−0.7049 ± 11.3571i
}

. Since the system has two
modes, s1 = 0.7990 and s2 = 0.1523, with non-negative
real parts, the system is not µ-stable for µ = 0. Further-
more, s1 is a CFM for control agent 2 and s2 is a CFM
for control agent 1. Hence, the system is not stabilizable
by any one of the control agents alone. However, neither
s1, nor s2 is a DFM, hence it is possible to µ-stabilize the
system by decentralized feedback. To obtain a stabilizing
decentralized controller, we apply Algorithm 2.

In the first phase, we first obtain the controllable and
observable part, Σco0 , of the system, Σ0, seen by the first
control agent. We note that, although s2 = 0.1523 is a
0-CFM of Σ0, it is a SFM, and hence does not appear
as a mode of Σco0 . The only unstable mode of Σco0 is
s1 = 0.7990. Next, by applying Algorithm 1 to Σco0 , the
following stabilizing controller, with dimension m = 0, is
obtained:

u1(t) = 2.6072 y1(t) . (18)

The progress of the algorithm, i.e., the real parts of
the rightmost modes and the controller parameter as a
function of the iterations, is shown in Fig. 1.

In the second phase, we first close the loop formed by
the first control agent by using controller (18) to obtain
the system Σ1 seen by the second control agent. We then
obtain the controllable and observable part, Σco1 , of this
system. We note that s2 = 0.1523 is the only unstable
mode of both Σ1 and Σco1 . For Σco1 , Algorithm 1 fails
to find a stabilizing controller with dimension m = 0.
Algorithm 1 also fails to find a stabilizing controller, in
the controllable canonical form, with dimension m = 1
and m = 2. However, with m = 3, the controller
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Fig. 2. Real parts of the rightmost modes (left) and the
controller parameters (right), as a function of the
iterations, for the second control agent.

ż2(t) =

[

0 1 0
0 0 1

−0.2440 −0.1796 −0.5940

]

z2(t) +

[

0
0
1

]

y2(t)

u2(t) = [−0.1922 −0.2215 −0.2812 ] z2(t) − 0.0949 y2(t)

(19)

is found to stabilize Σco1 . The progress of the algorithm is
shown in Fig. 2.

The overall closed-loop system, Σ2, following the appli-
cation of the decentralized controllers (18) and (19) to
the original system Σ is then obtained. −1-modes of this
system are computed as Ω−1(Σ2) =

{

−0.05080,−0.06406,
−0.1495,−0.1724,−0.1741 ± 0.6199i,−0.1743 ± 5.4364i,
−0.2897 ± 5.9614i,−0.5837 ± 11.767i,−0.6897 ± 11.355i,
−0.8814± 17.805i

}

. It is seen that the closed-loop system
does not have any modes with non-negative real parts.
Hence, the decentralized controllers (18) and (19) stabilize
the given system.

6. CONCLUSION

Decentralized controller design problem for LTI retarded
commensurate-time-delay systems has been considered.
The only reason we considered the case of commensu-
rate time-delays, rather than the more general case of
incommensurate time-delays, is that the decomposition
presented in Lemma 1 is not possible for the incommen-
surate case in general. If this decomposition is not used,
all the results of the present work directly extends to sys-
tems with incommensurate time-delays. As mentioned in
Section 3, the current work assumes that the controllable
and observable part (9) does not have any µ-CFMs or
any real transmission zeros greater than or equal to µ.
Alternative approaches can, however, be developed (see
Erol (2014)) when this assumption fails. Another possible
line of further research is to consider time-delay (or other
types of infinite-dimensional) controllers instead of finite-
dimensional controllers of the form (8) or (16). Although
a centralized time-delay system of the form (6) can be µ-
stabilized by a time-delay controller if and only if it can be
µ-stabilized by a finite-dimensional controller of the form
(8) (Kamen et al. (1985)) and a decentralized time-delay
system of the form (1) can be µ-stabilized by decentralized

time-delay controllers if and only if it can be µ-stabilized
by finite-dimensional controllers of the form (16) (Erol and

İftar (2013)), as mentioned by Erol and İftar (2013), use
of time-delay controllers may sometimes be advantageous.
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