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Abstract:
This paper considers the problem of attitude synchronization and formation keeping of two
spacecrafts, with a leader. Attitudes of spacecrafts are not measured directly, instead control
torques are determined from the line-of-sight (LOS) vectors between two spacecrafts, and
another set of LOS vectors from a common leader. We provide distributed position and attitude
control laws. Attitude control law is proposed to ensure that the two follower spacecrafts reach
attitude consensus. A formation keeping position control law is also proposed so that desired
distance between two follower spacecrafts and each spacecraft to the leader is achieved. Proposed
position control law uses relative velocities and LOS vectors in the respective body frames of the
two spacecrafts. The state feedback laws proposed in this work guarantee almost semi-global
asymptotic stability of the desired closed-loop equilibrium.

1. INTRODUCTION

Controlling the attitude or the orientation of a satellite is
very important since satellites have equipment that need
to be pointed in desired directions. Spacecraft attitude
dynamics is usually modelled as rigid body dynamics and
can be decoupled from the translation dynamics of the
spacecraft. Even for a single rigid body the control of
attitude dynamics is highly non-linear problem.

Recently, the idea of using multiple satellites cooperatively
working together to achieve a common mission has re-
ceived considerable attention. The main attraction of the
idea is that a group of satellites flying as a formation can
act as one large virtual instrument which will be more
capable and robust than a monolithic satellite. Also build-
ing and deploying multiple small satellites is cheaper than
that of larger single satellite of same combined weight.
Satellites in formation flying missions are however required
to work together, implying that they need to maintain
some relative attitude and position relative to each other.
These precise attitude and position maintenance require-
ments pose new control challenges. Further, constraints
on communication bandwidth render centralized control
almost impossible in real space applications. The focus
of formation flying research is in designing cooperative
control laws for a group of autonomous satellites.

1.1 Related Works

There are many articles in literature that make use of
line-of-sight (LOS) unit vector measurements for relative
navigation or relative orbit determination of spacecraft.
The idea of inertial LOS based cyclic formation control
is proposed in Gurfill et al [2007]. Relative orbit deter-
mination using LOS vectors is considered in Woffinden
et al [2009], to cite a few. The idea of using LOS unit

vectors in body frames to directly control attitude is more
recent. Andrle et al [2009] shows that deterministic relative
attitude determination is possible for a formation of three
spacecrafts. Lee [2012] proposes a control law to asymptot-
ically stabilize relative attitude between two spacecrafts,
making use of LOS observations between them and LOS
observations to a common object. However in Lee [2012]
the relative positions of two spacecraft and the common
object are assumed to be fixed. We consider the combined
problem of attitude synchronization and formation keeping
of two spacecraft and hence the relative positions of space-
craft are not fixed. Warier et al [2013] considers formation
keeping and attitude alignment without the common ob-
ject, but attitude alignment is only along line joining two
spacecrafts. Even after considering combined position and
attitude dynamics, our attitude synchronization is shown
to be independent of position dynamics as long as the three
spacecrafts are not collinear or coinciding.

2. PROBLEM FORMULATION

We consider complete attitude synchronization and for-
mation keeping of two spacecraft making use of LOS
measurements to a leader spacecraft and to each other
in the respective body frames. The reference spacecraft is
assumed to have constant velocity. We describe some of the
mathematical preliminaries in the next section and then
describe the dynamics of the problem considered.

2.1 Mathematical Preliminaries

Attitude of a rigid body represented as a rotational matrix
forms a compact manifold, given by

SO(3) =
{
R ∈ R3×3|R>R = RR> = I, det(R) = 1

}
(1)
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SO(3) forms a Lie group under the group operation matrix
multiplication. Lie algebra of SO(3) is denoted as so(3)
and is given by

so(3) = {S ∈ R3×3 | S = −S>} (2)

Map ∧ : R3 → so(3) denotes the isomorphism from R3 to
so(3). If x = [x1, x2, x3]T , x ∈ R3

x̂ =

[
0 −x3 x2

x3 0 −x1

−x2 x1 0

]
(3)

Further x̂ represents the skew symmetric matrix imple-
menting cross product, i.e. x̂y = x × y, ∀y. Its inverse
is denoted as ∨ : so(3) → R3, implicitly we can define
(x̂)∨ = x. We define a map S : R3×3 → so(3), as

S(A) := A−A>

2 . Now for any A ∈ R3×3, (S(A))∨ is defined.

The following results are useful. Let x ∈ Rn, then we have
2-norm of x is defined as ‖x‖ =

√
x · x

d

dt
‖x‖ =

d

dt

√
x · x =

1

2
√
x · x

2x · ẋ =
x · ẋ
‖x‖

(4)

∀ a1, a2 ∈ R3, and R ∈ SO(3),

a1 · a2 = (Ra1) · (Ra2) (5)

tr() is the trace of a square matrix, defined as sum of its
diagonal elements, ∀A1, A2 ∈ Rn×n

tr(A>1 A2) = tr(A>2 A1) = tr(A1A
>
2 ) (6)

2.2 Dynamics

The attitude of a spacecraft is the orientation of its body
fixed frame with respect to the inertial reference frame.
Equations of motion of the attitudes of i-th spacecraft, for
i = 1, 2 are given by

Ṙi =RiΩ̂i (7)

JiΩ̇i = JiΩi × Ωi + τi (8)

where Ji ∈ R3×3 is the moment of inertia, Ωi ∈ R3 the
angular velocity, and τi ∈ R3 the control torque in of i-th
spacecraft in its body fixed frame.

Translational dynamics of centre of mass of the spacecraft
is assumed to be double integrator dynamics. For the i-th
spacecraft we have

miṙi =mivi (9)

miv̇i = fi (10)

where mi ∈ R, mi > 0, is the mass of the spacecraft
and ri, vi ∈ R3 are the position and the velocity of the
spacecraft in the inertial frame. fi ∈ R3 is the force applied
on the i-th spacecraft represented in the inertial frame. We
take

ui =
fi
mi

(11)

where ui ∈ R3 represents the translation control input for
the spacecraft in the inertial frame And the dynamics of
the reference spacecraft is given by

ṙ3 = v3 (12)

v̇3 = 0 (13)

2.3 Measured Variables

We assume that the spacecrafts lack a common frame of
reference and do not make any absolute measurements.
The spacecrafts 1 and 2 make relative measurements be-
tween each other and to the leader, about their body fixed
frames, and communicate the same to each other. Leader
does not communicate with the follower spacecrafts.

Let (i, j) ∈
{

(1, 2), (2, 1), (1, 3), (2, 3)
}

. We denote the line
of sight unit vector observed from the i-th spacecraft to
the j-th spacecraft and represented in the inertial frame
as sij . This is given by

sij =
(rj − ri)
‖(rj − ri)‖

(14)

Measurements are however made in each spacecraft’s own
body frame. We define lij as the line of sight unit vector
observed from the i-th spacecraft to the j-th spacecraft,
represented in the i-th body fixed frame. This is given by

lij = R>i sij = R>i
(rj − ri)
‖(rj − ri)‖

(15)

In addition to LOS unit vectors each spacecraft measures
relative velocity with respect to each other and with
respect to the leader. We define vij as relative velocity
of the j-th spacecraft observed from the i-th spacecraft
given by

vij = R>i (vj − vi) (16)
Distance between i-th and j-th spacecraft is given by

dij = ‖rj − ri‖ (17)

2.4 Control Objectives

We consider two spacecrafts with dynamics given in (7)-
(10) along with leader spacecraft dynamics given by (12)-
(13) which are able to communicate LOS unit vectors with
each other. The control objectives are to achieve,

(1) Formation Keeping ‖r1 − r2‖ = ds12, ‖r1 − r3‖ = ds13
and ‖r3 − r2‖ = ds23, where ds12, ds13 and ds23 are the
desired distances between the three spacecrafts.

(2) Velocity synchronization, v1 = v2 = v3

(3) Attitude synchronization R1 = R2, and Ω1 = Ω2 = 0

asymptotically. The control problem is considered under
the following assumptions,

(A1) The centre of masses of the three spacecraft are not
collinear or coinciding (r2(t)−r1(t))×(r3(t)−r2(t)) 6=
[0 0 0]>, ∀t > 0.

(A2) The desired distances between spacecraft, ds12, ds13
and ds23 are feasible for a triangle i.e. satisfies the
triangle inequalities.

ds12 < ds13 +ds23 ds13 < ds12 +ds23 ds23 < ds12 +ds13 (18)

3. RELATIVE ATTITUDE DETERMINATION

We make use of LOS vectors measured in respective body
frames, l12, l21, l13 and l23 to determine relative attitude.
We refer to Wertz [1978].

l123 :=
(l12 × l13)

‖l12 × l13‖
=
R>1
(
(r2 − r1)× (r3 − r1)

)
‖(r2 − r1)× (r3 − r2)‖

(19)

l213 :=
(l21 × l23)

‖l21 × l23‖
=
R>2
(
(r1 − r2)× (r3 − r2)

)
‖(r1 − r2)× (r3 − r2)‖

(20)
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In addition we have

(r2 − r1)× (r3 − r1) = (r2 − r3 + r3 − r1)× (r3 − r1)

= (r3 − r1)× (r3 − r2)

(r1 − r2)× (r3 − r2) = (r1 − r3 + r3 − r2)× (r3 − r2)

= −(r3 − r1)× (r3 − r2)

Since spacecrafts are assumed to be non collinear, we have
(r3 − r1) × (r3 − r2) 6= [0 0 0]> and l123 and l213 are

well defined. If we define s123 = (r3−r1)×(r3−r2)
‖(r3−r1)×(r3−r2)‖ , then

l123 = R>1 (s123) and l213 = −R>2 (s123), Observe that
s123 = s12 × s13.

Construct a matrix with unit vectors l12, l123 and l12× l123

as the column vectors.

P1 := [l12 (l123) (l12 × l123)]

=
[
R>1 s12 R

>
1 (s123)R>1 (s12 × s123)

]
=R>1 [s12 (s123) (s12 × s123)] (21)

Similarly we can construct a matrix with unit vectors l21,
l213 and (l21 × l213) as the column vectors

P2 := [l21 (l213) (l213)× l21]

=−
[
R>2 s12 R

>
2 (s123)R>2 (s12 × s123)

]
=−R>2 [s12 (s123) (s12 × s123)] (22)

Note that columns vectors of both P1 and P2 form orthog-
onal bases, and thus P1 and P2 are orthogonal matrices.
We get

[s12 (s123) (s12 × s123)] =−R2P2 = R1P1 (23)

We can determine the relative attitude Q := R>1 R2 using
(23), to be

Q = R>1 R2 = −P1P
>
2 (24)

The attitude determination scheme is not explicitly used
in the control law. We make use of the scheme to show that
our control law indeed obtains attitude synchronization.

4. ERROR FUNCTIONS

We make use of error functions to design the control law.
Error functions are chosen such that minimizing of error
functions will achieve the control objectives.

4.1 Attitude Error Function

Trace and modified trace functions are very commonly
used in attitude control design. Some examples from
the literature include Chaturvedi et al. [2011], Sarlette
et al. [2009] and Nair et al [2007]. For R1, R2 ∈ SO(3),
tr(R>1 R2) = 1+2 cos(θ), where θ is the angle of single axis
rotation between R1 and R2. tr(RT1 R2) obtains maximum
value when orientation of both satellites are identical, i.e.
R1 = R2. Let

Ψ1(R1, R2) := tr(I −R>1 R2) (25)

The derivative of Ψ1 turns out to be,

dΨ1

dt
=− 2(S(R>1 R2))∨ · Ω1 − 2(S(R>2 R1))∨ · Ω2 (26)

The proof is available in Sarlette [2009b]. The critical
points of function Ψ1 are obtained by solving

(S(R>1 R2))∨ = 0 (27)

which implies (R>1 R2)> = (R>1 R2), both matrices orthog-
onal (with determinant +1) and symmetric, which gives
us that

R>1 R2 ∈ {I, diag[1,−1,−1], diag[−1,−1, 1],

diag[−1, 1,−1]}
Also observe that at I, the trace function is at its minimum
and at other critical points it achieves the maximum value
of 4.

It is interesting to see Ψ1 in terms of the attitude determi-
nation scheme (24)

Ψ1 =tr(I −R>1 R2) = 3 + tr(P1P
>
2 ) = 3 + tr(P>1 P2)

=3 + l12 · l21 + l123 · l213 − (l12 × l123) · (l21 × l213)

=(1 + l12 · l21) + (1 + l123 · l213)

+ (1− (l12 × l123) · (l21 × l213))

Expression of Ψ1 is obtained in terms of LOS unit vectors.
This is desirable for controlling attitude using LOS unit
vectors. In Warier et al [2013], the attitude alignment
error function is (1 + l12 · l21). In Lee [2012], the error
functions used are of linear combination of (1 + l12 · l21)
and (1 + l123 · l213). It can be seen that our expression has
additional term compared to Lee [2012].

4.2 Distance error function

We define a distance error functions of the form

Ψd12 =
1

2
(‖r1 − r2‖ − ds12)

2
(28)

Ψd13 =
1

2
(‖r1 − r3‖ − ds13)

2
(29)

Ψd23 =
1

2
(‖r2 − r3‖ − ds23)

2
(30)

We can see that the derivatives of the distance error
function are,

Ψ̇d12 =
(d12 − ds12)

2

(
l12 · v12 + l21 · v21

)
(31)

Ψ̇d13 = (d13 − ds13)
(
l13 · v13

)
(32)

Ψ̇d23 = (d23 − ds23)
(
l23 · v23

)
(33)

(4) was used to get the expressions.

4.3 Velocity synchronisation error function

We define a velocity synchronization error function

Ψv(v1, v2, v3) =
1

2

(
‖v3 − v1‖2 + ‖v3 − v2‖2

)
(34)

with derivative

Ψ̇v = −(v3 − v1) · (u1)− (v3 − v2) · (u2) (35)

= −(v13) · (R>1 u1)− (v23) · (R>2 u2) (36)

5. COMBINED ATTITUDE AND POSITION
CONTROL

Lemma 1. Let A,B ∈ R3×3, Then(
2S(AB>)

)∨
= (AB>−BA>)∨ = −(a×x)−(b×y)−(c×z)

(37)
where a, b, c are column vectors of A and x, y, z column
vectors of B.
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Proof. Let Γ = (AB> − BA>). Clearly Γ is skew sym-
metric, thus has diagonal elements zero. Non diagonal
elements of Γ are obtained to be

(Γ)12 =(a1x2 − a2x1) + (b1y2 − b2y1)

+ (c1z2 − c2z1) (38)

(Γ)13 =(a1x3 − a3x1) + (b1y3 − b3y1)

+ (c1z3 − c3z1) (39)

(Γ)23 =(a2x3 − a3x2) + (b2y3 − b3y2)

+ (c2z3 − c3z2) (40)

And by definition of ∨ map we have

(Γ)∨ =

[−(Γ)23

(Γ)13

−(Γ)12

]
(41)

Now notice the standard expression of vector product
given by, [

a1

a2

a3

]
×

[
x1

x2

x3

]
=

[
a2x3 − a3x2

−(a1x3 − a3x1)
a1x2 − a2x1

]
(42)

Substituting (38)-(40) in (41) and comparing terms with
(42), the identity (37) is evident. 2

5.1 Control Law

τ1 =− kΩ1Ω1 + k1
γ

(
l12 × l21 + l123 × l213

)
− k1

γ

(
(l12 × l123)× (l21 × l213)

)
(43)

τ2 =− kΩ2Ω2 + k1
γ

(
l21 × l12 + l213 × l123

)
− k1

γ

(
(l21 × l213)× (l12 × l123)

)
(44)

R>1 u1 =kv1v13 + kd1(d12 − ds12)l12 + kd2(d13 − ds13)l13

(45)

R>2 u2 =kv2v23 + kd1(d12 − ds12)l21 + kd3(d23 − ds23)l23

(46)

where the control gains

kΩ1
, kΩ2

, kv1 , kv2 , k1, kd1 , kd2 , kd3 , γ > 0

Here γ is chosen depending on initial conditions so as to
ensure asymptotic convergence to the desired equilibrium
as follows

4k1 − k1Ψ1(0) < γ(

2∑
i=1

λmaxi
(Ji) ‖Ωi(0)‖2 + Ψv(0))

+ γ(kd1Ψ
d
12(0) + kd2Ψ

d
13(0) + kd3Ψ

d
23(0)) (47)

Since we assume that the two spacecraft have no access to
inertial coordinates, the control needs to be expressed in
the local frame. Position control input ui expressed in i-th
spacecraft’s body frame is R>i ui.

5.2 Stability Results

Proposition 2. Consider the system dynamics given by
(7)-(10) under the assumptions (A1)-(A2) and control law
given by (43)-(46), with γ satisfying (47)

(i) The system has two equilibrium configurations.

M1 = {(R1,Ω1, R2,Ω2, r1, r2, v1, v2)|R1 = R2,

Ω1 = Ω2 = 0, v1 = v2 = v3, ‖r1 − r2‖ = ds12

‖r1 − r3‖ = ds13, ‖r2 − r3‖ = ds23}
M2 = {(R1,Ω1, R2,Ω2, r1, r2, v1, v2)|R>1 R2 ∈ N ,

Ω1 = Ω2 = 0, v1 = v2 = v3, ‖r1 − r2‖ = ds12,

‖r1 − r3‖ = ds13, ‖r2 − r3‖ = ds23}
where

N = {diag[1,−1,−1],diag[−1,−1, 1],diag[−1, 1,−1]}
and M1,M2 ∈ TSO(3)× TSO(3)× R12

(ii) Desired equilibrium configuration M1 is asymptoti-
cally stable and a conservative region of attraction
of M1 is almost semi global, i.e. region of attraction
of M1 can be increased to include the entire space,
except the undesirable equilibrium configurations

(iii) Undesired equilibrium configuration M2 is unstable

Proof. We make use of the La Salle’s invariance principle
and Chetaev’s instability theorem for the proof. We define
new variables

X := R>1 R2 (48)

ξ1 := r3 − r1 ξ2 = r3 − r2 (49)

ζ1 := v3 − v1 ζ2 = v3 − v2 (50)

Under new variables (X ,Ω1,Ω2, ξ1, ζ1, ξ2, ζ2), the system
dynamics can be written as

Ẋ =X Ω̂2 − Ω̂1X (51)

JiΩ̇i = JiΩi × Ωi + τi (52)

ξ̇i = ζi (53)

ζ̇i =−ui (54)

where i = 1, 2.

(i) Consider the Lyapunov like function consisting of Ψ1,
Ψd12, Ψd13, Ψd23 and Ψv.

V =k1Ψ1 +
γ

2
Ω1 · (J1Ω1) +

γ

2
Ω2 · (J2Ω2)

+ γkd1Ψ
d
12 + γkd2Ψ

d
13 + γkd3Ψ

d
23 + γΨv

In terms of changed variables we have

V =k1tr(I −X ) +
γ

2
Ω1 · (J1Ω1) +

γ

2
Ω1 · (J2Ω2)

+
γkd1

2 (‖ξ1 − ξ2‖ − ds12)2 +
γkd2

2 (‖ξ1‖ − ds13)2

+
γkd3

2 (‖ξ2‖ − ds23)2 + γ
2 (‖ζ1‖2 + ‖ζ2‖2)

Clearly V ≥ 0, and V = 0 only when the desired
control objectives are satisfied. V is positive definite
with respect to variables I − X , Ω1, Ω2, ‖ξ1‖ − ds13,
‖ξ2‖ − ds23, ‖ξ1 − ξ2‖ − ds12, ‖ζ1‖ and ‖ζ2‖.
X = I, i.e. ,R1 = R2, Ω1 = Ω2 = 0, (55)

‖r3 − r1‖ = ‖ξ1‖ = ds13 (56)

‖r3 − r2‖ = ‖ξ2‖ = ds23 (57)

‖r1 − r2‖ = ‖ξ1 − ξ2‖ = ds12, ζ1 = ζ2 = 0 (58)

If the changed variables (X ,Ω1,Ω2, ξ1, ζ1, ξ2, ζ2) satis-
fy conditions (55)-(58), we have the original variables
(R1,Ω1, R2,Ω2, r1, v1, r2, v2) ∈ M1. Now taking the
derivative we have,

V̇ = k1Ψ̇1 + γΩ1 · τ1 + γΩ2 · τ2 +

+γkd1 Ψ̇
d
12 + γkd2 Ψ̇

d
13 + γkd3 Ψ̇

d
23 + γΨ̇v
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Substituting derivatives of error functions,

V̇ =− 2k1(S(R>1 R2))∨ · Ω1 − 2k1(S(R>2 R1))∨ · Ω2

+ γΩ1 · τ1 + γΩ2 · τ2 +
kd1γ(d12−ds12)

2

(
l12 · v12

)
+ kd1γ

(d12 − ds12)

2

(
l21 · v21

)
+ kd2γ(d13 − ds13)

(
l13 · v13

)
+ kd3γ(d23 − ds23)

(
l23 · v23

)
− γ(v13) · (R>1 u1)− γ(v23) · (R>2 u2)

By the attitude determination scheme, Q =
−P1P

>
2 = R>1 R2. Now making use of (37), we have

(2S(R>1 R2))∨ =(−l12 × l21 − l123 × l213)

+ (l12 × l123)× (l21 × l213) (59)

Substituting control terms from (43)-(46) and using
(59) we obtain,

V̇ =− γ
(
kΩ1
‖Ω1‖2 + kΩ2

‖Ω2‖2 + kv1 ‖v13‖2

+ kv2 ‖v23‖2
)

Thus we have

V̇ ≤ 0

V is bounded from below and V̇ ≤ 0, which implies
that lim

t→∞
V(t) exists by monotonicity. To apply La

Salle’s invariance principle, we construct

K=
{

(X ,Ω1,Ω2, ξ1, ξ2, ζ1, ζ2) ∈ SO(3)× R6 × R12|

V(X ,Ω1,Ω2, ξ1, ξ2, ζ1, ζ2) ≤

V(X (0),Ω1(0),Ω2(0), ξ1(0), ξ2(0), ζ1(0), ζ2(0))
}

K forms a compact invariant set in SO(3) × R6 ×
R12. Now by La Salle’s invariance principle, system
dynamics converge asymptotically to the largest pos-
itively invariant set in subset of K where V̇ = 0.

V̇−1(0) = {(X , 0, 0, ξ1, ξ2, 0, 0) ∈ K} (60)

Largest invariant set in V̇−1(0), can be calculated by
equating the control inputs to be zero. For the torque
inputs, we find that torque terms vanish at the critical
points of Ψ1. This gives us X ∈ N

⋃
{I}. Now from

the position control equations we have

kd1(d12 − ds12)l12 + kd2(d13 − ds13)l13 = 0

Since the three spacecraft are assumed to be non-
collinear at all times, l13 and l12 are linearly indepen-
dent. Hence we get that d12 − ds12 = 0, and d13 −
ds13 = 0. That is d12 = ds12 and d13 = ds13.

kd1(d12 − ds12)l21 + kd2(d23 − ds23)l23 = 0

We already have d12 − ds12 = 0, and now we have

d23 = ds23. Thus the largest invariant set in V̇−1(0) is
given by

M̄ ={(X ,Ω1,Ω2, ξ1, ξ2, ζ1, ζ2) ∈ SO(3)× R6 × R12|
X ∈ I ∪N , ζ1 = ζ2 = 0, Ω1 = Ω2 = 0,

‖ξ1‖ = ds13, ‖ξ2‖ = ds23, ‖ξ1 − ξ2‖ = ds12}
(61)

From (48)-(50), we can see that if transformed vari-
ables converges to asymptotically to M̄, the original
dynamics converges to M1 ∪M2.

(ii) For all the undesired equilibrium conditions, we have
Ψ1 = 4. The value of γ is chosen so that

V(0) ≤ 4k1 (62)

Since V̇ ≤ 0, we have

0 ≤ V(t) < V(0) < 4k1 (63)

This guarantees that the undesired equilibrium con-
figuration is avoided and system dynamics converge
to desired configurationM1. As γ → 0, our region of
attraction increases to include almost the entire state
space with almost semi-global convergence to M1.

(iii) Define
W = 4k1 − V (64)

At the undesired configuration M2, we have W = 0.
Now we can choose an arbitrarily close region to
M2 where Ω1 or Ω2 6= 0 and the function W >
0. Now Ẇ = −V̇ > 0 (strictly greater than zero
because we chose Ω1 or Ω2 6= 0). Thus there exists at
any arbitrarily small neighbourhood of the undesired
equilibrium, a solution trajectory that will escape,
which gives that undesired equilibrium is unstable
(Khalil [1996], Theorem 3.3). 2

6. SIMULATION RESULTS

Numerical simulations are carried out with following initial
conditions. Moments of inertia of the two spacecraft are
taken to be J1 = J2 = diag[2, 3, 5]Nm2. Let a =

1√
14

[1, 2, 3]>, and à = 1√
3
[1, 1, −1]>.

(a) Distance between the space-
crafts d12, d13 and d23 with time

(b) Norm square of velocity er-
rors ‖v1 − v3‖2 and ‖v2 − v3‖2

(c) Attitude alignment error
function, Ψ1 with time

Fig. 1. Distance , velocity errors, Ψ1, with respect to time.

Initial conditions are chosen to be close to undesired equi-
librium configuration M2. Leader spacecraft is assumed
to be at origin initially, r3(0) = [0 0 0]>, with velocity
v3(0) = 5√

34
[3, 3, 4]>. For spacecraft 1, r1(0) = r3(0) + 4à,

v1(0) = 5√
98

[3, 5, 8]> m/s, R1(0) = exp(πâ), Ω1(0) =

[2, −0.1, 0.5]> rad/s,where exp is the matrix exponential.
Initial conditions for spacecraft 2, r2(0) = r3(0) + 4(a),
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(a) Torque Input for spacecraft
1

(b) Torque Input for spacecraft
2

Fig. 2. The torque inputs applied to the two spacecraft.
(First component: dotted, second component: dashed,
third component: solid)

(a) Position Control Input for
spacecraft 1

(b) Position Control Input for
spacecraft 2

Fig. 3. The position control inputs applied to the two
spacecraft. (First component: dotted, second compo-
nent: dashed, third component: solid)

v2(0) = 5√
161

[−5, 5, 11]> m/s, Ω2(0) = [1, 0.7, 0.3]> rad/s

and R2(0) = exp(0.99πˆ̀a).

The desired distances be ds12 = 5m, ds13 = 4m, and ds23 =
3m. The control gains are chosen to be kΩ1 = kΩ2 = 3,
kv1 = kv2 = 0.6, k1 = 0.7, kd1 = kd2 = kd3 = 1, and
γ = 1

12 .

Figures in (1) shows distance between satellites achieving
desired values and velocity and attitude synchronisation
error going to zero. The control inputs are shown in figures
(2). Figure (3) shows position control inputs applied to the
spacecraft 1 and spacecraft 2.

7. CONCLUSION

In this paper a new combined attitude position control
law that achieves attitude synchronization and formation
keeping using LOS measurements is proposed. By com-
bining a classical attitude determination scheme and more
recent geometric control results, we have improved upon
the result by Lee [2012]. The attitude control law obtained
in terms of LOS vectors shows synchronization even in
presence of position dynamics. The proposed attitude and
position control scheme is proven to asymptotically sta-
bilize the desired equilibrium configuration almost semi-
globally.

This result can be extended in several ways. The control
can be easily modified to achieve any given relative atti-
tude between the two spacecrafts. The collinearity assump-
tion on the spacecraft positions requires more rigorous
analysis which will be pursued as part of a future work.
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