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Abstract: This paper deals with a framework of model order reduction for high-order para-
metric, linear systems. A set of low-order nonparametric systems with different reduced orders
is computed for sample points. Then, two approaches are presented applying pseudoinverses
for the introduction of generalized coordinates. Finally, a reduced system for a new parameter
value is obtained by interpolating differently sized system matrices. The paper extends current
methods to the general case where the local systems have different reduced orders.
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1. INTRODUCTION

Large-scale systems of ordinary differential equations can
arise when dynamical systems are to be modeled accu-
rately. However, the application of high-dimensional sys-
tems to optimization, simulation or control fails owing
to the high numerical effort. Therefore, the high-order
systems have to be approximated by low-order systems by
using methods of model order reduction, see e.g. Antoulas
(2005). If the models additionally depend on parameters,
for example geometry parameters, parametric model order
reduction (pMOR) is applied to reduce the order of the
large-scale system. Then, the reduced model still possesses
the parameter dependencies so that, if a low-order system
is to be computed for a new parameter value, the original
system does not have to be reduced again.

Besides other methods for pMOR, interpolation based
methods were suggested in the literature. They interpo-
late between a discrete set of low-order systems which
are obtained by reducing the original system at differ-
ent parameter vectors. The reduced systems can have
different reduced orders which can e.g. arise if low-order
models of similar accuracy for each sampling point are
to be calculated. This can be the case for Truncated
Balanced Realization with the same error bound for ev-
ery discrete system. Another occasion is when systems
shall be more accurate for some parameter values than
for others. The interpolation of the transfer functions of
the locally reduced systems was proposed in Baur, and
Benner (2009). This procedure allows to interpolate local
systems which have different reduced orders. Then, the
order of the interpolated system is the sum of the orders of
the local systems. Another possibility is the interpolation
? The authors thank the German Research Foundation (DFG) for
supporting this work.

of the system matrices of locally reduced models which
was proposed in Panzer et al. (2010); Degroote et al.
(2010); Amsallem, and Farhat (2011); Geuss et al. (2013).
However, the interpolation is so far only possible if the
system matrices have the same size. Hence, the method
currently has the constraint that the local systems share
the same reduced order. We extend the current methods of
pMOR by matrix interpolation to the general case where
the local systems have different reduced orders. In Sec-
tion 2 preliminaries are presented. The method of pMOR
by matrix interpolation with differently sized local systems
is proposed in Section 3. Numerical results are shown in
Section 4, followed by conclusions in Section 5.

2. PRELIMINARIES

2.1 Linear time-invariant dynamical systems

In this paper, we consider the linear time-invariant (LTI),
parameter-dependent system G(p) in descriptor form:

G(p) :

{
E(p)ẋ(t) = A(p)x(t) + B(p)u(t),

y(t) = C(p)x(t),
(1)

where E(p) ∈ Rn×n, A(p) ∈ Rn×n, B(p) ∈ Rn×r, and
C(p) ∈ Rm×n are the system matrices which depend on
the vector of parameters p ∈ D with parameter domain
D ⊂ Rd. Vectors u(t) ∈ Rr, y(t) ∈ Rm, and x(t) ∈ Rn

denote inputs, outputs, and states of the system at time t.
In this paper, system G(p) will be computed for k values of
parameter vector pi with i = 1, . . . , k, where Gi := G(pi).

2.2 Projection-based model order reduction

Consider a high-dimensional system Gi. It shall be ap-
proximated by a low-dimensional system of order qi � n
using Petrov-Galerkin projection. The projection matrices
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Vi := V(pi) ∈ Rn×qi and Wi := W(pi) ∈ Rn×qi are
suitably chosen. They are referred to as right and left
reduced order bases (ROBs) and span the right subspace
Vi := V(pi) and left subspace Wi := W(pi). This leads
with xi(t) ≈ Vixr,i(t) to the reduced order model:

Gr,i :

{
Er,iẋr,i(t) = Ar,ixr,i(t) + Br,iu(t),

yr,i(t) = Cr,ixr,i(t),
(2)

where xr,i(t) ∈ Rqi is the reduced state vector and

Er,i = WT
i EiVi,

Ar,i = WT
i AiVi,

Br,i = WT
i Bi,

Cr,i = CiVi.

(3)

For detailed information on projection-based reduction
methods, e.g. Krylov subspace methods, Truncated Bal-
anced Realization (TBR) or Proper Orthogonal Decom-
position (POD), please refer to Antoulas (2005) and refer-
ences therein.

2.3 Pseudoinverse

As we will employ the pseudoinverse as introduced by
Moore (1920), Bjerhammar (1951), and Penrose (1955) in
this paper, the nomenclature is introduced in this section.
Consider a matrix Q ∈ Ra×b. If its columns are linearly
independent for a ≥ b, the left inverse Q(l)+ ∈ Rb×a with
Q(l)+Q = I is denoted with:

Q(l)+ = (QTQ)−1QT . (4)

If matrix Q has linearly independent rows for a ≤ b, the
right inverse Q(r)+ ∈ Rb×a with QQ(r)+ = I is:

Q(r)+ = QT (QQT )−1. (5)

For the calculation of the pseudoinverse there exists a
numerically more efficient approach using Singular Value
Decomposition (SVD), see Shinozaki et al. (1972). It
calculates the SVD of Q = UΣZT , where Σ is a diagonal
matrix containing the singular values. Then Σ(r/l)+ is the
transpose of Σ with reciprocal singular values leading to
the (right/left) pseudoinverse Q(r/l)+:

Q(r/l)+ = ZΣ(r/l)+UT . (6)

In this paper we use formula (6) for the calculation of the
pseudoinverse. One application of the pseudoinverse is the
solution of the matrix equality:

QX = Y, (7)

with X ∈ Rb×o,Y ∈ Ra×o. A solution exists for ma-
trix equation (7) if and only if the Penrose condition
QQ(r/l)+Y = Y is fulfilled, see Penrose (1955). Then, the
solution with minimal ‖X‖F is X = Q(r/l)+Y, where ‖·‖F
denotes the Frobnius norm. According to Penrose (1956),
if the Penrose condition is not fulfilled, X = Q(r/l)+Y is an
approximate solution of equation (7) with minimal ‖X‖F
in the sense of the method of least squares minimizing the
optimization problem:

X = arg min
X∈Rb×o

‖QX−Y‖F . (8)

2.4 Problem formulation

Assume a set of k low-order systems Gr,i with differ-
ent reduced orders qi with i = 1, . . . , k. Let p̃ ∈ D

be a value in the parameter domain. Then, the aim is
to find a low-order system Gr(p̃) with system matrices
Er(p̃),Ar(p̃),Br(p̃),Cr(p̃) at p̃ ∈ D approximating the
high-order system G(p̃) by interpolating differently sized
system matrices Er,i,Ar,i,Br,i,Cr,i of systems Gr,i.

3. MAIN RESULTS

In this section pMOR by interpolating system matrices is
presented where reduced systems at sampling points have
different orders. The following approach is based on the
six step procedure from Geuss et al. (2013) but generalizes
it to differently sized local models. We introduce two ap-
proaches for generalized coordinates with pseudoinverses.

3.1 Sampling of the parameter space

The parameter space is sampled for k vectors pi ∈ D
with i = 1, . . . , k. The original systems are computed at
the sampling points pi which gives a set of k high-order
systems Gi := G(pi) with i = 1, . . . , k.

3.2 Reduction of the local systems

Every local system Gi is reduced to an individual re-
duced order qi � n applying an arbitrary projection-
based reduction method according to Section 2.2. Thereby
proper subspaces Vi and Wi are calculated which are
spanned by Vi ∈ Rn×qi and Wi ∈ Rn×qi with linearly
independent columns, respectively. This leads to a set
of reduced systems Gr,i with different reduced orders qi,
where i = 1, . . . , k.

3.3 Adjustment of the right ROBs

As projection matrices Vi ∈ Rn×qi of systems Gr,i do
not span the same subspace, the reduced systems have to
be expressed in a set of generalized coordinates x̂r,i(t) ∈
Rq0 with respect to a reference subspace spanned by the
columns of RV ∈ Rn×q0 . Generalized coordinates are
introduced by state transformations xr,i(t) = Tix̂r,i(t)
with Ti ∈ Rqi×q0 . This is equivalent to changing the right
ROBs of systems Gr,i to V̂i = ViTi ∈ Rn×q0 so that the

right ROBs V̂i and the basis of the reference subspace
RV have a good correlation. We propose two approaches
for evaluating the correlation of the basis vectors: a MAC
approach and an equality approach:

3.3.1 MAC approach: The correlation between two vec-
tors can be evaluated by the Modal Assurance Criterion
(MAC), see Ewins (2000). We now demand that the cor-

responding vectors of V̂i and RV are in good correlation
with respect to the MAC. The maximal value of the MAC
is 1, which corresponds to the best correlation, and the
minimal value is 0. We define the MAC between the j-th
vector of RV and the l-th vector of V̂i as follows:

MAC(RV (:, j), V̂i(:, l)) = |RV (:, j)T V̂i(:, l)|2. (9)

Then, diagonal elements of matrix MAC = RT
VV̂i de-

scribe the square roots of the MACs between the cor-
responding vectors of V̂i and RV and off-diagonal ele-
ments describe the square roots of the MACs between the
non-corresponding vectors. Hence, we want the diagonal
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elements of RT
VV̂i to be maximal and the off-diagonal

elements to be minimal by a proper choice of Ti:

MAC(RV, V̂i) = RT
VV̂i = RT

VViTi ≈ I. (10)

Let the reference subspace spanned by the columns of
RV ∈ Rn×q0 first be given. It is chosen in such a way
that matrix RT

VVi has linearly independent rows for the
case qi ≥ q0 and accordingly linearly independent columns
for the case qi ≤ q0. Then, for every local system Gr,i there
exist three cases to solve formula (10) which depend on the
reduced order qi of the local system compared to the size
q0 of the reference subspace:

• Case 1: qi > q0

Consider the following proposition.

Proposition 1. If qi > q0 holds, the Penrose condition is
fulfilled for formula (10).

Proof. As matrix RT
VVi ∈ Rq0×qi has linearly indepen-

dent rows, its pseudoinverse is (RT
VVi)

(r)+ according to
formula (5). Then, the Penrose condition is fulfilled:

(RT
VVi)(R

T
VVi)

(r)+︸ ︷︷ ︸
I

I = I.

2

Therefore, a solution exists for matrix equation according
to Section 2.3:

MAC(RV, V̂i) = RT
VV̂i = RT

VViTi
!
= I. (11)

One can see that a solution with minimal ‖Ti‖F is
obtained when the right pseudoinverse is used:

Ti = (RT
VVi)

(r)+ ∈ Rqi×q0 . (12)

Then, the new right ROB of system Gr,i is:

V̂i = ViTi = Vi(R
T
VVi)

(r)+

= Vi(R
T
VVi)

T
[
RT

VVi(R
T
VVi)

T
]−1

= ViV
T
i RV

[
RT

VViV
T
i RV

]−1
.

(13)

With orthogonal RV and hence RT
VRV = I one gets:

V̂i = ViV
T
i RV

[
RT

VViV
T
i RV

]−1
RT

VRV. (14)

How can the new right ROB be interpreted? Let us define
V∗i = ViV

T
i RV ∈ Rn×q0 to get:

V̂i = V∗i (RT
VV∗i )−1RT

V︸ ︷︷ ︸
PV∗

i
⊥RV

RV ∈ Rn×q0 ,
(15)

where PV∗
i
⊥RV

is a projector which projects the columns
of RV orthogonally to the subspace spanned by RV into
the subspace V∗i spanned by V∗i . Therefore, we get a
new reduced system G∗r,i with reduced order q0 < qi and
subspace V∗i . Consider the proposition:

Proposition 2. Formula (12) is equivalent to reducing sys-
tem Gi to G∗r,i with subspace spanned by V∗i = ViV

T
i RV

and using T∗i = (RT
VV∗i )−1 from Panzer et al. (2010).

Proof. Calculate T∗i according to Panzer et al. (2010):

T∗i = (RT
VV∗i )−1 = (RT

VViV
T
i RV)−1.

Determine the new right ROB for system G∗r,i:

V̂i = V∗i T
∗
i = ViV

T
i RV

[
RT

VViV
T
i RV

]−1
,

which is the result from (13). 2

• Case 2: qi = q0

For this case consider the following proposition.

Proposition 3. If qi = q0 holds, the choice Ti = (RT
VVi)

−1

from Panzer et al. (2010) is a special case of formula (12).

Proof. With qi = q0 we get for formula (12):

Ti = (RT
VVi)

(r)+ = (RT
VVi)

T
[
RT

VVi(R
T
VVi)

T
]−1

= (RT
VVi)

T (RT
VVi)

−T (RT
VVi)

−1

= (RT
VVi)

−1.
2

Then, the new right ROB of system Gr,i is obtained by
projecting the columns of RV into subspace Vi orthogo-
nally to the subspace spanned by RV:

V̂i = ViTi = Vi(R
T
VVi)

−1

= Vi(R
T
VVi)

−1RT
V︸ ︷︷ ︸

PVi⊥RV

RV, (16)

where PVi⊥Ri
is a projector.

• Case 3: qi < q0

As matrix RT
VVi ∈ Rq0×qi has more rows than columns,

the Penrose condition is generally not fulfilled. Hence, we
formulate for expression (10) the optimization problem:

Ti = arg min
Ti∈Rqi×q0

‖RT
VViTi − I‖F . (17)

The approximate solution according to (8) is obtained by
applying the left pseudoinverse:

Ti = (RT
VVi)

(l)+ ∈ Rqi×q0 . (18)

The new right ROB of system Gr,i is with RT
VRV = I:

V̂i = ViTi = Vi(R
T
VVi)

(l)+

= Vi

[
(RT

VVi)
TRT

VVi

]−1
(RT

VVi)
T

= Vi

[
(VT

i RVRT
V)Vi

]−1
(VT

i RVRT
V)RV.

(19)

For the interpretation of the new basis V̂i of subspace Vi
for system Gr,i we define R∗i = VT

i RVRT
V to get:

V̂i = Vi(R
∗T
i Vi)

−1R∗Ti︸ ︷︷ ︸
PVi⊥R∗

i

RV ∈ Rn×q0 ,
(20)

where PVi⊥R∗i is a projector which projects the columns of
RV orthogonally to the subspace spanned by R∗i into the

subspace Vi. For the new right ROB V̂i holds span(V̂i) =
span(Vi) = Vi with q0 − qi linear dependent columns.

The algorithm given below for calculating Ti is the same
for the three different cases because we employ the pseu-
doinverse using the economy size SVD with (6). As RT

VVi

has linearly independent rows or columns there is no sin-
gular value at zero and hence we get Σ+

i = Σ−1i .

Algorithm 1 Calculation of Ti with MAC approach

Input: k matrices Vi and RV

Output: k matrices Ti

1: for i = 1 to k do
2: Compute Si = RT

VVi

3: Compute Si = UiΣiZ
T
i // SVD

4: Compute Ti = ZiΣ
−1
i UT

i
5: end for
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The complexity of the algorithm is dominated by matrix
multiplication in line 2, which is proportional to O(nqiq0).
Calculations in line 3 and 4 are independent of the original
order n with qi, q0 � n and hence are of low complexity.

3.3.2 Equality approach: We motivate this approach by
demanding that the new right ROBs are supposed to
resemble the reference basis RV:

V̂i ≈ RV ⇒ ViTi ≈ RV. (21)

As matrix Vi ∈ Rn×qi has more rows than columns,
Penrose condition is generally not fulfilled. Therefore, we
formulate for expression (21) the minimization problem:

Ti = arg min
Ti∈Rqi×q0

‖ViTi −RV‖F . (22)

Hence, equality between V̂i and RV is seen as minimum
norm least squares solution. The approximate solution
according to (8) is obtained using the left pseudoinverse:

Ti = V
(l)+
i RV.

Then, the new basis V̂i of subspace Vi for system Gr,i is:

V̂i = ViTi = ViV
(l)+
i RV

= Vi(V
T
i Vi)

−1VT
i︸ ︷︷ ︸

PVi⊥Vi

RV, (23)

where PVi⊥Vi
is a projector which projects the columns

of RV orthogonally to the subspace Vi into the subspace
Vi. Again there are three cases:

• Case 1: qi > q0

As span(V̂i) ⊂ span(Vi), one gets a new reduced system

G∗r,i with right subspace spanned by the columns V̂i and
reduced order q0 < qi.

• Case 2: qi = q0

As span(V̂i) = span(Vi) = Vi holds, the columns of the

new right ROB V̂i of system Gr,i are linear independent.

• Case 3: qi < q0

The new right ROB V̂i of system Gr,i has q0 − qi linear

dependent columns with span(V̂i) = span(Vi) = Vi.
The algorithm using the economy size SVD for the calcu-
lation of Ti is given below. As Vi has linearly independent
columns according to Section 3.2 it has no singular values
at zero and hence we get Σ+

i = Σ−1i .

Algorithm 2 Calculation of Ti with equality approach

Input: k matrices Vi and RV

Output: k matrices Ti

1: for i = 1 to k do
2: Compute Vi = UiΣiZ

T
i // SVD

3: Compute Ti = ZiΣ
−1
i UT

i RV

4: end for

The economy size SVD in line 2 has the complexity O(nq2i )
with qi � n. The complexity of line 3 is O(nqiq0). Hence,
algorithm 2 is in general computationally more expensive
than algorithm 1.

3.3.3 Relation between the two approaches Note that the
MAC and equality approach have in common that the

basis of the reference subspace RV is projected in order
to get the new right ROB V̂i. However, they differ in the
kind of projection. In general it is an open question which
of the both approaches leads to more accurate generalized
coordinates. We will give a numerical example in Section 4.
However, a connection between the two approaches is given
in the next proposition.

Proposition 4. Both approaches are equivalent for q0 = n.

Proof. If RV is chosen to be orthogonal with q0 = n, one
gets RV RT

V = I. For qi < q0 consider formula (19):

V̂i = Vi

[
(RT

VVi)
TRT

VVi

]−1
(RT

VVi)
T

= Vi

[
VT

i RVRT
VVi

]−1
VT

i RV

= Vi(V
T
i Vi)

−1VT
i RV,

(24)

which is the result from (23). For the (unrealistic) case
q0 = qi = n formulas (24) and (19) additionally simplify

to V̂i = RV as Vi ∈ Rn×n is invertible. The case qi > q0
cannot occur as n is the maximal order. 2

Another link between the two approaches exists for the
case of orthogonal Ti, where an orthogonal Procrustes
problem is solved, see Amsallem, and Farhat (2011).

3.3.4 Reference subspace With the explanation above
we can now motivate the choice of the reference subspace
which is spanned by RV ∈ Rn×q0 . It should comprise the
directions which describe the most important dynamics of
all reduced models. We assume RV to be orthogonal. An
approach inspired by Amsallem, and Farhat (2011) chooses
RV as right ROB Vi0 of one reduced system Gr,i0 :

RV = Vi0 ∈ Rn×qi0 . (25)

Another approach based on Panzer et al. (2010) sums
up all subspaces Vi ∈ Rn×qi and takes q0 directions by
calculating the economy version of the Singular Value
Decomposition (SVD):

UΣNT = svd([V1 . . .Vk], ’econ’)

⇒ RV = U(:, 1 : q0).
(26)

Another possibility is the weighted SVD approach where
weighting factors ωi(p) for bases Vi are introduced:

UΣNT = svd([ω1(p)V1 . . . ωk(p)Vk], ’econ’)

⇒ RV = U(:, 1 : q0).
(27)

In contrast to Panzer et al. (2010) now every order q0 from
q0 = 1 to q0 = n can be chosen. However, there are two
main strategies which seem reasonable:

• Strategy 1:

One captures all important directions of the subspaces. For
this a tolerance for the singular values is defined and q0 is
chosen to get all important singular values. As it will be
pointed out in Section 3.5, the matrices of systems at the
sampling points with qi < q0 will be singular. Hence, the
advantageous interpolation in the manifold of nonsingular
matrices cannot by applied. However, at the sample points
this strategy achieves the accuracy of the local models Gr,i.

• Strategy 2:

One chooses the smallest reduced order q0 = min(qi) with
i = 1, . . . , k. Then, system matrices are in general non-
singular and this strategy benefits from the interpolation
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on the manifold of nonsingular matrices. However, for the
systems at the sampling points the accuracy deteriorates
compared to Gr,i as they are approximated by smaller
systems G∗r,i. Therefore, this strategy leads to an approx-
imation method instead of an interpolation method.

3.4 Adjustment of the left ROBs

After the adaption of the right ROBs, the left ROBs Wi

have to be adjusted with respect to a reference subspace
spanned by RW for a meaningful interpolation of the
system matrices of the reduced systems Gr,i. We use the
concept of duality between the left and right subspace,
which was introduced for pMOR in Geuss et al. (2013).

3.4.1 Reference subspace for the dual systems Due to
duality, the reference subspace spanned by RW can be
calculated in the same way as RV just by replacing Vi by
Wi. However, the size of RW ∈ Rn×q0 is determined by q0
from Section 3.3.4. Different sizes of RW and RV would
lead to under- or overdetermined systems of equations.

3.4.2 Generalized coordinates for the dual systems The
adjustment of the left ROBs is done with:

Ŵi = WiMi, (28)

where—due to duality—matrices Mi ∈ Rqi×q0 can be ob-
tained using explications for the right ROBs in Section 3.3.
The formulas for matrices Mi are shown in Table 1.

Table 1. Formulas for calculation of Mi

MAC approach Equality approach

qi < q0 Mi = (RT
WWi)

(r)+

qi = q0 Mi = (RT
WWi)

−1 Mi = W
(l)+
i RW

qi > q0 Mi = (RT
WWi)

(l)+

For the calculation of Mi the two algorithms from Sec-
tion 3.3 can be used changing Vi to Wi and RV to RW .

3.5 Choice of the interpolation manifold

After adjusting the right ROBs and left ROBs one finally
gets the set of reduced, compatible systems Ĝr,i:

Ĝr,i :

{
Êr,i

˙̂xr,i(t) = Âr,ix̂r,i(t) + B̂r,iu(t),

yr,i(t) = Ĉr,ix̂r,i(t),
(29)

where x̂r,i(t) ∈ Rq0 is the reduced state vector and

Êr,i = MT
i Er,iTi ∈ Rq0×q0 ,

Âr,i = MT
i Ar,iTi ∈ Rq0×q0 ,

B̂r,i = MT
i Br,i ∈ Rq0×r,

Ĉr,i = Cr,iTi ∈ Rm×q0 .

(30)

We want to point out two important cases for systems Ĝr,i:

• Case 1: qi < q0

The transformation matrices Ti and Mi leave the input-
output behavior of systems Ĝr,i unchanged in relation to
systems Gr,i. However, consider the following proposition.

Proposition 5. The matrices Ti introduce a common ker-
nel of dimension q0 − qi for matrices Êr,i and Âr,i.

Proof. Matrix Ti ∈ Rqi×q0 has a kernel of dimension
q0 − qi. Then, for all vectors v ∈ ker(Ti) we get:

Êr,iv = MT
i Er,iTiv = MT

i Er,i0 = 0,

Âr,iv = MT
i Ar,iTiv = MT

i Ar,i0 = 0.
2

Hence, the matrices Êr,i and Âr,i are in any case singular.

• Case 2: qi ≥ q0

The matrices Êr,i and Âr,i can be singular due to two
reasons. Firstly Er,i and Ar,i itself can be singular and
secondly an improper choice of Ti and Mi can cause singu-
larities. Otherwise, matrices Êr,i and Âr,i are nonsingular.

The system matrices of Ĝr,i are elements of Riemannian
manifolds. Therefore, the interpolated matrices should as
well be elements of the respective manifold, see Amsallem
et al. (2009); Amsallem, and Farhat (2011); Degroote et al.

(2010). Hence, one chooses a reference system Ĝi0 and

maps the matrices Êi, Âi, B̂i and Ĉi to the tangent
space by the logarithmic mapping (Log). For example, take

matrices Âi and let Âi0 belong to the reference system.

The mapped matrices are ΓÂi
= LogÂi0

(Âi). In analogy

matrices Êi, B̂i and Ĉi are mapped to ΓÊi
, ΓB̂i

and ΓĈi
.

Formulas for the logarithmic mapping can e.g. be look up
in Amsallem, and Farhat (2011); Degroote et al. (2010).

In the present paper the system matrices B̂r,i belong to

the manifold of real matrices Rq0×r and the matrices Ĉr,i

to the manifold of real matrices Rm×q0 . For the manifold
of the matrices Êr,i and Âr,i there exist two cases:

• Case 1: qi < q0

As system matrices Êr,i and Âr,i are singular, they are
interpolated in the manifold of real matrices Rq0×q0 .

• Case 2: qi ≥ q0

If matrices Êr,i and Âr,i are nonsingular, they belong to
the manifold of nonsingular matrices. Otherwise, they are
interpolated in the manifold of real matrices Rq0×q0 .

3.6 Interpolation process

Let p̃ ∈ D be a value in the parameter domain. In order to
obtain a reduced system Gr(p̃) we first interpolate system
matrices in the tangent space to the respective manifold:

ΓÊ(p̃) =
∑k

i=1
ωi(p̃)ΓÊi

,

ΓÂ(p̃) =
∑k

i=1
ωi(p̃)ΓÂi

,

ΓB̂(p̃) =
∑k

i=1
ωi(p̃)ΓB̂i

,

ΓĈ(p̃) =
∑k

i=1
ωi(p̃)ΓĈi

,

(31)

where ωi(p̃) are weighting functions of an arbitrary inter-

polation method with
∑k

i=1 ωi(p̃) = 1. Alternatively, sys-
tem matrices can be interpolated coefficient-wise with ev-
ery interpolation method. The interpolated matrices (31)
are mapped back to the original space by the exponen-
tial mapping which results in the system matrices Er(p̃),
Ar(p̃), Br(p̃), and Cr(p̃). Formulas for the exponential
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mapping can e.g. be look up in Amsallem, and Farhat
(2011); Degroote et al. (2010). The system matrices have
size q0 which is the size of the basis of the reference
subspace. Finally, we get the interpolated, reduced system:

Gr(p̃) :

{
Er(p̃)ẋr(t) = Ar(p̃)xr(t) + Br(p̃)u(t),

yr(t) = Cr(p̃)xr(t).
(32)

Note that for the case qi < q0, although Êr,i and Âr,i

share a common kernel, interpolation generally leads to
nonsingular matrices as every local system adds a part to
the dynamics of the interpolated system.

4. NUMERICAL RESULTS

The considered example is a FE model of a Timoshenko
beam from Panzer et al. (2009) with n = 2400 degrees of
freedom. The system parameter is the length L of the beam
which varies between L = 0.8m and L = 1.4m. The model
input is a vertical force which is applied at the tip of the
beam and the model output is the vertical displacement at
this point. We compute four high-order systems G1, . . . , G4

for lengths L1 = 0.8m, L2 = 1m, L3 = 1.2m, and
L4 = 1.4m. Systems Gi are reduced using a two-sided
Krylov subspace method with expansion points s0 = 0 and
reduced orders q1 = 14, q2 = 12, q3 = 12, and q4 = 10 in
order to get local systems Gr,i with i = 1, . . . , 4. We choose
decreasing reduced orders so that systems Gr,i are more
accurate for small lengths. For calculating the reference
subspace we first apply strategy 1 and choose q0 to capture
all relevant singular values with the non-weighted SVD up
to relative tolerance of 10−1 which gives q0 = q1 = 14. For
strategy 2 we choose q0 = q4 = 10 and use the manifold of
nonsingular matrices for interpolating Êr,i and Âr,i. For
both strategies we applied linear interpolation. In Figure 1
the relative error between the interpolated and the original
systems for the two strategies and the MAC and equality
approach is shown. It can be seen that there is only a
small difference between the MAC and equality approach.
For the plots with strategy 2 there is a loss of accuracy
at the sampling points L1, L2, L3 as the systems are
approximated by reduced systems of order 10—compare
Section 3.3—although systems Gr,1, Gr,2, Gr,3 have order
q1 = 14, q2 = 12, q3 = 12. The error rises with growing
discrepancy q0 − qi. As Gr,4 at L4 also possesses order
q4 = 10 there is no loss of accuracy. Hence, it can be
seen that strategy 2 is an approximation method, whereas
strategy 1 is an interpolation method as systems Gr,i

are obtained at the sampling points. In this example,
strategy 1 performs better than strategy 2 except for a
small parameter interval.

5. CONCLUSION

In this paper a method for pMOR by matrix interpolation
was proposed for the case where local systems have dif-
ferent reduced orders. In order to interpolate the resulting
differently sized system matrices we introduced generalized
coordinates with two different approaches using pseudoin-
verses. The generalized coordinates are computed with
respect to a reference subspace. We also proposed two
reasonable strategies how to choose the size of the reference
subspace. Then, the interpolated system possesses the size
of the basis of the reference subspace.
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Fig. 1. Relative error in H2-norm at various lengths L for
the cantilever beam.
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