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Abstract: In this contribution we study the application of non-linear model-based optimizing
control to the continuous polymerization of acrylic acid in a tubular reactor. Multiple side
injections of monomer along the reactor and the reactor temperature which is controlled via
cooling/heating jackets provide the means to control the product quantity and the product
quality. The homo-polymerization reaction investigated here, can be modeled by a system of
eight pdes which are transformed to an ode system. For this purpose, the spatial domain of
the pdes is discretized using the weighted essentially non-oscillatory scheme (WENO). This
method avoids the need for a very fine discretization grid while reproducing steep fronts well.
The controller employs this model and aims at maximizing the product throughput while
satisfying the product quality constraints. Four temperature measurements along the reactor
and a molecular weight measurement, derived from a viscosity measurement, at the outlet of
the reactor are assumed to be available. A particle filter is implemented that provides the initial
condition of the prediction model. Simulation results show that the controller is robust against
process and measurement noise and can meet the product constraints and increases the product
throughput considerably.

Keywords: Optimizing control, NMPC, state estimation, particle filtering, tubular polymerizat-
ion reactor.

1. INTRODUCTION

Thanks to the progress in computer hardware and optimiz-
ing algorithms, optimization-based controllers can now be
applied to industrial processing units. One of the main
advantages of these controllers is the ability to impose
constraints on both manipulated and controlled variables.
In this work we investigate the application of such a con-
troller to the continuous free radical homo-polymerization
of acrylic acid in a tubular reactor. This process is a
benchmark for the transfer of batch polymerizations to
continuous operation that was investigated in the Euro-
pean Project F3 Factory. Due to the plug flow charac-
teristic between the inputs and the outputs, the reactor
system reacts with large time delays to the changes of the
input flow rates. Four side injections of monomer along the
reactor can be used to control the product quantity and
product quality. The uniform jacket temperature is set via
a thermostat and offers an additional control input. Model
predictive control (MPC) is the suitable choice for control-
ling such a multi-input, delayed and constrained system.
Standard implementations of MPC aim at tracking some
predefined set points and penalize the violations of the
states or outputs from these set-points. In this work, we
follow the idea of optimizing control and maximize the

⋆ The research leading to these results was funded by the European
Commission in the project F3 Factory (FP7−NMP/2007 − 2013)
under the grant agreement n◦ 228867 and by the ERC Advanced
Investigator Grant MOBOCON (FP7/2012− 2017) under the grant
agreement n◦ 291458.

product throughput directly while keeping the product
quality constraints (Engell 2007). Four temperature mea-
surements at the middle of each segment of reactor and a
measurement of the molecular weight at the outlet of the
reactor are assumed to be available. Compared to the num-
ber of states, the available measurements are scarce. The
initial conditions of the prediction model are estimated by
a particle filter. In this method a set of weighted samples
represents the required posterior density function and the
estimation is performed based on this set. Particle filters
employ the full non-linear model of the process and do not
encounter the problems that result from linearization, as
the extended Kalman filter.
The rest of this paper is organized as follows: in the
second section, we discuss the process model, its derivation
and numerical methods to solve the pde model of the
reactor system. The third section is dedicated to particle
filtering and the evaluation of its performance for our
system. The simulation results of the optimizing controller
are discussed in section four. Finally conclusions and an
outlook on future work are presented.

2. SIMULATION OF THE SYSTEM

The process which is investigated in this work is the
continuous production of poly acrylic acid (PAA) in a
tubular reactor with multiple side injections of monomer
and initiator. The reactor consists of eight tubular reactor
modules which are connected in series. It has a total
length of four meters. The reactor is equipped with static
mixers to ensure an efficient mixing of the reactants. A
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jacket is used to control the reactor temperature and its
temperature is set uniformly via a thermostat. Figure 1
shows the P&ID diagram of this reactor. The reactor is
divided into four segments, each consisting of two modules,
and a temperature sensor at the middle of each segment is
installed. The internal volume of the first two segments is
45ml where segments three and four are larger and each
has a volume of 130ml. A measurement of the viscosity
measurement, is available at the outlet of the reactor
which can be used to compute the average molecular
weight Mw. Based on the energy and component balances
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Fig. 1: Flow sheet of the modular continuous polymeriza-
tion plant. (u1, u2, u3 and u4): side injections of monomer.
The temperature of the reactor is controlled via the cool-
ing/heating jacket (T). (T1, T2, T3 and T4): temperature
measurements, Mw: molecular weight measurement (de-
rived from a viscosity measurement).

and assuming perfect mixing in the radial direction and
negligible axial dispersion, a rigorous model of the reactor
was set up. The free radical polymerization of acrylic acid
is modeled by the terminal model approach. The resulting
non-linear partial differential equations (pde) are shown in
equations 1 to 8 (Hashemi et al. 2013). The temperature
dependent rate coefficients kd(T ), kp(T ) and ktc(T ) are
modeled by an Arrhenius approach and the method of
moments is applied to model the polymer chain length
distribution (Crowley et al. 1997).

∂cI

∂t
= −u

∂cI

∂z
+

∂

∂z

(

Dax
∂cI

∂z

)

− kdcI (1)

∂cM

∂t
= −u

∂cM

∂z
+

∂

∂z

(

Dax
∂cM

∂z

)

− kpλ0cM (2)

∂λ0

∂t
= −u

∂λ0

∂z
+

∂

∂z

(

Dax
∂λ0

∂z

)

+ 2fkdcI − 2ktcλ0
2 (3)

∂λ1

∂t
= −u

∂λ1

∂z
+ 2fkdcI + kpλ0cM − ktcλ0λ1 (4)

∂λ2

∂t
= −u

∂λ2

∂z
+ 2fkdcI + kpcM (λ0 + 2λ1)− ktcλ0λ2 (5)

∂µ1

∂t
= −u

∂µ1

∂z
+ ktcλ0λ1 (6)

∂µ2

∂t
= −u

∂µ2

∂z
+ ktcλ0λ2 + ktcλ1

2 (7)

∂T

∂t
= −u

∂T

∂z
+

∂

∂z

(

λ
∂T

∂z

)

2k

R
(Tjac − T )λ0cM (−∆hp) (8)

The weight average molecular weight of the produced
polymer (Mw) results from the moments as:

Mw =
µ2 + λ2

µ1 + λ1

. (9)

Numerical methods have to be used to solve the pde
model of the reactor system. Several methods have been
introduced for this purpose in the literature. We employ
the method of lines here. The main idea of this method is
to replace all derivatives in the pde system by algebraic
approximations except of one. Usually all spatial deriva-
tives (dimensions) are approximated and do not appear
explicitly in the model any more. Thus the pdes are con-
verted to a system of odes. This method assigns an ode
to every pde at each discretization point. Well-established
methods for solving odes can then be applied to find the
approximate solution of the original system of pdes. The
standard choice to approximate the spatial derivatives is
to use finite differences. Two major numerical issues result
when implementing this method for processes with steep
fronts, as the one considered here: A first order approx-
imation of the spatial derivatives with finite differences
results in numerical diffusion, i.e. smoothing of the fronts.
This problem can be reduced by employing a fine dis-
cretization grid or by using higher order finite differences.
Higher order approximations, however, result in numerical
oscillations and the use of more discretization points does
not reduce the numerical oscillations (Schiesser et al.
2009). Therefor, a first order approximation with a large
number of discretization points must be used when finite
differences are employed, leading to large computation
times. Figure 2 illustrates these numerical problems. An
alternative method is to use non-linear approximations
of the spatial derivatives. The class of such non-linear
approximation methods is called high resolution methods
and includes flux limiters and weighted essentially non-
oscillatory (WENO) methods (Bouaswaig et al. 2009).
The latter one has been applied in this work and it was
observed that both numerical problems can be avoided
without the need for a fine discretization grid. WENO
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Fig. 2: Second moment of inactive polymers (µ2) at the
reactor outlet. (a) First order finite differences are used to
approximate the spatial domain in different discretization
girds. This method results in numerical diffusion which can
be avoided partly by fine discretization grids 1 . (b) High
order finite differences are used to approximate the spatial
domain. This method results in numerical oscillations
which can not be cured by a finer discretization grid.

schemes implement a dynamic set of stencils and compute
a low order approximating polynomial in each of them to
1 Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz, 24GB RAM
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compute the numerical flux. Each polynomial receives a
weight which is determined based on a local smoothness
indicator. The polynomials corresponding to the stencils
which have a large gradient receive a zero weight giving a
non-oscillatory solution at the sharp fronts. The obtained
polynomials are combined in a non-linear convex fashion,
resulting in higher order polynomials at the smooth parts
of the solution and in an upwind spatial discretization at
the sharp fronts which avoids interpolation and provides
the necessary dissipation for shock capturing (Borges
et al. 2008). The spatial derivatives then are approxi-
mated by a first order finite difference of the computed
numerical flux. Different variants of WENO schemes devise
different smoothness indicators and determine the weights
of polynomials in different ways. In this work, we have
implemented the WENO-Z scheme proposed by (Borges
et al. 2008). The details about the determination of the
smoothness indicators and weights can be found in their
work. The second derivatives of the spatial domain that
appear in the process model can be rewritten by means of
two first order derivatives using auxiliary variables. Then
the current WENO scheme can be used to compute the
second derivatives. (Liu et al. 2011) have proposed a
new WENO scheme to compute the second derivatives
directly. Their scheme has a higher resolution and we have
implemented their method in our model.
The advantage of using the WENO scheme can be seen
in figure 3. A Matlab implementation of the model with
the WENO scheme with 200 discretization points needs
only 66.71 seconds and can reach a similar accuracy as
the finite differences with 5000 discretization points which
takes 204.84 seconds 2 . For the rest of this paper, we will
use the WENO scheme with a uniform discretization grid
of 200 points. The obtained ode model, which includes
1600 states, is solved using the CVode from the Matlab
interface of SUNDIALS (sundialsTB).
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Fig. 3: Second moment of inactive polymers (µ2) at the
outlet of the reactor.

3. PARTICLE FILTERS

State estimation is an important part of every control
scheme. While the prediction of the behavior of a given
system requires the knowledge of the initial states, usually
not all states of the system can be measured or some
quantities can not be measured at the requested frequency.

2 The stated simulation times are measured when the Matlab
integrator ode15s has been used. The designed NMPC, uses a mex

implementation of the model and employs CVode from sundialsTB

which increases the simulation speed with a factor of 100.

Also in case of the availability of the suitable sensors,
the measurements are always noisy. The extended Kalman
filter (EKF) is the most widely used state estimation tech-
nique for non-linear systems in the process industries. It
employs a prediction step using the non-linear model and
a correction step using the available measurements. The
Kalman gain matrix is computed based on a linearization
of the system around the previous estimate (Simon 2006).
The extended Kalman filter usually provides a satisfactory
performance if the non-linearities of the system are not
too severe otherwise it can show poor performance or
become unstable. The performance of EKF is strongly
dependent on its tuning, a task which can be quite difficult
for large systems. We have implemented the extended
Kalman filter for this reactor and observed that it indeed
became unstable for quite reasonable tuning parameters
(results are not shown here). In this work, we apply the
particle filtering (PF). Particle filters are recursive sample
based state estimation algorithms which employ the full
model of the system. They start with a given number
of initial guesses of the a priori states (particles). Based
on the probability of the current measurements resulting
from these particles as a posteriori states, the algorithm
assigns a weight to each of them. Finally an a posteriori
set of particles is chosen and the mean value of this set
is considered as the final estimation of the current state.
Particle filters do not need assumptions about the type of
model of the system (linear or nonlinear) nor about the dis-
tribution of the assumed measurement and process noise.
Any suitable system model or noise probability density
function can be used. A generic particle filtering algorithm
can be described in the following steps (Arulampalam
et al. 2002):

(0) The process and observation equations are given as
follows:







xk = fk(xk−1, uk−1) + ωk−1,

yk = hk(xk) + υk,

x(0) = x0 + ω0.

(10)

where ω and υ are the process and measurement noise
and are white noise signals with known probability
density functions (pdf) and mutually independent.
We assumed here that the measurements of the tem-
perature and of the molecular weight contain Gaus-
sian noise with standard deviations of 0.2 [K] and
1 [kg/mol]. The process noise also obeys a Gaussian
distribution and is assumed to have a standard devi-
ation of about 0.1% of the range of the states.

(i) From the pdf of the initial states N random particles
are generated. In our case N = 1000. Each particle
receives an importance weight equal to 1

N
. The dis-

tribution of the monomer concentrations along the
reactor for the initial particles (estimates) and for one
simulation run is shown in figure 4.

(ii) The particles that were generated in the previous step
are propagated via the system model (eq.10).

(iii) The algorithm updates the weights of the particles
(for a scalar measurement for simplicity) as follows:

wi
k = wi∗

k−1 ·
p(yk|x

i
k) · p(x

i
k|x

i
k−1

)

q(xi
k|x

i
k−1

, yk)
(11)

where q(.) is the importance density function. “k”
refers to the time instants and “i” is the counter of
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the particles. The superscript “*” denotes the scaled
weights. If more than one state is measured, the joint
likelihoods have to be computed.

(iv) The weights are scaled so that the sum of all weights
equals one.

ωi∗
k =

ωi
k

∑N

j=1
ωj
k

(12)

(v) Particle filters can suffer from the degeneracy problem
which means that after a few iterations, it is possible
that all particles except a few have a very small
weight. In such a situation, the set of particles will lose
its diversity and it can not represent the likelihood
density function of the states anymore. A suitable
measure of the degeneracy of the set of particles is
the effective sample size (Neff ). An estimation of the
effective sample size is:

N̂eff =
1

∑N

j=1
(ωi∗

k )2
(13)

If N̂eff is less than a given value, resampling is
performed. A small effective sample size indicates
severe degeneracy.

(vi) A set of a posteriori particles is chosen. This process
is called resampling and there are various methods for
it. The four most often applied methods are multino-
mial, residual, stratified and systematic resampling.
In this work, we have tested the multinomial and
systematic methods and observed better results from
the systematic approach. (Arulampalam et al. 2002)
and (Doucet et al. 2008) have also reported a bet-
ter performance of the systematic method over the
other methods. The systematic resampling method
can be summarized in the following way: Sample
U1 ∼ U [0, 1

N
] and define Ui = U1+

i−1

N
for i = 2, ..., N ,

then set N i
n =

∣

∣

∣

{

Uj :
∑j−1

k=1
W k

n ≤ Uj ≤
∑i

k=1
W k

n

}∣

∣

∣
.

The selected set of the a posteriori particles is:

π̄ =
{

∑N

i=1

Ni
n

N
δ(x− xi)

}

(Doucet et al. 2008).

Resampling can drop some of the particle and select
some of them twice or more.

(vii) Any statistical measure of the a posteriori set can be
computed. Usually the mean value is of interest.

Several variants of particle filters exist which vary in the
choice of the importance sampling density function or in
the resampling step. In this work we have implemented the
Sequential Importance Resampling (SIR) filter which does
the resampling at every step and defines the importance
sampling density function as follows:

q(xi
k|x

i
k−1, yk) = p(xk|x

i
k−1) (14)

Since the resampling is performed at every time instant,
the weights of the particles are (Arulampalam et al. 2002):

ωi
k = p(yk|x

i
k) (15)

The SIR algorithm is the most widely used version of
particle filtering since the importance weights can be easily
evaluated. However it is sensitive to outliers. A simulation
result obtained with this method is presented in figure 5.
No model-plant mismatch is considered in this simulation.
The distribution of the true initial monomer concentration
along the reactor and the distribution of the monomer
concentration of all 1000 initial particles are shown in
figure 4. The manipulated variables for this simulation are

shown in figure 6. For this simulation all five available
measurements have been used. The RMS of the estimation
error of the molecular weight at the outlet (Mw) and
monomer concentration (CM ) are 0.0601 and 1.5976. The
choice of the initial particles has to be in accordance
with the measurement error. Small measurement noise
requires precise initial particles. The reason for this can
be explained as follows: The algorithm propagates the
particles and computes the predictions of the variables
which are measured. Then the importance weights are
assigned based on the proximity of these values to the
measured ones. If the initial particles are chosen too far
away from the true states, they produce values which
are far from the measured ones and the algorithm will
disqualify all of them.
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Fig. 4: Distribution of the monomer concentrations of the
initial particles and of the true concentration along the
reactor.
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Fig. 5: (a) True, measured and estimated molecular weight
at the outlet of the reactor, (b) true and estimated
monomer concentration at the outlet of the reactor.
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4. OPTIMIZING CONTROL

4.1 Non-linear Model Predictive Control

The reactor in this work is controlled by a model-based
optimizing controller i.e. the control moves are optimized
over a finite horizon considering the predicted response of
the plant and the constraints on the product properties.
Standard implementations of NMPC employ tracking cost
functions and penalize the violations of the outputs or
states from a given set point (Findeisen et al. 2004). In
this work we follow the idea of online optimizing control
and aim at maximizing the product throughput under the
quality constraints (Engell 2007). For the reactor shown
in figure 1, the product throughput is maximized when
the sum of all flow rates of the monomer side injections are
maximized, but the quality constraints have to be fulfilled.
The residual monomer (CM ) is an important product
quality indicator and is estimated at the outlet of the
reactor. The second product quality constraint is imposed
on the molecular weight that is measured indirectly at
the outlet of the reactor (Mw). These constraints can be
formulated as hard constraints which is computationally
more demanding but then the quality constraints are
strictly met. In this work we deal with these constraints
as soft constraints and penalize their violations from the
considered bounds in the cost function. This is based on
the assumption that the produced polymer will be sold
in larger quantities hence a considerable degree of mixing
occurs after the production and smoothens short-term
constraint violations. Following this idea, the cost function
is formulated as follows:

min
u1k,u2k,u3k,u4k,Tk

Φ(x(tk), u(tk), Nc, Np) (16a)

Φ = −Φ1 + γΦ2 = −Φ1 + γ (Φ21 +Φ22 +Φ23) (16b)

Φ1 =

j=k+Np
∑

j=k

(u1 + u2 + u3 + u4) (16c)

Φ21 =

j=k+Np
∑

j=k

(max(CMj − CMu, 0))
2 (16d)

Φ22 =

j=k+Np
∑

j=k

(max(Mwj −Mwu, 0))
2 (16e)

Φ23 =

j=k+Np
∑

j=k

(min(Mwj −Mwl, 0))
2 (16f)

where the subscripts l and u denote the lower and upper
bounds of the corresponding variables. Np and Nc are the
length of prediction and control horizons. The residence
time of the reactor for the nominal flow rate is about 2600
seconds which implies that the prediction horizon must
be at least of a similar length. However, the controller
manipulates the total flow rates inside the reactor, causing
a shift in the states which postpones or expedites the
effect of a specific control move depending on the previous
control move. In order to take this behavior into account
and to ensure a stable behavior, we use a prediction
horizon of 6000 seconds which in this case is a quasi-infinite
horizon. The control horizon is set to one to reduce the
number of the decision variables. The sampling time is
100 seconds. The first part of the cost (Φ1) maximizes the

product throughput while the second part (Φ2) minimizes
the violations of the controlled variables from the given
bounds. γ is a tuning parameter and determines the
relative importance of Φ1 and Φ2 in the computed cost.
From a numerical point of view, this formulation of the
cost function is easier to solve because it does not include
explicit constraints. The reactor temperature (T) does
not enter into the optimization problem directly but it
is manipulated to fulfill the constraints and to enable an
increase of the throughput. The optimization problem is
solved in a sequential approach using the SNOPT solver
from the TOMLAB package. In each sampling instant, the
initial condition of the model is estimated employing the
particle filter that was introduced in the previous section.

4.2 Simulation Results

In this section we show the application of the opti-
mizing controller to the tubular polymerization reactor
while a particle filter is used to estimate the initial
states of the prediction model. For the base design case
(no regulation), the produced polymer has a molecular
weight of 77.5 [kg/mol] and a monomer content of about
131 [mol/m3] at the reactor outlet. The following choices
of the bounds in (16d− 16f) were made:

CMu = 135, Mwl = 75, Mwu = 80

We assume that the reactor initially is in steady state
and produces the requested polymer with the base-design
inputs. At t = 0, the controller is switched on. Consid-
ering the normalization of the constructing elements of
the cost function (Φ1 and Φ2), we have set the tuning
parameter γ to 0.02. The computed manipulated variables
by the optimizing controller are shown in figure 7. Com-
pared to the base design case, the controller increases the
throughput by 49.0%. As shown in figure 8, the estimated
variables converge to the true values and the controlled
variables are kept within the specified bounds. The small
violations from the bounds in the transition phase result
from the application of soft constraints. The controller
drives the reactor to an operation at a higher temperature
as expected and increases the side injections of monomer
considerably. This system has a very complex behavior and
does not exhibit a monotonically increasing or decreasing
step response. This is the main reason for the fluctuation
of the controlled variables before reaching a steady state.
The implemented code of the controller has been partially
parallelized to apply parallel computation. For the process
and measurement noise, the same assumptions as for the
simulation in section 3 were made here. The computation
times of the optimizing controller and of the particle filter
for this simulation are shown in figure 9.

5. CONCLUSION

We demonstrated the application of model-based optimiz-
ing control to a challenging reactor control example. The
investigated process is the continuous polymerization of
acrylic acid in a tubular reactor with multiple side injec-
tions of monomer. The spatial domain of the pde model
was discretized and the spatial derivatives were computed
using the WENO scheme. We implemented an economi-
cal cost function which aims directly at maximizing the
product throughput. The product and quality constraints
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Fig. 9: (a) Computation times of the optimizing controller.
(b) Computation times of the implemented particle filter
with 1000 particles. In this simulation the parallel compu-
tation facility of Matlab with 12 workers has been used.

are considered as soft constraints and enter into the cost
function. In order to provide the initial conditions of the
prediction model a state estimator must be implemented.
State estimation in tubular reactors is a difficult task
because compared to the number of the states, the avail-
able measurements are scarce. In this work we assumed
four temperature measurements along the reactor and one
molecular weight measurement at the reactor outlet. The
state estimation was performed using a particle filtering
algorithm. The advantage of particle filtering over the
extended Kalman filter is that it utilizes the full non-linear
model of the process and does not encounter the problems
resulting from linearization. Usually the computation time
of the particle filters is considered as their drawback. How-

ever, as the propagation of each particle is independent
from the other particles, parallel computation can be ap-
plied. With the particle filter estimator, the controller can
meet the specifications of the controlled variables and in-
creases the product throughput considerably. A drawback
of the optimizing controller is its long computation times.
Reduced or simplified models could be used to reduce the
simulation time of the model. Consideration of parametric
inaccuracies besides the measurement and process noises
will be a further extension of this work.
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