

Operating Experience of Programs and Changing Demand Profile –

Consideration of Paths

Wolfgang D. Ehrenberger


Hochschule Fulda, Marquardstraße 35, D - 36039 Fulda

(Tel ++49 661 9640 325; email: Wolfgang.D.Ehrenberger@informatik.hs-fulda.de

Abstract: Since more and more software exists, it is economically important to estimate whether or not

operating experience gained with earlier software applications can be used in new applications. Normally

new applications have another demand profile than the earlier applications had. For safety-related

applications quantitative relationships are required. This contribution derives formulae that can be used to

estimate the failure probability of the software in the new environment. In contrast to the work of other

authors the present considerations are not based on software modules, but on execution paths. The related

inaccuracies are taken into account. An example is given, as well as a method for getting and storing the

path characteristics. The pre-requisites that have to be met in order to make the derived formulae

applicable are mentioned.



1. INTRODUCTION

In safety-related software applications the question about the

confidence that can be placed in pre-existing software

becomes more and more important: Should software that

requires licensing be developed for the current project from

scratch, or is it better to use software that has been used for a

certain time in other applications? It seems to be clear that

certain standard functions, as they are usually provided by

compilers, should not be re-written, but rather taken from the

related library. Similar views are common on operating

systems. Meanwhile a large amount of frequently used

application software exists and therefore some general

thoughts seem to be in order. We ask: What data are needed

to accept that software in another application? One will

usually accept software if the new demand profile is identical

or at least very similar to the pre-existing application profile

and whose number of successful executions or runs is large.

If the new profile differs from the old one, a quantitative

estimation about the effect of the differences is helpful.

1.1 Characteristic of this paper

This contribution discusses the arising questions. It is based

on the theory of stratified sampling, which has been known

for a long time as e.g. given by (Saifuddin, 2009) or (de

Vries, 1986) but seems to have not been recognized yet by

the software community. In this contribution software is

considered as a set of paths. A path is a possible execution of

the software from its starting point to its end point. Each path

is recognized as a stratum.

If we consider probabilistic software verification it is

problematic to see software as a composition of individual

modules, e.g. subroutines, functions, methods or objects. I

think it is better to consider software as a composition of

paths: Because it is the paths that are really executed. The

modularised view is probably more suitable for hard wired

equipment. But software has a clear advantage over

hardware: It does not necessarily get less reliable, if it gets

larger. So we are better off, if we code complicated functions

in software. The disadvantage of software in contrast to

hardware is the possibly far reaching effect of one

programming fault along any possibly extended computing

path. The considerations of this contribution take care of that

because they focus on execution sequences and not on code

parts.

1.2 Literature

Statistical testing and operating experience and the possible

conclusions that can be drawn from them have fascinated

researchers since a long time.

(Littlewood and Strigini, 1993) consent with a view of the

British authority who is responsible for licensing nuclear

power plants, which says, it is impossible to verify or validate

failure probabilities per demand, that are lower than 10
-4

 for

software. The application area was reactor protection

systems, which have to operate basically on demand, e.g. for

shutting the reactor down, and are called only rarely. The

limitation was not claimed for frequently called functions
1

1 “function“ is used for something that happens or has to happen, not

as it is used by some programming languages, as e.g. C

Preprints of the 19th World Congress
The International Federation of Automatic Control
Cape Town, South Africa. August 24-29, 2014

Copyright © 2014 IFAC 1619

such as the storing of an editor or the starting of a passenger

car.

(Littlewood, 2013) and (Butler and Finelli, 1999) explain that

it was impossible to demonstrate high reliabilities of software

by probabilistic testing. Their results are based on a pure

black-box view. The mathematical foundations are correct

and demonstrated carefully; so are the conclusions. The

present contribution, however, does not rely on a black-box

view, but assumes a certain knowledge on the internals of the

software, the knowledge of its paths. If the paths are known,

more precise and more optimistic statements can be made and

one can conclude from the software behaviour in one demand

profile about its behaviour in another. As far as I know, only

few computer scientists have dealt with the inner structure of

software that is to be certified probabilistically. Among these

are (Kuball, May and Hughes a, b, c 1999) and (Söhnlein et

alii, 2010). The earlier quoted reservations against the

demonstration of high reliabilities by probabilistic means

mainly rest upon the infeasible high numbers of required test

cases or testing times. (Littlewood and Wright, 1997)

describe thoroughly how these numbers or times are to be

derived. In contrast to the following they also consider the

appearance of failures. Of particular interest is their proof of

the equivalence of Bayesian and frequentistic thinking. A

related demonstration is also found in (Ehrenberger et alii

1985).

1.3 Overview

The following chapter 2 discusses the principles of stratified

sampling of software. Chapter 3 considers the effect of

inaccuracies in the data that form the basis of the

calculations. Chapter 4 gives an example, chapter 5 deals

with the acquisition of the necessary data and Chapter 6

contains the conclusive remarks, and indicates limitations of

the method. The appendix lists the prerequisites that are

necessary to do the mentioned calculations. I believe that

these prerequisites are so demanding that the related effort

will only pay off, if the software has to deal with safety

applications.

2. MONOLYTHIC AND COMPOSED SOFTWARE

2.1 Prerequisites and basic formula

Ideal assumptions are made, in particular: No failure has

occurred in the past. Then we get for the upper limit of the

failure probability per demand p after n operational runs,

such that p < with a known probability, i.e. a known

degree of significance α:

α = 1 - level of confidence. The confidence interval refers to

one side. See also (IEC 61508-7, 2010).

2.2 Monolithic System

We start with a system that is taken as a unit, as a black box;

it does not have any known sub structure like modules or

paths. It holds for the failure probability of the total system

after nt successful runs to the degree of significance α:

 ; (1)

ideal conditions are assumed. The subscript t indicates that

the whole software and all runs are meant. It is expected that

the view on the system does not influence its failure

probability; i.e. that the failure probability given by (1) is also

received as calculation result, if we consider the software as

being composed of paths.

2.3 Composed System, stratified sampling

Each program can be thought of as being composed of a set

{N} of paths. See also formulae (7) as an example.

Definition: A path consists of the statements that are

traversed during a possible run through a program from its

start to its end; it ends, when it has no further effects on other

code parts; if a path ends, a new path can begin.

Assumption: The demand profile of a program or program

part is described by the usage of its paths.

We define further:

N number of paths,

 ni number of runs (or traversals) of path i.

The total number of runs nt of the system equals the sum of

the number of runs of all paths i

nt =  

N

i in
1

.

The probability of running path i is
t

i
i

n

n
 ;  

N

i i1
 = 1.

The upper limit of failure the probability of path i is

i

i
n

p
ln~ 

 (1a)

If a path is executed without any failures, we get, considering

the one-sided confidence interval:

The number of (fictitious) failures of path i during nt runs

equals

the probability of selecting that path

times the probability of failure per run

times the number of runs of that path.

So number_of_failures_of_path_i = πi * pi* ni. See also the

theory of stratified sampling, e.g. in (Saifuddin, 2002) or (de

Vries, 1986).

The total number of failures of the system is the probability

of failure of the individual run pt, times the total number of

runs nt; it is also the sum of the failures of the individual

paths; therefore we get for a software system that consists of

N paths:

 nt * tp
~ =  

N

i iii pn
1

*
~

*  (2)

This relation holds for the case of “no failure”. We always

consider the upper limits from (1a) for the probabilities. We

get:

 tp
~ =  


N

i ii

N

i tiii pnpn
1

2

1

~
* /*

~
*  (3)

p
~

n
p

ln~ 


t

t
n

p
ln~ 



p
~

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1620

During the derivation of (2) and (3) no assumption has been

made about any old or new profile. Both formulae are valid

during the phase of gaining operating experience and during

any new application of the software. Normally all ip
~ are

larger than tp
~ , because we assume 0 failures and a one-sided

confidence interval and because the number of runs for

gaining tp
~ is larger than the number of runs for gaining any

of the ip
~ .

2.4 The new profile

What is different between the old and the new operation is

just the set of the πi. This set represents the operation profile;

it changes between the old and the new operation. Regarding

the operating experience the πi of the old operational profile

have to be taken, for any new application the πi of the new

application have to be taken. The ip
~ , however, do not change

between the old and the new operation. So, (3) can also be

used for the new profile.

There are some conditions, however: All paths must be

known explicitly, as well as their transition numbers in both

the old and the future application. If these numbers are not

known, a conservative estimate is needed. Therefore the

paths as such and the number of their traversals must be

recorded during previous operations. If they are not known

for the future operation, they must be conservatively

estimated.

Also: The data values occurring within one path execution

must be sufficiently closely similar in the old and the intended

application. If this does not hold, sub paths must be defined

that reflect the differing data values.

3. INACCURACIES

If the individual ni are not exactly known, we have to deal

with related uncertainties. These can occur to both the old

and the new operation profile. We are interested in a

conservative estimation. From (1a) we get for each path of

the experienced profile:

 min__n

ln

max_
~

oldi
ip


 =

 *n

ln

min__ oldii 


 (4)

For the new profile we take the largest possible δi and the

smallest possible δt and we estimate:

estimatednewi

newtn

inewin

newtnewtn

newin

newtnewtn

newinewin

newtn

newin

newi

__*
2

_

2
max_*_

2
min__*_

_

min__*_

max__*_

min__

max__
max__


















The three last equalities are valid, if:

 
1

1 max__

min__

newi

newt





estimatednewi __
 stands for the new selection probability of

path i without consideration of the uncertainties. We always

assume δmin < 1 and δmax > 1. For the new operation we get

from (4):










)
 n

ln
(*)*(

*
~

min__

2

__

2

max_max__
2

max__

oldii

estimatednewi

inewinewt pp








 (5)

This makes it possible to consider the influence of

inaccuracies of the observation of the past operational runs

and of the estimation of the future demands. If also

| | min__ oldi = Δ, it holds:









estimatediestimatednewi

inewinewt

p

pp

25

max_max__
2

max__

~
**

~
*

~





 (6)

Obviously the inaccuracies of the knowledge of the new

demand profile dominate the inaccuracies of the result, as

they occur to the 4
th

 power. Table 1 shows examples, based

on (5), i.e. without taking into account the influence of the

δi_min-old.

Table 1. Effect of inaccuracies of the knowledge of the new

demand profile (πi s), factor

Δ 1.1 1.2 1.5 2 3

 Effect on newtp _

~ 1.5

2 5 16 81

The table gives the very worst case, as it assumes derivations

to the worse by all paths. But in reality an overestimation of

the number of runs of one path will result in an

underestimation of the number of runs of another path. See

also Table 3 versus Table 2.

4. EXAMPLE

Fig. 1 gives an example of a code fragment. The fragment has

4 paths:

Fig. 1. Flow Diagram: Code fragment with 2 branches consisting

of 4 basic blocks, each traversed nij times; 4 paths; n11 + n12 = nt

= n21 + n22.

Basic Block B11, n11 runs

Basic Block B12, n12 runs

Basic Block B21, n21 runs

Basic Block B22, n22 runs

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1621

 Path 1 = {B11, B21}, Path 2 = {B11, B22},

 Path 3 = {B12, B21}, Path 4 = {B12, B22}. (7)

In total 30000 operational runs are considered; α is assumed

to be 0.05. (1) gives tp
~ = 10

-4
. We assume the individual

paths have the number of runs of Table 2. The πi and ip
~ are

calculated; the latter ones at a level of significance of 0.05

after (1a); the end result is calculated by (3), leading to the

same value of tp
~ .

Table 2. Operating experience of the code fragment of Fig. 1

 Path 1 Path 2 Path 3 Path 4 Total

ni 12 000 6 000 9 000 3 000 30 000

πi old 0.4 0.2 0.3 0.1 1

ip
~ 2.5*10

-4
5*10

-4
 3.3*10

-4
 10

-3
 10

-4

If the demand profile of the new application differs from the

old one, the ni of Table 3 might apply, resulting in the other

figures of Table 3. Note that the of the paths do not

change, however increases significantly.

Table 3. New operation profile of the code fragment of Fig.1

 Path 1 Path 2 Path 3 Path4 Total

ninew 300 3000 2700 24000 30 000

πinew 0.01 0.1 0.09 0.8 1

ip
~ 2.5*10

-4
5*10

-4
 3.3*10

-4
 10

-3
 6.9*10-4

If the concerned πi_new are not well known, the new pt might

still require a correction according to Table 1. If they were

inaccurate by 20%, would be too optimistic by a factor of

2.

It should be noted that the results of both Table 2 and Table 3

are not gained by a calculation based on the failure

probabilities of the individual basic blocks as they can be

calculated by using (1a) in connection with their traversal

numbers. See Table 4.

Table 4. Failure probabilities of the Basic Blocks, old profile

 B11 B12 B21 B22 Total

nBj 18 000 12 000 21 000 9 000 60 000

Bjp
~

1.67*10-4 2.5*10-4 1.4*10-4 3.3*10-4

Bj
 0.6 0.4 0.7 0.3

Table 4 demonstrates: There is no easy way to derive a

failure probability for the total software from the failure

probabilities of basic blocks or modules.

We can remark: Since n11 + n12 = nt = n21 + n22, it holds for

the upper part and the lower part of the basic blocks of the

figure:

(8)

  

2

1 1

2

1
~

*)(
j jj p  

2

1 2

2

2
~

*)(
j jj p

5. COLLECTION OF DATA

A program has usually thousands, if not millions of paths. In

order to use the here mentioned theory, the data collection

has to be nearly exhaustive. It has at least to be able to

consider all paths in principle. Each path has to be

characterized as such and the number of its traversals

counted. It is suggested to store the characterisations and the

traversals in a tree.

5.1 Storing

All basic blocks of the code are instrumented with an

operation that can characterize the related path. Such an

instrumentation can use a floating point number for each

basic block that is connected with the so far gained result by

one of the primitive operators ρ Є {+,-,*,/}. The so gained

path characteristics are used to address a node of an AVL tree

(Adelson-Velskii, 1962) during the phase of gaining the

operation experience. The node of the tree could have the

following shape:

struct pathCharacteristic {

 double characterizingNumber;

 unsigned long numberOfPathRuns;

 struct pathCharacteristic *left;

 struct pathCharacteristic *right;

};

As AVL trees are always well balanced, the effort of

inserting into the right place in the tree increases only

logarithmically with the size of the tree. It would only take

about 17 steps for 100 000 paths and only about 20 steps for

one million paths. The same applies for finding a path-related

node for counting the runs. After each path traversal its

numberOfPathRuns is increased by 1.

The new operation profile should then be simulated using the

same software. A comparison of the gained new number of

runs to the old ones would enable to estimate upper limits of

the failure probabilities in the new environment.

5.2 Example of an instrumentation

The software of Fig. 1 gets the following code lines in

addition to the already existing ones.

Starting point of the program, at the beginning of the main

function:
double characterizingNumber = 1.0;

And then in

Basic Block 1: characterizingNumber += 2.0;

Basic Block 2: characterizingNumber -= 3.0;

Basic Block 3: characterizingNumber *= 5.0;

Basic Block 4: characterizingNumber /= 7.0;

The resulting value of the characterizingNumber

forms the argument of the subroutine that inserts into the tree

at path end. May be, it is not necessary to use only prime

numbers for calculating the characterising number.

ip
~

tp
~

tp
~

2221

~
withBBp1211

~
withBBp




t

t
n

p
ln~

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1622

6. CONCLUSIONS

It may well happen that the effort needed to implement the

considerations of this contribution comes up to the effort for

a “normal” verification procedure on the basis of a software

analysis, related tests and formal proofs. Never the less even

high reliability claims can be supported by this method. But it

is not thought that white-box testing strategies could be

completely omitted.

Should failures occur during the operating experience and

have they not been removed, a special consideration is

needed. Related one-sided intervals can be gained by

applying the tables of the Poisson distribution. But a program

that is known to contain faults will normally not be allowed

for safety applications.

Meeting all the requirements that are connected with the

method presented can be costly. If they cannot be met,

deterministic reasoning is required to demonstrate that the

violation does not have any effect or only a limited and

tolerable one. As far as I know, the number of pre-use runs or

test runs required by (1) can never be reduced. Using this

method does not guarantee success in licensing at lower cost.

Using it, however, always results in a warm feeling

supplementing the results of other verification efforts; and

sometimes it leads to a quantitative reliability claim. Its main

area of application is probably allowing widely used software

packages in new environments.

REFERENCES

Adelson-Velskii, G.M, and E.M. Landis (1962). An

Algorithm for the organisation of information

(Wikipedia 2013)

Butler and Finelli, R.W.Butler and G.B.Finelli (1999). The

Infeasibility of Quantifying the Reliability of Life-

Critical Real-Time Software; IEEE Transactions on

Software Engineering, Vol 19, No1

Bishop P.G., D.G.Esp, F.D.Pullen, M.Barnes, P.Humphreys,

G.Dahll, B.Barlan, J.Lahti, H.Valisuo (1987). STEM a

peoject on Software Test and Evaluation Methods in

Proceedings Safety and Reliability Symposium SARS

87, pp 100-117

de Vries, P.G. (1986). Sampling Theory for Forest Inventory

Stratified Sampling, pp 31-55, taken from internet 2013

Springer Verlag

IEC 61508 (2010). ISO/IEC 61508-7 Functional Safety of

electrical/electronic/programmable electronic safety-

related systems, to be ordered via IEC Geneva or Beuth-

Verlag Berlin

 Ehrenberger, W., J.Märtz, G.Glöe and E.-U.Mainka (1985).

Reliability Evaluation of a Safety-related Operating

System, Safecomp 1985, Pergamon Press, editor B.

Quirk

Kuball, S., J. May and G. Hughes, a (1999). Building a

system failure rate estimator by identifying component

failure rates; ISSRE 99, Proceedings, IEEE Computer

Society Press

Kuball, S., J.May and G. Hughes b (1999): Structural

Software Reliability Estimation; Safecomp 99, Lecture

Notes in Computer Science, Vol. 1698 LNCS, Springer-

Verlag Heidelberg

Littlewood, B. (2013) The Problem of Assessing Software

Reliability …when you really need to depend on it; no

date, no written source, from internet 2013

Littlewood, B. and L.Strigini, (1993). Validation of Ultra-

high Dependability for Software-based Systems,

Communications of the ACM, 36(11)

Littlewood, B. and D. Wright (1997). Some Conservative

Stopping Rules for the Operational Testing of Safety-

Critical Software, IEEE Transactions on Software

Engieering, Vol 23, No 11 November

May, J., S. Kuball and G. Hughes c (1999). Test statistics for

system design failure; International Journal of

Reliability, Quality and Safety Engieering, Vol 6, No3,

pp. 249-264

Saifuddin, A. (2009). Methods in Survey Sampling Biostat

140.640 – Lecture4StratifiedSampling.pdf, John

Hopkins University, Bloomberg, school of public health

(from internet 2013)

Soehnlein, S., F. Saglietti, F. Bitzer, M. Meitner and S.

Baryschew (2010). Software Reliability Assessment

Based on the Evaluation of Operational Experience,

Proc. 15th International GI/ITG Conference on

Measurement, Modelling and Evaluation of Computing

Systems, Dependability and Fault Tolerance (MMB &

DFT 2010), Lecture Notes in Computer Science, Vol.

LNCS 5987, Springer-Verlag

APPENDIX A

COLLECTION OF PRE-REQUISITES AND

ASSUMPTIONS

The following rules, requirements and assumptions are not in

systematic order, as their criticality is usually project

dependent.

R1 The code of the pre-existing version(s) and the code of the

version for the future application shall be identical.

R2 No failures must occur during pre-operation.

R3 Sequence and number of runs of any path must not

influence any future run.

R4 The distribution of input data that are processed in one

path is approximately equal between the experience

gathering period and the future operation period.

R5 If the operational experience is simulated by tests, the

individual test runs must be independent from each other.

R6 Observation of information gathering is so strict and

complete that any possible failure is recognised.

R7 A specification existed that allowed to decide whether or

not any result was correct of incorrect.

R8 The paths shall be identified for the old and the future

demand profile.

R9 For estimating the demand profile for a new application

model checking can perhaps help.

R10 Each path shall have at least 2 runs.

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1623

R11 The shall be evaluated or conservatively

estimated for each path i.

R12 Concatenation of paths or modules is allowed, if they

do not interact; in this case the largest of the chain

shall be taken.

R13 If interacting modules are concatenated, the paths from

start to end shall be taken.

R14 Paths whose correctness has been proven, may be

counted with pi = 0.

R15 It is recommendable to verify the effect of loops with

varying repetition number deterministically.

R16 Separate considerations are required for complicated

logical expressions or for complicated algorithms.

R17 Some aspects, e.g. events that shall be triggered by the

software at a specific future date, need deterministic

verification and white box testing.

R18 During the pre-use phase where the experience is

gathered, no failure masking is allowed. See e.g. (Bishop

1987)

ii andp 
~

ip
~

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

1624

