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Abstract: Since more and more software exists, it is economically important to estimate whether or not 

operating experience gained with earlier software applications can be used in new applications. Normally 

new applications have another demand profile than the earlier applications had. For safety-related 

applications quantitative relationships are required. This contribution derives formulae that can be used to 

estimate the failure probability of the software in the new environment. In contrast to the work of other 

authors the present considerations are not based on software modules, but on execution paths. The related 

inaccuracies are taken into account. An example is given, as well as a method for getting and storing the 

path characteristics. The pre-requisites that have to be met in order to make the derived formulae 

applicable are mentioned.   



1. INTRODUCTION 

In safety-related software applications the question about the 

confidence that can be placed in pre-existing software 

becomes more and more important: Should software that 

requires licensing be developed for the current project from 

scratch, or is it better to use software that has been used for a 

certain time in other applications? It seems to be clear that 

certain standard functions, as they are usually provided by 

compilers, should not be re-written, but rather taken from the 

related library. Similar views are common on operating 

systems. Meanwhile a large amount of frequently used 

application software exists and therefore some general 

thoughts seem to be in order. We ask: What data are needed 

to accept that software in another application? One will 

usually accept software if the new demand profile is identical 

or at least very similar to the pre-existing application profile 

and whose number of successful executions or runs is large. 

If the new profile differs from the old one, a quantitative 

estimation about the effect of the differences is helpful. 

1.1 Characteristic of this paper 

This contribution discusses the arising questions. It is based 

on the theory of stratified sampling, which has been known 

for a long time as e.g. given by  (Saifuddin, 2009) or (de 

Vries, 1986) but seems to have not been recognized yet by 

the software community. In this contribution software is 

considered as a set of paths. A path is a possible execution of 

the software from its starting point to its end point. Each path 

is recognized as a stratum. 

If we consider probabilistic software verification it is 

problematic to see software as a composition of individual 

modules, e.g. subroutines, functions, methods or objects. I 

think it is better to consider software as a composition of 

paths: Because it is the paths that are really executed. The 

modularised view is probably more suitable for hard wired 

equipment. But software has a clear advantage over 

hardware: It does not necessarily get less reliable, if it gets 

larger. So we are better off, if we code complicated functions 

in software. The disadvantage of software in contrast to 

hardware is the possibly far reaching effect of one 

programming fault along any possibly extended computing 

path. The considerations of this contribution take care of that 

because they focus on execution sequences and not on code 

parts.  

1.2 Literature 

Statistical testing and operating experience and the possible 

conclusions that can be drawn from them have fascinated 

researchers since a long time.  

(Littlewood and Strigini, 1993) consent with a view of the 

British authority who is responsible for licensing nuclear 

power plants, which says, it is impossible to verify or validate 

failure probabilities per demand, that are lower than 10
-4

 for 

software. The application area was reactor protection 

systems, which have to operate basically on demand, e.g. for 

shutting the reactor down, and are called only rarely. The 

limitation was not claimed for frequently called functions
1
 

                                                 
1 “function“ is used for something that happens or has to happen, not 

as it is used by some programming languages, as e.g. C 
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such as the storing of an editor or the starting of a passenger 

car.  

(Littlewood, 2013) and (Butler and Finelli, 1999) explain that 

it was impossible to demonstrate high reliabilities of software 

by probabilistic testing. Their results are based on a pure 

black-box view. The mathematical foundations are correct 

and demonstrated carefully; so are the conclusions. The 

present contribution, however, does not rely on a black-box 

view, but assumes a certain knowledge on the internals of the 

software, the knowledge of its paths. If the paths are known, 

more precise and more optimistic statements can be made and 

one can conclude from the software behaviour in one demand 

profile about its behaviour in another. As far as I know, only 

few computer scientists have dealt with the inner structure of 

software that is to be certified probabilistically. Among these 

are (Kuball, May and Hughes a, b, c 1999) and (Söhnlein et 

alii, 2010). The earlier quoted reservations against the 

demonstration of high reliabilities by probabilistic means 

mainly rest upon the infeasible high numbers of required test 

cases or testing times. (Littlewood and Wright, 1997) 

describe thoroughly how these numbers or times are to be 

derived. In contrast to the following they also consider the 

appearance of failures.  Of particular interest is their proof of 

the equivalence of Bayesian and frequentistic thinking. A 

related demonstration is also found in (Ehrenberger et alii 

1985).  

1.3 Overview 

The following chapter 2 discusses the principles of stratified 

sampling of software. Chapter 3 considers the effect of 

inaccuracies in the data that form the basis of the 

calculations. Chapter 4 gives an example, chapter 5 deals 

with the acquisition of the necessary data and Chapter 6 

contains the conclusive remarks, and indicates limitations of 

the method. The appendix lists the prerequisites that are 

necessary to do the mentioned calculations. I believe that 

these prerequisites are so demanding that the related effort 

will only pay off, if the software has to deal with safety 

applications.  

2. MONOLYTHIC AND COMPOSED SOFTWARE 

2.1  Prerequisites and basic formula 

Ideal assumptions are made, in particular: No failure has 

occurred in the past. Then we get for the upper limit    of the 

failure probability per demand p after n operational runs, 

such that p <      with a known probability, i.e. a known 

degree of significance α:  

 

 

 

α = 1 - level of confidence. The confidence interval refers to 

one side. See also (IEC 61508-7, 2010).  

2.2  Monolithic System 

We start with a system that is taken as a unit, as a black box; 

it does not have any known sub structure like modules or 

paths. It holds for the failure probability of the total system 

after nt successful runs to the degree of significance α:  

 

                                                    ;                                  (1)      

     

ideal conditions are assumed. The subscript t indicates that 

the whole software and all runs are meant.  It is expected that 

the view on the system does not influence its failure 

probability; i.e. that the failure probability given by (1) is also 

received as calculation result, if we consider the software as 

being composed of paths. 

2.3 Composed System, stratified sampling 

Each program can be thought of as being composed of a set 

{N} of paths. See also formulae (7) as an example. 

Definition: A path consists of the statements that are 

traversed during a possible run through a program from its 

start to its end; it ends, when it has no further effects on other 

code parts; if a path ends, a new path can begin. 

Assumption: The demand profile of a program or program 

part is described by the usage of its paths. 

We define further:  

N number of paths, 

 ni  number of runs (or traversals) of path i.  

The total number of runs nt of the system equals the sum of 

the number of runs of all paths i   

nt  =  

N

i in
1

. 

The probability of running path i is 
t

i
i

n

n
 ;   

N

i i1
 = 1.  

The upper limit of failure the probability of path i is 

 
i

i
n

p
ln~ 

               (1a) 

If a path is executed without any failures, we get, considering 

the one-sided confidence interval: 

The number of (fictitious) failures of path i during nt  runs 

equals  

the probability of selecting that path  

times the probability of failure per run  

times the number of runs of that path.   

So number_of_failures_of_path_i = πi * pi* ni. See also the 

theory of stratified sampling, e.g. in (Saifuddin, 2002) or (de 

Vries, 1986). 

The total number of failures of the system is the probability 

of failure of the individual run pt, times the total number of 

runs nt; it is also the sum of the failures of the individual 

paths; therefore we get for a software system that consists of  

N paths: 

 nt * tp
~  =  

N

i iii pn
1

*
~

*     (2) 

This relation holds for the case of “no failure”. We always 

consider the upper limits from (1a) for the probabilities. We 

get:  

      tp
~  =  


N

i ii

N

i tiii pnpn
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During the derivation of (2) and (3) no assumption has been 

made about any old or new profile. Both formulae are valid 

during the phase of gaining operating experience and during 

any new application of the software. Normally all ip
~ are 

larger than tp
~ , because we assume 0 failures and a one-sided 

confidence interval and because the number of runs for 

gaining tp
~ is larger than the number of runs for gaining any 

of the ip
~ . 

2.4 The new profile 

What is different between the old and the new operation is 

just the set of the πi. This set represents the operation profile; 

it changes between the old and the new operation. Regarding 

the operating experience the πi  of the old operational profile 

have to be taken, for any new application the πi  of the new 

application have to be taken. The ip
~ , however, do not change 

between the old and the new operation. So, (3) can also be 

used for the new profile.  

There are some conditions, however: All paths must be 

known explicitly, as well as their transition numbers in both 

the old and the future application.  If these numbers are not 

known, a conservative estimate is needed. Therefore the 

paths as such and the number of their traversals must be 

recorded during previous operations. If they are not known 

for the future operation, they must be conservatively 

estimated. 

Also: The data values occurring within one path execution 

must be sufficiently closely similar in the old and the intended 

application. If this does not hold, sub paths must be defined 

that reflect the differing data values.  

3. INACCURACIES 

If the individual ni are not exactly known, we have to deal 

with related uncertainties. These can occur to both the old 

and the new operation profile. We are interested in a 

conservative estimation. From (1a) we get for each path of 

the experienced profile:  

 min__n

ln

max_
~

oldi
ip


 = 

 *n

ln

min__ oldii 


   (4) 

For the new profile we take the largest possible δi and the 

smallest possible δt and we estimate: 

estimatednewi
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The three last equalities are valid, if:  

               
1

1 max__

min__

newi

newt




    

estimatednewi __
 stands for the new selection probability of 

path i without consideration of the uncertainties. We always 

assume δmin < 1 and δmax > 1.  For the new operation we get 

from (4): 
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  (5)  

This makes it possible to consider the influence of 

inaccuracies of the observation of the past operational runs 

and of the estimation of the future demands. If also 

| | min__ oldi = Δ, it holds:  








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 (6) 

Obviously the inaccuracies of the knowledge of the new 

demand profile dominate the inaccuracies of the result, as 

they occur to the 4
th

 power. Table 1 shows examples, based 

on (5), i.e. without taking into account the influence of the 

δi_min-old. 

Table 1.  Effect of inaccuracies of the knowledge of the new 

demand profile (πi s), factor 

Δ 1.1 1.2 1.5 2 3  

  Effect  on newtp _

~  1.5
 

2 5 16 81  

The table gives the very worst case, as it assumes derivations 

to the worse by all paths. But in reality an overestimation of 

the number of runs of one path will result in an 

underestimation of the number of runs of another path. See 

also Table 3 versus Table 2. 

4. EXAMPLE 

Fig. 1 gives an example of a code fragment. The fragment has 

4 paths:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Flow Diagram: Code fragment with 2 branches consisting 

of 4 basic blocks, each traversed nij times; 4 paths; n11 + n12 = nt 

= n21 + n22. 

Basic Block B11, n11 runs 

 

Basic Block B12, n12 runs  

Basic Block B21, n21 runs 

 

 

Basic Block B22, n22 runs 
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 Path 1 = {B11, B21}, Path 2 = {B11, B22},   

 Path 3 = {B12, B21}, Path 4 = {B12, B22}.    (7) 

In total 30000 operational runs are considered; α is assumed 

to be 0.05. (1) gives tp
~ = 10

-4
. We assume the individual 

paths have the number of runs of Table 2. The πi and ip
~  are 

calculated; the latter ones at a level of significance of 0.05 

after (1a); the end result is calculated by (3), leading to the 

same value of tp
~ . 

Table 2.  Operating experience of the code fragment of Fig. 1 

 Path 1 Path 2 Path 3 Path 4 Total 

ni 12 000 6 000 9 000 3 000 30 000 

πi old 0.4 0.2 0.3 0.1 1 

ip
~  2.5*10

-4 
5*10

-4
 3.3*10

-4
 10

-3
 10

-4
 

 

If the demand profile of the new application differs from the 

old one, the ni of Table 3 might apply, resulting in the other 

figures of Table 3. Note that the     of the paths do not 

change,       however increases significantly.  

Table 3.  New operation profile of the code fragment of Fig.1 

 Path 1 Path 2 Path 3 Path4 Total 

ninew 300 3000 2700 24000 30 000 

πinew 0.01 0.1 0.09 0.8 1 

ip
~  2.5*10

-4 
5*10

-4
 3.3*10

-4
 10

-3
 6.9*10-4 

 

If the concerned πi_new are not well known, the new pt might 

still require a correction according to Table 1. If they were 

inaccurate by 20%,     would be too optimistic by a factor of 

2. 

It should be noted that the results of both Table 2 and Table 3 

are not gained by a calculation based on the failure 

probabilities of the individual basic blocks as they can be 

calculated by using (1a) in connection with their traversal 

numbers. See Table 4. 

Table 4. Failure probabilities of the Basic Blocks, old profile 

 B11 B12  B21 B22 Total 

nBj 18 000 12 000 21 000 9 000 60 000 

Bjp
~  

1.67*10-4  2.5*10-4 1.4*10-4 3.3*10-4  

Bj
 0.6  0.4 0.7 0.3 

 

 

Table 4 demonstrates: There is no easy way to derive a 

failure probability for the total software from the failure 

probabilities of basic blocks or modules.  

We can remark: Since n11 + n12 = nt = n21 + n22, it holds for 

the upper part and the lower part of the basic blocks of the 

figure: 

 

(8) 

  

2
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2
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~

*)(
j jj p  

5. COLLECTION OF DATA  

A program has usually thousands, if not millions of paths. In 

order to use the here mentioned theory, the data collection 

has to be nearly exhaustive. It has at least to be able to 

consider all paths in principle. Each path has to be 

characterized as such and the number of its traversals 

counted. It is suggested to store the characterisations and the 

traversals in a tree. 

5.1 Storing 

All basic blocks of the code are instrumented with an 

operation that can characterize the related path. Such an 

instrumentation can use a floating point number for each 

basic block that is connected with the so far gained result by 

one of the primitive operators ρ Є {+,-,*,/}. The so gained 

path characteristics are used to address a node of an AVL tree 

(Adelson-Velskii, 1962) during the phase of gaining the 

operation experience. The node of the tree could have the 

following shape: 

struct pathCharacteristic {          

   double characterizingNumber; 

   unsigned long numberOfPathRuns; 

   struct pathCharacteristic *left; 

   struct pathCharacteristic *right; 

};  

As AVL trees are always well balanced, the effort of 

inserting into the right place in the tree increases only 

logarithmically with the size of the tree. It would only take 

about 17 steps for 100 000 paths and only about 20 steps for 

one million paths. The same applies for finding a path-related 

node for counting the runs. After each path traversal its 

numberOfPathRuns is increased by 1. 

The new operation profile should then be simulated using the 

same software. A comparison of the gained new number of 

runs to the old ones would enable to estimate upper limits of 

the failure probabilities in the new environment.    

5.2 Example of an instrumentation 

The software of Fig. 1 gets the following code lines in 

addition to the already existing ones. 

Starting point of the program, at the beginning of the main 

function:  
double characterizingNumber = 1.0; 

And then in  

Basic Block 1: characterizingNumber += 2.0; 

Basic Block 2: characterizingNumber -= 3.0;  

Basic Block 3: characterizingNumber *= 5.0; 

Basic Block 4: characterizingNumber /= 7.0; 

The resulting value of the characterizingNumber 

forms the argument of the subroutine that inserts into the tree 

at path end. May be, it is not necessary to use only prime 

numbers for calculating the characterising number. 

ip
~
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~
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~
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6. CONCLUSIONS 

It may well happen that the effort needed to implement the 

considerations of this contribution comes up to the effort for 

a “normal” verification procedure on the basis of a software 

analysis, related tests and formal proofs. Never the less even 

high reliability claims can be supported by this method. But it 

is not thought that white-box testing strategies could be 

completely omitted. 

Should failures occur during the operating experience and 

have they not been removed, a special consideration is 

needed. Related one-sided intervals can be gained by 

applying the tables of the Poisson distribution. But a program 

that is known to contain faults will normally not be allowed 

for safety applications. 

Meeting all the requirements that are connected with the 

method presented can be costly. If they cannot be met, 

deterministic reasoning is required to demonstrate that the  

violation does not have any effect or only a limited and 

tolerable one. As far as I know, the number of pre-use runs or 

test runs required by (1) can never be reduced. Using this 

method does not guarantee success in licensing at lower cost. 

Using it, however, always results in a warm feeling 

supplementing the results of other verification efforts; and 

sometimes it leads to  a quantitative reliability claim. Its main 

area of application is probably allowing widely used software 

packages in new environments. 
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APPENDIX A  

COLLECTION OF PRE-REQUISITES AND 

ASSUMPTIONS 

The following rules, requirements and assumptions are not in 

systematic order, as their criticality is usually project 

dependent. 

 

R1 The code of the pre-existing version(s) and the code of the 

version for the future application shall be identical. 

R2 No failures must occur during pre-operation. 

R3 Sequence and number of runs of any path must not 

influence any future run. 

R4 The distribution of input data that are processed in one 

path is approximately equal between the experience 

gathering period and the future operation period.  

R5 If the operational experience is simulated by tests, the 

individual test runs must be independent from each other.  

R6 Observation of information gathering is so strict and 

complete that any possible failure is recognised. 

R7 A specification existed that allowed to decide whether or 

not any result was correct of incorrect. 

R8 The paths shall be identified for the old and the future 

demand profile.  

R9 For estimating the demand profile for a new application 

model checking can perhaps help. 

R10 Each path shall have at least 2 runs.  
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R11 The                     shall be evaluated or conservatively 

estimated for each path i. 

R12  Concatenation of  paths or modules is allowed, if  they 

do not interact; in this case the largest        of the chain 

shall be taken. 

R13  If interacting modules are concatenated, the paths from 

start to end shall be taken. 

R14  Paths whose correctness has been proven, may be 

counted with pi = 0.   

R15 It is recommendable to verify the effect of loops with 

varying repetition number deterministically. 

R16 Separate considerations are required for complicated 

logical expressions or for complicated algorithms. 

R17 Some aspects, e.g. events that shall be triggered by the 

software at a specific future date, need deterministic 

verification and white box testing. 

R18 During the pre-use phase where the experience is 

gathered, no failure masking is allowed. See e.g. (Bishop 

1987)  
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