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Abstract:
Faulty operations of Heating, Ventilation and Air Conditioning (HVAC) chiller systems can lead
to discomfort for the occupants, energy wastage, unreliability and shorter equipment life. Such
faults need to be detected early to prevent further escalation and energy losses. Commonly,
data regarding unforeseen phenomena and abnormalities are rare or are not available at the
moment for HVAC installations: for this reason in this paper an unsupervised One-Class SVM
classifier employed as a novelty detection system to identify unknown status and possible faults
is presented. The approach, that exploits Principal Component Analysis to accent novelties
w.r.t. normal operations variability, has been tested on a HVAC literature dataset.

Keywords: Classification, Data reduction, Detection systems, Failure detection, Fault
identification, Machine learning, Performance monitoring

1. INTRODUCTION

Operating problems associated with degraded equipment,
failed sensors, improper installation, poor maintenance,
and improperly implemented controls plague many Heat-
ing, Ventilation and Air Conditioning (HVAC) systems;
these factors lead to inefficient operations (increased en-
ergy costs), discomfort, and increased wear of components
(reduced reliability and shorter equipment life). Fault De-
tection (FD) systems are nowadays playing a fundamen-
tal role in monitoring complex HVAC systems, detecting
anomalous behaviours in such way to keep the systems in
their best operational condition with minimum costs: when
unexpected anomalous events occur in HVAC systems,
their consequences can be quite damaging and costly (in
terms of money and time) to be treated.

Despite their use in other fields (i.e. automotive [Sievers
and Mortonson, 1983], aerospace [Henry et al., 2010],
manufacturing [Susto and Beghi, 2013], etc.), developing
efficient FD systems for HVAC installations remains as a
challenge due to the general unavailability of labelled data;
labelled data contain qualitative information related to the
functioning condition of the system (normal or anomalous
for example) and they are usually:

• costly because labelling is done manually by a human
expert;
• unfeasible because anomalous data instances are

never seen in most of the modern HVAC plants,
where none, or more generally, few of the potential
anomalies already happened in the past.

For these reasons in this field we are dealing with novelty
detection problems, that aim to monitor the behaviour of
the system and identify if shifts from the nominal working
conditions arise [Chandola et al., 2009].

In this paper we propose a method to detect anomalies
in order to smartly monitor system operating conditions
and predict in advance potential faults with application
to vapour-compression chillers. In particular, a centrifu-
gal chiller (which is identified by the type of employed
compressor) is considered; centrifugal chillers are popular
choices for facilities with medium and large cooling loads,
[Stanford, 2012]: this kind of cooling machines are variable
volume displacement units that use rotating impellers to
compress the refrigerant vapour and the cooling capacity
is regulated through the use of inlet vanes to restrict the
flow of refrigerant to the impeller. It is worth noticing,
that chiller component faults account for around 42%
of the service resources and around 26% of repair costs
[Comstock and Braun, 1999]: it goes without saying that
maintaining HVAC chiller systems in healthy conditions
and identifying anomalies in time is beneficial to both
energy and operating costs savings. In this context, we
consider anomalies as faults, a priori unknown, such as
reduced evaporator or condenser water flows, refrigerant
leakage or overcharge, condenser fouling, etc.

The main issue in HVAC anomaly detection is that most
of the variability in the data is due to the usual function-
ing of the system (see the example depicted in Fig. 1);
this unfortunately masks the appearing of anomalies and
makes their detection complicated, since the variability is
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Fig. 1. Chiller operating points at normal (i.e. fault-free)
conditions. The Coefficient of Performance (COP) is
defined as the ratio of heat removal from the evapo-
rator over energy input to the compressor. ASHRAE
1043-RP project.

dominated by the typical changes from different operating
conditions. To deal with this issue, the proposed anomaly
detection system, that is based on a kernelized One-Class
Support Vector Machine (OCSVM) classifier, is assisted
by Principal Components Analysis (PCA) to help the
discrimination between normal operating and anomalies-
related variability.

In order to test and validate the proposed anomaly detec-
tion technique, data-sets from the ASHRAE (American
Society of Heating, Refrigerating and Air Conditioning
Engineers) research project 1043-RP have been used [Com-
stock and Braun, 1999]; the project conducted experi-
mental studies to produce both fault-free and faulty data
sets on a centrifugal water-cooled chiller to develop and
evaluate fault detection and diagnosis methods. As final
result of our experiments we provide information about the
severity of detected anomalies by exploiting the distance
of new data from the OCSVM decision boundary as health
factor indicator of potential faults.

The paper is organized as follows: Section 2 is dedicated to
review Novelty Detection techniques and introduce One-
Class SVMs, while Section 3 deals with PCA; Section
4 illustrates the centrifugal chiller data-sets employed in
our experiments. The model corresponding to nominal be-
haviour is derived in Section 5, whereas the experimental
part is detailed in Section 6. Some concluding remarks are
given in Section 7.

2. NOVELTY DETECTION

Novelty detection is the identification of new or unknown
data/situations that a machine learning system is not
aware of during the training phase. In this domain, sta-
tistical classification tools [Hastie et al., 2001] that are
constructed and developed for discriminate between dif-
ferent classes of labelled data, are employed as detectors,
i.e. identifiers of “unfamiliar” cases. The statistical detec-
tion of novelties is fundamental in applications such as
Fault Detection and Statistical Process Control and it is
becoming a key issue as engineering systems are becoming
more and more sophisticated (and more “data-rich”) and

downtime due to unexpected faults should generally be
minimized [Susto et al., 2012]. Novelty detection belongs to
the class of unsupervised or semi-supervised problems, an
extremely challenging area: working with unlabelled data
requires, not only appropriated statistical tools, but also
experience and attention in describing the nature of the
data without overcomplicating the model.

Several statistical approaches have been employed for nov-
elty detection, amongst them: Gaussian Mixture Models,
Hidden Markov Models, Hypothesis Testing; however, all
the aforementioned methods assume that data distribu-
tions are Gaussian in nature: this, as in the modelling of
HVAC systems, can be a strict assumption.

Other approaches that do not impose restrictions on data
distribution are based on: k-Nearest Neighbour, Statistical
Clustering, One-Class Support Vector Machines.

In the work detailed in this paper we have chosen One-
Class Support Vector Machines (OCSVMs) to deal with
novelty detection for certain of the positive aspects of
this tool, mainly the capability of dealing with high-
dimensional dataset, but also the possibility of providing
kernelized solutions 1 [Schölkopf et al., 1999], that results
into having:

• non-linear decision boundaries (complex classification
rules available);

• convex optimality problems;
• flexibility in the solutions (hyperparameters available

to adapt the solution to the data type).

In the next subsections we introduce OCSVMs and the
related tuning issues.

2.1 One-Class Support Vector Machines

As stated above, One-class classification tries to identify
objects of a specific class amongst all objects, by learning
from a training set containing only the objects of that
class. OCSVM may be viewed as a standard two-class SVM
[Hastie et al., 2001], where all the training data lie in the
first class, and only the origin is taken as member of the
second class.

As introduced previously, SVMs have the good quality of
being able to provide non-linear classification through the
kernel trick [Schölkopf et al., 1999]: given a training data-
set X = {x1, ..,xn}, xi ∈ Rd, the OCSVMs algorithm
maps the data into a higher dimensional feature space and
finds a hyperplane to separate all the data objects from
the origin with maximum margin, by solving the following
quadratic programming problem:

arg minw,ξ,ρ

1

2
‖w‖2 +

1

νn

n∑
i=1

ξi − ρ, (1)

subject to

{
〈w,Φ(xi)〉 ≥ ρ− ξi
ξi ≥ 0

, (2)

where n is the number of training samples, ξ = [ξ1 . . . ξn]
and Φ(·) is a kernel function, a, generally non-linear,
feature map. In eq. (1), w represents the normal vector
and ρ is the offset of the desired hyperplane in the

1 In the following we will implicitly consider the kernelized version
of OCSVMs.
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feature space. The slack variable ξi measures the degree
of misclassification of the data. The trade-off parameter
ν ∈ (0, 1] is an upper bound on the fraction of training
samples outside the decision boundaries and a lower bound
on the fraction of support vectors (i.e. the data points that
cannot be discarded in simplifying the SVM solution).

In the SVM solutions (see Hastie et al. [2001] for details)
the kernel functions appear through the inner product:

k(xi,xj) = 〈Φ(xi),Φ(xj)〉 . (3)

A smart choice of the kernel function allows to avoid the
explicit mapping Φ(·), computing just the inner product.
Common choices for the inner product k(xi,xj) are:

Radial Basis (RBF): exp[−‖xi − xj‖2/(2σ2)];

Polynomial: (1 + 〈xi,xj〉)p;
Neural Network: tanh(a 〈xi,xj〉+ b).

In this work we have employed RBF functions and in the
following we will refer to RBF OCSVMs.

2.2 RBF OCSVM Tuning

It is worth noticing that the width parameter σ of Gaus-
sian kernel plays a key role in classification problems,
because it has a significant impact on accuracy and gen-
eralization performance. As σ increases, the number of
support vectors decreases and the decision boundaries
become looser. In addition, the parameter ν also affects
the shape of the decision boundaries: as ν increases, the
number of support vectors increases and the number of
misclassified training samples grows (Hastie et al. [2001]).

Since ν is closely related to the fraction of training samples
outside the decision boundaries, it is usually set to a
small value to ensure a small misclassification rate on the
training phase: therefore, choosing an appropriate value for
σ is the main challenge of building a satisfactory OCSVM.

In the considered semi-supervised context, the heuristic
approach proposed by Wang et al. [2012], which chooses
σ via tightness detecting, is employed. Based on the as-
sumption that training samples are representative, an ideal
decision boundary of OCSVMs should be neither tight
to ensure the generalization of classifiers, nor loose to
ensure the sensitivity to outliers. Since the relationship
between the tightness of boundaries and σ is monotonous,
an iterative algorithm is used to choose the width of Gaus-
sian kernel via tightness detecting so that an appropriate
tightness of decision boundaries is guaranteed.

3. PRINCIPAL COMPONENT ANALYSIS

A classification problem becomes significantly harder as
the dimensionality of the data increases. Sometimes data
are sparse in the space they occupy leading to difficulties
for the unsupervised learning; in the literature, this phe-
nomenon is referred to the curse of dimensionality. A high
data dimensionality is a problem for many classification
algorithms given the consequent high computational cost
and memory usage. Moreover, huge dimensionality in the
data can lead to poor understanding of the describing
model [Hastie et al., 2001].

Principal Component Analysis (PCA) can be employed
for dimensionality reduction. PCA is a linear projection-
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Fig. 2. Cumulative variance explained at the increase of
the considered PCs.

based method that transforms a set of variables into a new
set of uncorrelated variables, named Principal Components
(PCs). PCA is run for a dataset defined by an n×d design
matrix X where the d columns are variables and the n rows
are observations. X is written in terms of the n× l scores
matrix T , where l ≤ d, and the d × l loadings matrix P ,
plus a residual matrix E, as follows:

X = TPT + E =

l∑
i=1

tip
T
i + E, (4)

where ti = Xpi. The vectors {pi} are the PCs and
if l = d, then E = 0. PCs are arranged in order of
magnitude variability of X explained: the first PC, p1, can
be geometrically interpreted as the direction where most
of the variability lies, then other PCs define orthogonal
directions where less and less variability is contained. PCA
is called also Eigenvalue Decomposition, as each of the PCs
is related to an eigenvalue of the matrix in exam, ordered
in terms of magnitude.

The transformation induced by PCA can therefore be
employed for reducing the dimensionality of the problem
at hand, as just l < d variables can be employed to express
a certain amount of variability in the input dataset (see
Fig. 2). In this work PCA is employed also to group in
the first PCs the dominant variability of the problem
that is associated with the behaviour of system through
the various operating conditions and that conceals the
interesting changes associated to novelties.

4. CHILLER DATA-SETS

Centrifugal water-cooled chiller data from fault tests at
different levels of severity are used as anomalous be-
haviours to test and validate the proposed semi-supervised
anomaly detection strategy. The data were provided by
the ASHRAE research project 1043-RP. Specifically, ex-
perimental data from a 316 kW centrifugal water-cooled
chiller were collected. A wide variety of chiller faults was
studied, and four of them are here considered (Tab. 1).
Each fault was introduced at four levels of severity (10%-
40%), in increments of about 10% denoted by SL1-SL4.
In Tab. 1, fractional values indicate the level of fault
severity; for example, the range 0.59-0.61 under SL4 for
reduced condenser water flow indicates that the flow was
reduced to about 60% of the normal value. Tests (lasted
about 14.4 hours) consist of 27 experiments during which
the following three control variables have been modified:
chilled-water outlet temperature from chiller evaporator,
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Table 1. Considered chiller faults.

Symbol Fault Type Normal Operation SL1 SL2 SL3 SL4

fwc Reduced condenser water flow 17 [L/s] 0.87-0.93 0.77-0.81 0.69-0.70 0.59-0.61

fwe Reduced evaporator water flow 13.6 [L/s] 0.90-0.91 0.81-0.82 0.72-0.72 0.63-0.65

rl Refrigerant leak 136 [kg] 0.1 0.2 0.3 0.4

cf Condenser fouling 164 tubes 0.06 0.12 0.20 0.30

Fig. 1. Chiller system.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
60

65

70

75

80

85

90

95

100

PC

C
um

ul
at

iv
e 

V
ar

ia
nc

e 
E

xp
la

in
ed

 [%
]

96.69

99.30

Fig. 2. Chiller system.

ASHRAE (American Society of Heating, Refrigerating and
Air Conditioning Engineers) research project 1043-RP.
Specifically, experimental data from 316 kW centrifugal
water-cooled chiller were collected. The system consists of
a shell-and-tube evaporator, a shell-and-tube condenser,
a pilot-driven expansion valve (TXV) and a centrifugal
compressor. Capacity control is achieved by varying the
compressor’s inlet-guide-vane angle. The refrigerant R134a
(1, 1, 1, 2−Tetrafluoroethane) is used, and water is em-
ployed as secondary fluid. A schematic of the system and
refrigerant flow paths is shown in Fig. 2. A wide variety
of chiller faults was studied, and six of them are here
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of chiller faults was studied, and six of them are here
considered (Tab. 2). Each fault was introduced at four
levels of severity (10%-40%), in increments of about 10%)
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limited to process fault detection and did not include sensor faults, actuator faults, or control
loop or controller faults (Wang and Cui 2006). Also, the FDD processes were to rely on contin-
uous thermal, pressure, and electrical measurements as opposed to one-time diagnostic measure-
ments or other tests such as vibration and electrical signature analysis, visual inspection,
oil-wear debris analysis, or surface and internal defect detection tests (Davies 1998). The scope
of this research was limited to FDD methods based on steady-state data, which are consistent
with most of the FDD work to date in the HVAC&R area with the exception of a couple of stud-
ies (Bruecker and Braun 1998a, 1998b; Stylianou 1997) that use such transient data only curso-
rily and in a manner lacking rigor. Finally, only centrifugal chillers were considered. This limits
the size of chillers to above around 80 tons (281 kW) and excludes unitary equipment such as
rooftop units. Medium-to-large chillers come equipped with elaborate safety control mecha-
nisms for critical/catastrophic faults. This research was not targeted at these faults or the detec-
tion of hard faults, such as fan-belt breakage or a burnt motor, but rather toward incipient faults,
which lead to energy wastage and gradually damage equipment. Further, medium-to-large chill-
ers come equipped with numerous sensors (usually temperature, pressure, and electrical mea-
surements on individual sub-components) and contain distinct loops, such as the condenser and
evaporator loops, refrigerant loops, and cooling oil loops. Thus, any FDD method should explic-
itly make use of such a data-rich environment for which component isolation methods (McIn-
tosh et al. 2000; Jia and Reddy 2003; Wang and Cui 2006) seem particularly appropriate. On the
other hand, calibrated simulation model approaches for FDD are deemed best suited for systems
where limited sensor data are available, such as unitary rooftop cooling equipment (Rossi and
Braun 1997; Brueker and Braun 1998a, 1998b; Castro 2002).

DESCRIPTION OF CHILLER DATA SETS USED

The research supporting this paper makes use of the numerous experiments, under both
fault-free and faulty conditions, performed within the framework of previous ASHRAE
research project, RP-1043 (Comstock and Braun 1999). Specifically, experimental data on a
90-ton (316 KW) centrifugal water-cooled chiller were collected in which 1) a wide variety of
chiller faults were studied—eight to be exact, but only six are considered here (Table 1), and
2) each fault was introduced at four levels of severity (10%–40% fault levels in increments of
about 10%) denoted by SL1–SL4. Which physical quantities were altered and by how much in

Table 1. Summary of RP-1043 Lab Chiller Data Sets (Comstock and Braun 1999)

Description 
of Fault

Normal 
Operation

SL1 SL2 SL3 SL4

1 Reduced condenser water flow
270 gpm (17 L/s)

(0.98–1.0)
0.87–0.93 0.77–0.81 0.69–0.70 0.59–0.61

2 Reduced evaporator water flow
216 gpm (13.6 L/s)

(0.99–1.0)
0.90–0.91 0.81–0.82 0.72–0.72 0.63–0.65

3 Refrigerant leak 300 lb (136 kg) 0.1 0.2 0.3 0.4

4 Refrigerant overcharge 300 lb (136 kg) 0.1 0.2 0.3 0.4

5 Condenser fouling
164 tubes

total
0.06 0.12 0.20 0.30

6
Noncondensables in system

(by volume)
No nitrogen 0.01 0.017 0.024 0.057

Note: Fractional values indicate the level of fault severity. For example, the range 0.59–0.61 under SL4 for reduced
condenser water flow indicates that the flow was reduced to about 60% of the normal value.
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under SL4 for reduced condenser water flow indicates that
the flow was reduced to about 60% of the normal value.
Experimental test, which last about 14.4 hours, consist
of 27 steady-state operational points obtained by varying
the following three control variables: chilled-water outlet
temperature from chiller evaporator, condenser water inlet
temperature, and chiller thermal load.

In order to obtain the steady-state operational points,
the steady-state data filter developed by Rossi [1995] was
used to remove dynamic data. It regresses samples of a
variable using the OLS (Ordinary Least Squares) method
with a fixed moving time window length, and then obtains
the slope of the regression line, which can also indicate
the change rate of the variable. In the ASHRAE 1043-
RP, not more than 10% of the data are in steady-state
if all variables are selected as state characteristics for
the steady-state filter. These steady-state samples are
quite few for our anomaly detection objective. Therefore,
in this paper four state characteristics, i.e. the chilled
water supply temperature, the pressure of refrigerant in
evaporator and the entering condenser water temperature,
the pressure of refrigerant in condenser, are used for
steady-state detection. In this way about 60% of data are
provided for steady-state conditions.

Moreover, experience gained from past studies (Comstock
and Braun [1999] and McIntosh et al. [2000]) indicates that
anomaly/fault detection can be more sensitive if certain
characteristic quantities or characteristic parameters are
used instead of the basic sensor measurements. These char-
acteristic features can be directly deduced from the sensor
measurements using arithmetic operations and thermo-
dynamic refrigerant property tables or correlations. Def-
initions of the fifteen characteristic features subsequently
used for anomaly detection are provided in Tab. 2.

5. REFERENCE MODEL

In order to characterize the baseline system be-
haviour, 2/3 of observations from ASHRAE RP-
1043 “normal” data-set, i.e. the training data-
set (the remaining part is used as normal vali-
dation data-set), with the 15 characteristic fea-
tures depicted in Tab. 2, is considered. The One-
Class SVM is performed using LIBSVM software, Chang
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dynamic refrigerant property tables or correlations. Def-
initions of the fifteen characteristic features subsequently
used for anomaly detection are provided in Tab. 2.

5. REFERENCE MODEL

In order to characterize the baseline system be-
haviour, 2/3 of observations from ASHRAE RP-
1043 “normal” data-set, i.e. the training data-
set (the remaining part is used as normal vali-
dation data-set), with the 15 characteristic fea-
tures depicted in Tab. 2, is considered. The One-
Class SVM is performed using LIBSVM software, Chang
and Lin [2011], with Gaussian kernel. The parameter ν,
which approximates the fraction of training errors and
support vectors, is set to 0.05 in our experiments. The σ

Table 2. Considered chiller faults
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limited to process fault detection and did not include sensor faults, actuator faults, or control
loop or controller faults (Wang and Cui 2006). Also, the FDD processes were to rely on contin-
uous thermal, pressure, and electrical measurements as opposed to one-time diagnostic measure-
ments or other tests such as vibration and electrical signature analysis, visual inspection,
oil-wear debris analysis, or surface and internal defect detection tests (Davies 1998). The scope
of this research was limited to FDD methods based on steady-state data, which are consistent
with most of the FDD work to date in the HVAC&R area with the exception of a couple of stud-
ies (Bruecker and Braun 1998a, 1998b; Stylianou 1997) that use such transient data only curso-
rily and in a manner lacking rigor. Finally, only centrifugal chillers were considered. This limits
the size of chillers to above around 80 tons (281 kW) and excludes unitary equipment such as
rooftop units. Medium-to-large chillers come equipped with elaborate safety control mecha-
nisms for critical/catastrophic faults. This research was not targeted at these faults or the detec-
tion of hard faults, such as fan-belt breakage or a burnt motor, but rather toward incipient faults,
which lead to energy wastage and gradually damage equipment. Further, medium-to-large chill-
ers come equipped with numerous sensors (usually temperature, pressure, and electrical mea-
surements on individual sub-components) and contain distinct loops, such as the condenser and
evaporator loops, refrigerant loops, and cooling oil loops. Thus, any FDD method should explic-
itly make use of such a data-rich environment for which component isolation methods (McIn-
tosh et al. 2000; Jia and Reddy 2003; Wang and Cui 2006) seem particularly appropriate. On the
other hand, calibrated simulation model approaches for FDD are deemed best suited for systems
where limited sensor data are available, such as unitary rooftop cooling equipment (Rossi and
Braun 1997; Brueker and Braun 1998a, 1998b; Castro 2002).

DESCRIPTION OF CHILLER DATA SETS USED

The research supporting this paper makes use of the numerous experiments, under both
fault-free and faulty conditions, performed within the framework of previous ASHRAE
research project, RP-1043 (Comstock and Braun 1999). Specifically, experimental data on a
90-ton (316 KW) centrifugal water-cooled chiller were collected in which 1) a wide variety of
chiller faults were studied—eight to be exact, but only six are considered here (Table 1), and
2) each fault was introduced at four levels of severity (10%–40% fault levels in increments of
about 10%) denoted by SL1–SL4. Which physical quantities were altered and by how much in

Table 1. Summary of RP-1043 Lab Chiller Data Sets (Comstock and Braun 1999)

Description 
of Fault

Normal 
Operation

SL1 SL2 SL3 SL4

1 Reduced condenser water flow
270 gpm (17 L/s)

(0.98–1.0)
0.87–0.93 0.77–0.81 0.69–0.70 0.59–0.61

2 Reduced evaporator water flow
216 gpm (13.6 L/s)

(0.99–1.0)
0.90–0.91 0.81–0.82 0.72–0.72 0.63–0.65

3 Refrigerant leak 300 lb (136 kg) 0.1 0.2 0.3 0.4

4 Refrigerant overcharge 300 lb (136 kg) 0.1 0.2 0.3 0.4

5 Condenser fouling
164 tubes

total
0.06 0.12 0.20 0.30

6
Noncondensables in system

(by volume)
No nitrogen 0.01 0.017 0.024 0.057

Note: Fractional values indicate the level of fault severity. For example, the range 0.59–0.61 under SL4 for reduced
condenser water flow indicates that the flow was reduced to about 60% of the normal value.
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denoted by SL1-SL4. In 2, fractional values indicate the
level of fault severity; for example, the range 0.59-0.61
under SL4 for reduced condenser water flow indicates that
the flow was reduced to about 60% of the normal value.
Experimental test, which last about 14.4 hours, consist
of 27 steady-state operational points obtained by varying
the following three control variables: chilled-water outlet
temperature from chiller evaporator, condenser water inlet
temperature, and chiller thermal load.

In order to obtain the steady-state operational points,
the steady-state data filter developed by Rossi [1995] was
used to remove dynamic data. It regresses samples of a
variable using the OLS (Ordinary Least Squares) method
with a fixed moving time window length, and then obtains
the slope of the regression line, which can also indicate
the change rate of the variable. In the ASHRAE 1043-
RP, not more than 10% of the data are in steady-state
if all variables are selected as state characteristics for
the steady-state filter. These steady-state samples are
quite few for our anomaly detection objective. Therefore,
in this paper four state characteristics, i.e. the chilled
water supply temperature, the pressure of refrigerant in
evaporator and the entering condenser water temperature,
the pressure of refrigerant in condenser, are used for
steady-state detection. In this way about 60% of data are
provided for steady-state conditions.

Moreover, experience gained from past studies (Comstock
and Braun [1999] and McIntosh et al. [2000]) indicates that
anomaly/fault detection can be more sensitive if certain
characteristic quantities or characteristic parameters are
used instead of the basic sensor measurements. These char-
acteristic features can be directly deduced from the sensor
measurements using arithmetic operations and thermo-
dynamic refrigerant property tables or correlations. Def-

Table 2. Considered chiller faults
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limited to process fault detection and did not include sensor faults, actuator faults, or control
loop or controller faults (Wang and Cui 2006). Also, the FDD processes were to rely on contin-
uous thermal, pressure, and electrical measurements as opposed to one-time diagnostic measure-
ments or other tests such as vibration and electrical signature analysis, visual inspection,
oil-wear debris analysis, or surface and internal defect detection tests (Davies 1998). The scope
of this research was limited to FDD methods based on steady-state data, which are consistent
with most of the FDD work to date in the HVAC&R area with the exception of a couple of stud-
ies (Bruecker and Braun 1998a, 1998b; Stylianou 1997) that use such transient data only curso-
rily and in a manner lacking rigor. Finally, only centrifugal chillers were considered. This limits
the size of chillers to above around 80 tons (281 kW) and excludes unitary equipment such as
rooftop units. Medium-to-large chillers come equipped with elaborate safety control mecha-
nisms for critical/catastrophic faults. This research was not targeted at these faults or the detec-
tion of hard faults, such as fan-belt breakage or a burnt motor, but rather toward incipient faults,
which lead to energy wastage and gradually damage equipment. Further, medium-to-large chill-
ers come equipped with numerous sensors (usually temperature, pressure, and electrical mea-
surements on individual sub-components) and contain distinct loops, such as the condenser and
evaporator loops, refrigerant loops, and cooling oil loops. Thus, any FDD method should explic-
itly make use of such a data-rich environment for which component isolation methods (McIn-
tosh et al. 2000; Jia and Reddy 2003; Wang and Cui 2006) seem particularly appropriate. On the
other hand, calibrated simulation model approaches for FDD are deemed best suited for systems
where limited sensor data are available, such as unitary rooftop cooling equipment (Rossi and
Braun 1997; Brueker and Braun 1998a, 1998b; Castro 2002).

DESCRIPTION OF CHILLER DATA SETS USED

The research supporting this paper makes use of the numerous experiments, under both
fault-free and faulty conditions, performed within the framework of previous ASHRAE
research project, RP-1043 (Comstock and Braun 1999). Specifically, experimental data on a
90-ton (316 KW) centrifugal water-cooled chiller were collected in which 1) a wide variety of
chiller faults were studied—eight to be exact, but only six are considered here (Table 1), and
2) each fault was introduced at four levels of severity (10%–40% fault levels in increments of
about 10%) denoted by SL1–SL4. Which physical quantities were altered and by how much in

Table 1. Summary of RP-1043 Lab Chiller Data Sets (Comstock and Braun 1999)

Description 
of Fault

Normal 
Operation

SL1 SL2 SL3 SL4

1 Reduced condenser water flow
270 gpm (17 L/s)

(0.98–1.0)
0.87–0.93 0.77–0.81 0.69–0.70 0.59–0.61

2 Reduced evaporator water flow
216 gpm (13.6 L/s)

(0.99–1.0)
0.90–0.91 0.81–0.82 0.72–0.72 0.63–0.65

3 Refrigerant leak 300 lb (136 kg) 0.1 0.2 0.3 0.4

4 Refrigerant overcharge 300 lb (136 kg) 0.1 0.2 0.3 0.4

5 Condenser fouling
164 tubes

total
0.06 0.12 0.20 0.30

6
Noncondensables in system

(by volume)
No nitrogen 0.01 0.017 0.024 0.057

Note: Fractional values indicate the level of fault severity. For example, the range 0.59–0.61 under SL4 for reduced
condenser water flow indicates that the flow was reduced to about 60% of the normal value.
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considered (Tab. 2). Each fault was introduced at four
levels of severity (10%-40%), in increments of about 10%)
denoted by SL1-SL4. In 2, fractional values indicate the
level of fault severity; for example, the range 0.59-0.61
under SL4 for reduced condenser water flow indicates that
the flow was reduced to about 60% of the normal value.
Experimental test, which last about 14.4 hours, consist
of 27 steady-state operational points obtained by varying
the following three control variables: chilled-water outlet
temperature from chiller evaporator, condenser water inlet
temperature, and chiller thermal load.

In order to obtain the steady-state operational points,
the steady-state data filter developed by Rossi [1995] was
used to remove dynamic data. It regresses samples of a
variable using the OLS (Ordinary Least Squares) method
with a fixed moving time window length, and then obtains
the slope of the regression line, which can also indicate
the change rate of the variable. In the ASHRAE 1043-
RP, not more than 10% of the data are in steady-state
if all variables are selected as state characteristics for
the steady-state filter. These steady-state samples are
quite few for our anomaly detection objective. Therefore,
in this paper four state characteristics, i.e. the chilled
water supply temperature, the pressure of refrigerant in
evaporator and the entering condenser water temperature,
the pressure of refrigerant in condenser, are used for
steady-state detection. In this way about 60% of data are
provided for steady-state conditions.

Moreover, experience gained from past studies (Comstock
and Braun [1999] and McIntosh et al. [2000]) indicates that
anomaly/fault detection can be more sensitive if certain
characteristic quantities or characteristic parameters are

Table 2. Characteristic features.

Symbol Characteristic features

xi,1 Evaporator Water Temperature Difference
xi,2 Condenser Water Temperature Difference
xi,3 Calculated Condenser Heat Rejection Rate
xi,4 Calculated Evaporator Cooling Rate
xi,5 Refrigerant Suction Superheat Temperature
xi,6 Refrigerant Discharge Superheat Temperature
xi,7 Liquid-line Refrigerant Subcooling from Condenser
xi,8 Compressor Power
xi,9 Calculated Compressor Efficiency
xi,10 Evaporator Approach Temperature
xi,11 Condenser Approach Temperature
xi,12 Oil Feed minus Oil Vent Pressure
xi,13 Oil in Sump minus Oil Feed Temperature
xi,14 Pressure of Refrigerant in Evaporator
xi,15 Pressure of Refrigerant in Condenser

condenser water inlet temperature, and chiller thermal
load.

Machine Learning algorithms generally deal with static
data, therefore in order to remove the dynamical compo-
nent the steady-state data filter developed by Rossi [1995]
was employed: after the filtering procedure, about 60% of
the data were retained for modeling porpuses.

Moreover, experience gained from past studies [Comstock
and Braun, 1999], [McIntosh et al., 2000] indicates that
anomaly/fault detection can be more sensitive if certain
characteristic quantities or characteristic parameters are
used instead of the basic sensor measurements. These char-
acteristic features can be directly deduced from the sensor
measurements using arithmetic operations and thermody-
namic refrigerant property tables or correlations. Defini-
tions of the d = 15 characteristic features subsequently
used for anomaly detection are provided in Tab. 2.

5. REFERENCE MODEL

In the following we will describe how the “reference”
model to characterize the baseline system behaviour has
been derived: the analysis described has been developed
working on the PCs derived from the 15 characteristics
in Table 2. In deriving the reference (fault-free) model,
the observations of the ASHRAE RP-1043 related to non-
faulty runs 2 have been divided into training (67% of
samples) and validation (the remaining 33%).

The tuning phase of the One-Class SVM has been tackled
as follows: the parameter ν, which approximates the frac-
tion of training errors and support vectors, is set to a small
value (0.05) to ensure a small misclassification rate, as
motivated in Section 2, whereas the parameter σ is chosen
via tightness detection, a heuristic approach to evaluate the
tightness of the decision boundaries; if there exists at least

2 In the following we will refer to non-faulty conditions as “normal”
conditions.
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Fig. 3. Examples of tightness of the decision boundaries;
the sub-optimal classifier can be seen as a trade-off
between the loose (that barely adapts to the data at
hand) and the tight solution (that clearly overfits the
samples available).

one large hole inside the boundaries, i.e. a region without
samples, the tightness is considered “loose”. On the other
hand, if the boundaries nearby two neighbouring samples
are concave, the boundaries are considered “tight”. The
algorithm described in Wang et al. [2012] implements the
aforementioned idea and has been employed in this work to
tune σ; in Fig. 3, three 2D OCSVMs reference models are
depicted for visualization sake: the dimensions p14 and p15

are the principal components obtained by projecting the
features {xi} onto the eigenspace associated with the two
smallest eigenvalues. In detail, the pink coloured boundary
is considered loose, whereas the light blue coloured bound-
ary is considered tight; the blue coloured one is considered
sub-optimal, i.e. neither loose nor tight.

Different classifiers have been computed depending on
the input subset selection considered: in effect we will
illustrate in the following how smart reduction of the PCs
employed in the classification can strongly enhance the
novelty detection performance. To verify this idea, we have
tested classificators performance on new test data with
faulty (see Tab. 1) and fault-free related runs.

Two experiment types have been developed based on
different choice of the classificator input; in the first case,

we have computed the classifiers
{
f (i)
}d−1

i=0
by adopting

different input spaces {Ui} as follows:

f (i)(Ui), Ui = [pi+1 . . .pd], (5)

for i = 0, . . . , d − 1, with d = l. The performances, in
terms of misclassification error rates, are provided in Fig.
4 for 3 different types of faults: the error rate is defined
as the ratio of wrongly predicted data on total testing
data. The abscissa of Fig. 4 represents the number of PCs
discarded in the input space; more precisely, the leftmost
point corresponds to the error rate without dimensionality
reduction, while the next point corresponds to the error
rate when data are projected onto the space spanned by
all eigenvectors except that associated with the largest
eigenvalue and so on. It is worth noticing that the curves
generally have a U-shape: the minimum error rate is never
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Fig. 4. Error rate as function of the number of discarded
top eigenvectors.
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Fig. 5. Error rate as function of the number of discarded
minor eigenvectors.

achieved when the PCs that contain most of the input
variability are included into the input space; better results
are obtained once those first PCs are discarded: this can
be interpreted as an improvement of the classification
performance once the most of the variability (mainly the
one related to operating conditions changes) is left out
from the input space. This result motivates the use of PCA
analysis as procedure for ordering the variability of the sys-
tem in exam and allowing the concealed anomalies related
variability to be highlighted and more easily identified by
the classificator. Projecting the data onto the directions
of eigenvectors associated with smaller eigenvalues (e.g.,
from the 8th to the last one) before performing OCSVMs,
the average error rate is at least halved, compared to the
error without dimension reduction.

The previous idea that the first PCs describe most of the
usual operating condition variability is also supported by

a second type of experiment; the new classifiers
{
g(i)
}d−1

i=0
differ from the working input space Vi employed:

g(i)(Vi), Vi = [p1 . . .pd−i], (6)

for i = 0, . . . , d − 1. The results for this second type of
experiments are reported in Fig. 5: it can be seen how the
misclassication rate increases as the number of discarded

PCs associated with the smallest eigenvalues is augmented.
This proves how first PCs are not informative features for
novelty detection.

Following the experiments outcome we have chosen to
employ in Section 6 the classificator f (7), as it exhibits
the lowest average error rate with the considered faults.

6. RESULTS

In order to assess the performances of the OCSVM we use
data corresponding to different faults, and we evaluate the
ability of the classification model to distinguish normal
behaviour from anomalous one by Receiving Operating
Characteristic (ROC) analysis, exploiting the Area Under
the ROC Curve (AUC) as indicator of discriminatory
power. ROC curve is created by plotting the fraction of
true positives over the total actual positives vs. the fraction
of false positives over the total actual negatives, for a range
of different thresholds. A positive instance refers to a fault-
free operational point, whereas a negative one corresponds
to a faulty behaviour. The maximum value for the AUC
is 1.0, thereby indicating a perfect test, while an AUC
value of 0.5 indicates no discriminative value and it is
represented by a straight, diagonal line extending from the
lower left corner to the upper right.

In Fig. 6, we compute the ROC curve to analyze the
classification model on a set composed by the nominal
data (the fault-free portion of data employed for classifier
validation) and data related to four different anomalies
(i.e. reduced condenser water flow, reduced evaporator
water flow, refrigerant leak and condenser fouling), at
SL1 severity level. All the ROC curves are above the
diagonal representing a good classification results (better
than random classification): this fact is confirmed by the
AUC values (reported in the Figure legend). The ROC
analysis confirms that both the reduced condenser and
evaporator water flow rate are easily detected [Comstock
and Braun, 1999].

Furthermore, Fig. 7 depicts the performances of the clas-
sifier on test data considering just one type of anomaly,
the reduced evaporator water flow, at different severity
levels (SL1-SL4). The classification score increases as the
severity levels raises: intense fault severities are easier to
be classified and detected than low intensity faults (as
intuitively expected).

For Predictive Maintenance purposes it is interesting to
have not only an indication of the fault happening, but also
an estimation of its intensity; we exploit the distance of the
observations in exam from the OCSVM decision bound-
ary as a mean for inferring information about anomaly
severity: the underlying idea is that observations with
small fault nature will be close to the normal data (and
therefore to the decision boundary), while severe faults
related samples will be distant from normally classified
data and the OCSVM decision boundary.

Fig. 8 shows the boxplot representation of the signed-
distances from the decision boundary of points related
to the reduced evaporator water flow rate, at different
severity levels. A positive distance value corresponds to
a test point classified as normal, whereas a negative one
refers to an anomalous behaviour; it can be seen that in
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Fig. 6. ROC analysis related to different anomalies (faults)
at SL1 severity level.
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Fig. 7. ROC analysis related to the reduced evaporator
water flow at different levels of severity.

correspondence with the increase of the anomaly severity
level, the distance decreases in statistics; this shows how
the distance from the decision boundary could be exploited
for predictive maintenance purposes.

7. CONCLUSIONS

HVAC systems maintenance and energy efficiency can be
increased by adopting Fault Detection systems. A major
issue in developing efficient FD methods for HVAC in-
stallations is the unavailability of labelled data containing
information about the operating conditions of the system.
In this paper we have presented a novelty detection tool,
being able to identify anomalous situations without using
labeled data. We have shown how anomaly detection is not
an easy task in HVAC world due to the fact that normal
functioning conceals changes in the data related to anoma-
lous conditions: the proposed combination of OCSVMs
for classification and PCA for discarding the variability
related to usual operating conditions changes has been
shown to be effective in the detection performance.
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Fig. 8. Boxplot related to the signed-distance of points
corresponding to the reduced evaporator water flow
at different levels of severity.
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