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Abstract: This paper proposes a time-efficient method for sub-optimal design of a plug-in hybrid
electric vehicle with a parallel powertrain topology. The method finds the optimal design of the
vehicle by iteratively using dynamic programming (DP) and convex optimization to minimize sum of
operational and component costs over a given driving cycle. In particular, DP is used to optimize energy
management, gear shifting and engine on-off for given component sizes, and convex optimization is used
to optimize energy management and component sizes using the gear shifting and engine on-off strategies
obtained by DP. Next, DP is re-optimized with the component sizes obtained by convex optimization,
and the procedure is repeated until the component sizes converge. The result of this iterative method is
compared by using DP on a grid of possible component sizes. It is shown that the iterative method gives
a result very close to the global optimum in a comparably short time.
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1. INTRODUCTION

A hybrid electric vehicle (HEV) is a type of hybrid vehicle that
has an electric propulsion system in addition to a conventional
internal combustion engine (ICE). HEVs can reduce the fuel
consumption by downsizing the engine, recovering braking
energy, having extra power control freedom by the two power
sources, and stopping the engine when idle. Plug-in hybrid
electric vehicles (PHEV)s are the next generation of hybrid
vehicles that have the ability to store energy from the electrical
grid using large capacity batteries. PHEVs may drive short
trips entirely on stored electrical energy, thus decreasing the
vehicle’s dependency on petroleum.

The total cost of ownership of the PHEV depends directly on
the size of the powertrain components, and also on the way
the vehicle is operated, given a certain driving cycle. This is
because energy management ! affects the design, therefore, the
control strategy should ideally be part of the optimal design
process, to exclude its influence on component sizing. Hence,
the problem of optimizing the total vehicle cost should be
approached by simultaneous optimization of both energy man-
agement and component sizes. Moreover, the standard driving
cycles that are commonly used are too short to reflect life time
driving behavior of a driver, therefore, a long driving cycle is
needed which includes different driving situations.

The cost function comprises two parts; the first part reflects
the cost of key components of the vehicle, namely battery,
electric motor (EM), and ICE, and the second part reflects the
operational cost of fuel and electricity. This is a dynamic, non-
convex, nonlinear and mixed integer problem. The problem has

! the control strategy that determines the power split between ICE and addi-

tional energy source at every time instant, also including the gear shifting and
engine on-off

Copyright © 2014 IFAC

been solved using different methods, but the most typically
used methods based on well developed optimization theories
are convex optimization and dynamic programming (DP).

Convex optimization is used to solve this complex problem
by [Murgovski et al., 2012] and [Pourabdollah et al., 2013].
Convex problems have a unique optimum, and can be solved
fast and reliably. Both component sizes and the complete con-
trol trajectory of the continuous variables, i.e. the torque split
between ICE and EM can be included as optimization variables.
Convex optimization method can find the optimal sizes of the
battery, electric motor, and ICE for a PHEV. The problem with
convex optimization is that it cannot handle integer variables
and therefore, the integer variables of this problem, i.e., gear
shifting and engine on-off should either determined based on
heuristics prior to the optimization, or be given as an input and
this strategy can only solve a sub-problem.

Methods based on mixed integer programming are not suitable
in this type of problem due to the large number of the integer
variables. The number of the integer variables depends directly
on the size of the driving cycle which in this case is considered
to be relatively large.

On the other hand, Bellman’s principle (Bellman [1957]) is also
used to solve this highly nonlinear problem. DP can find the
optimal energy management which minimize the fuel cost for
given component sizes. Therefore, to find the optimal compo-
nent sizes, DP has to be used on a grid of possible compo-
nent sizes which is growing computationally ([Li et al., 2012],
[Ebbesen et al., 2012], and [Ravey et al., 2012]). The main
disadvantage of using DP is that its computational complexity
grows exponentially with the number of states. This problem
has one state, the battery state of charge, but it has also three
design parameters. Each design parameter requires an outer
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loops in DP which in term of computational complexity can
be considered as an extra state.

The idea in this paper is to use a combination of convex opti-
mization and DP to avoid the drawbacks of the two methods.
First, DP is used to find the optimal gear shifting and engine
on-off, for an initial component sizes. The optimal engine on-
off and gear shifting are given to convex optimization as an
input to get the sub-optimal component sizes. The component
sizes are then used as an input to run DP again. This procedure
is continued until the cost and sizes converge to the optimal
value. The result of this method is compared to the optimal
results obtained by using DP over a grid of component sizes.
It is shown that the component sizes obtained by this iterative
method converge to optimal value in a relatively short time.
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Fig. 1. Characteristics and features of DP, convex optimization
and combined optimization methods.

The rest of this paper is organized as follows. An overall
picture of the optimization problem, the driving cycle and the
model of the powertrain and its components are presented in
Section 2; A brief explanation of the optimization methods, i.e.,
convex optimization, DP, and the proposed method are provided
in Section 3. Illustrative results from the study are shown in
Section 4. Finally conclusions are drawn in Section 5.

2. PROBLEM FORMULATION AND MODELING

In this section, the problem formulation and modeling de-
tails are introduced. The study is concerned with an optimiza-
tion problem of finding a cost-effective vehicle that minimizes
the energy consumption. The problem constitutes an objec-
tive function and constraints, where the objective function is
a weighted sum of operational costs over the driving cycle J,,
and component costs Je,mp. The operational cost includes the
consumed fossil fuel and electrical energy, and the components
cost is the sum of the costs of battery, EM, and ICE. The
problem can be stated as:
N
HL}’IPJ = Jop(u(k)’ ) + mep(s) (D
k=1
subject to:
x(tk + 1) = f(x(k), uk), s)
xeXuelUseS,

where x and s are the state variable vector and the scaling factor
for components. The control input variable u is defined as:

u = [uqu.] 2)
where u, includes the continuous control inputs of length N and

ugq includes the integer control inputs of size N. These variables
are explained in more detail at the end of this section.

2.1 Driving cycle

In the optimization problem, we try to find the optimal compo-
nent sizes and the energy management variables over a given
driving pattern. Therefore, designing a vehicle with optimal
component sizes requires knowledge about the lifetime driving
pattern of the vehicle. However, since it is impossible to pre-
dict the precise lifetime driving cycle, and also computational
resources are limited, here we use a long driving cycle of length
N? that represents a real-life driving cycle. We assume that the
vehicle is driven on a horizontal road and has the possibility to
charge from the grid overnight.

The long driving cycle used in the optimization can reflect
real-life driving, but might not include extreme situations that
require high performance. Acceleration requirement is consid-
ered as an important vehicle attribute by many drivers, and are
hence added in the constraints. Acceleration as a function of
speed on a flat road is used to make a so called performance
cycle, which is then appended to the driving cycle. The per-
formance cycle includes speeds from zero to maximum speed,
increasing according to the accelerations interpolated from the
curve as explained in [Pourabdollah et al., 2013]. The driving
cycle used in the simulations is shown in Section 4. We assume
that the battery has the possibility to be charged with constant
power from the grid at charging occasions, where the car is
parked for 8 hours.

2.2 Modeling

In this section the models of the powertrain and its components
are presented. Since same models are used both for DP and
convex optimization, they all guarantee convexity *. Quasi-
static models are therefore approximated with nonlinear convex
functions and some variable change is also used. The accuracy
of these approximations are high and are discussed in detail in
[Murgovski et al., 2012].

Powertrain  The studied PHEV, depicted in Fig. 2, is a parallel
powertrain, where both the ICE and EM are mechanically
linked to the drive train and can propel the wheels. Having
the velocity v(k), the acceleration a(k), and zero road slope
at discrete time instants k from the driving cycle, the required
traction force F;(k) can be calculated as

caA ppv(k)?

2

where F; is the longitudinal force from the drive line and m,,,
Ay, ¢4, s & ¢y, and a are total vehicle mass, frontal area, air
drag coefficient, air density, gravitational acceleration, rolling
resistance coefficient, and acceleration, respectively. The total
vehicle mass, m,,,, is the sum of the masses of the glider,

Fi(k) = + M &Cr + Mygra(k), 3

2 provided by ETC Battery and FuelCells Sweden AB
3 A convex function satisfies f(Ax + (1 — )y) < Af(x) + (1 — D) f(y) for all
x,y € Rwith 0 < 1 <1 (see [Boyd et al., 2009]).
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Fig. 2. Parallel PHEV configuration (solid lines: mechanical
link, and dashed lines: electrical links).

Table 1. Vehicle parameters

parameter value
baseline mass (m) 1600 kg
glider mass (my) 1280 kg
frontal area (Af) 2.37 m?
rolling resistance (c,) 0.009
aerodynamic drag coefficient (¢g)  0.33

air density (p) 1.293 kg/m?
wheel radius (ry,) 0.3m

ratio of the final gear (ry,) 4.2

EM reduction gear (rg) 2

battery, EM, and ICE. The component masses are assumed to
be linear functions of sizes as

mj; = MjsiopeS “4)
for j € {bat, EM, ICE).

The powertrain model is described by power balance equations,
given as

Pdem(k) + Pbrk(k) = (5)

Teu(K)wem (k) + eon(K)T 1ce(k)wice(k)n(k) (6)
wEM(k)TEM(k) + PEM,Ioss(k) + Paux(k) = Pbat(k) + Pg(k)ng,

(7N

where Pg.,(k) is calculated as Py, = F,v using (3). Py

is the power dissipated at the friction brakes; Tgy, wgy and
Pruoss are torque, speed and power losses of the EM; Py,
Picg, and P, are battery power, mechanical power of the ICE
and electrical power used by auxiliary devices; n(k) and 7, are
transmission and charger efficiencies, which are assumed to
be constant. P, is the charger power and it is assumed to be
constant. For simplicity, the rotational inertias are neglected in
the models. The vehicle’s parameters are given in Table 1.

At each time instant on the driving cycle, the angular speed of
the EM and ICE are calculated as

wen(k) = rEMrri’j’vm), ®)

_ T'rg
wice(k) = 1y, ()’ICE(k))r—V(k), 9)

where r,,, rrg, rEM, and r,, ., (yice(k)) are wheel radius, ratio of
the final gear (differential), EM reduction gear, and ratio of the
transmission gear of ICE, respectively [Guzzella et al., 2007].
The model does not allow any slip in the clutch; therefore, the
vehicle is propelled by the EM at very low speeds.

Battery  The battery consists of sp, identical cells, each
modeled as an open circuit voltage V,,. in series with a constant
internal resistance, R. The open circuit voltage is approximated

to be constant in the allowed state of charge (SoC) operating
region. The terminal power, Py, and the stored energy of the
battery, Ej, are calculated as

(k)

bat

Prar(k) = $par(Vioei(k) = Ri*(K)) = V,ei(k) = R

(10)

Ep(k + 1) = Ep(k) = h(k) Voe i(k). 1n
The cell current i(k) € [iin, imax] 1S chosen to be positive when
discharging. The variable change 1(k) = Spgi(k) is introduced
to preserve the problem convexity [Murgovski et al., 2012].
During the available parking periods, it is assumed that the
vehicle is charged with constant current and power. Then, it
is assumed, without loss of generality, that the whole charging
energy enters the battery in one extra long sample, Az.(k), at the
parking occasions.

EM  The EM model with its power electronics is described by
a power loss map, Pgayjosspase> Where the losses are measured
at steady-state for different torque-speed combinations. The
power losses for each EM speed are approximated by a second-
order polynomial in torque. To vary the size of the EM, the
torque limits and losses are scaled linearly by scaling factor
sem- In this way the losses of the scaled EM are calculated at

each time instant as
Té (9]
P joss(k) = c1(k) -y + () Tem k) + c3(k)sey.  (12)

where the coefficients ¢; > 0, ¢ and c¢3 functions of wgy and
are calculated using least squares method for a number of grid
points of wgy,. For speed values not belonging to the grid nodes,
the coeflicients are obtained by linear interpolation ([Murgovski
et al., 2012], [Pourabdollah et al., 2013]).

ICE  The ICE fuel power, Py, is a function of the engine
torque and speed, and is derived from a map obtained from en-
gine experiments at steady state. The fuel power represented as
Willans lines ([Heywood, 1988], [Pachernegg, 1969]), approxi-
mates the ICE model by affine relations which is a second-order
polynomial in Tjcg, parameterized in engine speed. Assuming
that torque and losses scale linearly with a scaling factor s;cE,
the fuel power is calculated as

73,0
Pr(k) = bl(k)m + ba(k)Tcp(k) + by(k)siceeon, (13)

where the coeflicients by > 0, b,, and b3 are functions of w;cg
and hence time dependent. These coefficients are calculated in
a similar way as cj, ¢, and c3 for the EM. The engine on-off
variable e, is introduced to remove the idling losses b3 in (13),
when the ICE is off.

Problem Formulation The variables in (1) are given in more
detail this section. The operational cost in (1) includes the
consumed fossil fuel and electrical energy as
Pf Pel

Jop(k) = iy Prloh(k) + 15503600 s O,
where prpy is the lower heating value of gasoline and the
fuel power, Py, and charger power, P,, are converted to an
equivalent cost in EUR using energy prices py for gasoline and
pei for electricity, which are explained in more details later. The
sampling interval h(k) is equal to 1 s when driving and changes
at charging times where we consider that charging happens in
one sampling interval ([Pourabdollah et al., 2013]).

(14)

The components cost in (1) is the sum of the costs of battery,
EM, and ICE; the remaining cost of the vehicle is assumed to
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be independent of sizing and is therefore excluded from the
problem. The components cost is calculated as the depreciation
over the vehicle life-time, i.e., the proportion of the components
cost given by the ratio between the length of the driving cycle,
d, and the lifetime driving distance of the vehicle. Including a
yearly interest rate of p. = 5%, the components cost is given
by

v+ 1

)(costba, + costgy + costicg),

(15)
where y, is the vehicle lifetime, and s is the average traveled
distance of the vehicle in one year. For each component, the
cost model is an affine function

d
COSteomp = g (1 + pe
4

(16)

for j € {bat,EM,ICE}, where s; is a component scaling
parameter used to scale the size of the components. The cost
and mass functions are calculated from a baseline EM of 35 kW
power, and a baseline ICE with a displacement size equal to 1.6
L, and power equal to 65 kW. The battery is energy optimized
with a cell capacity of Q = 159 Wh.

COStj = COStjinit + COStjsiope Sj»

The state variable, x, in (1) is the energy in the battery given
in (11). The continuous input variable, u. is the torque split
between the ICE torque and the EM torque. The integer input
variable, u, consists of the engine on-off variable, e,, and the
gears, 7.

3. OPTIMIZATION METHODS

The dynamic programming and convex optimization methods
used in this paper are explained in more details in this section.
The proposed method which uses the DP and convex optimiza-
tion in iteration is introduced at the end of this section.

3.1 Dynamic programing

Dynamic programming is a method to solve optimal control
problems based on the Bellman’s principle of optimality ([Bell-
man, 1957]). In automotive applications, DP is used by many
authors to find the optimal energy management and gear shift-
ing which minimizes fuel consumption, while satisfying the
constraints on the SoC level and the powertrain models ([Lin
etal., 2003], [Hofman et al., 2004]). The dynamic programming
algorithm proceeds backward in time from N — 1 to 0. At each
time instant, the optimal torque split and gear is the one that
minimizes a cost. The cost at final time Jy(xy) here is assumed
to be zero, because there is no constraint on the final state
of charge. For given component sizes, DP finds the optimal
energy management, gear shifting and engine on-off at every
time instant.

The computation time of DP increases exponentially with the
number of states and is an issue despite the efforts that has
been done to reduce the burdens ([Johannesson et al., 2009],
[Sundstrom et al., 2013]). In order to solve the problem nu-
merically, the dynamic states and the control inputs are dis-
cretized both in time and value. To get an accurate result for
costs and gears, the number of grid points used for the state of
charge (SoC) and torque split need to be sufficiently high. But
increasing the number of grid points raises the computational
time dramatically. To show this, DP is used to find the optimal
solution over the driving cycle introduced in Section 2.1 with
different number of grid points and given component sizes. As

100 200 300 400 500 600 700 800 900 1000 1100 1200

100 200 300 400 500 600 700 800 900 1000 1100 1200

. . X : ;
"T100 200 300 400 500 600 700 800 900
grid points

1000 1100 1200

Fig. 3. The computational time, total cost , and percentage of
the time that a different gear is selected as a function of
grid points.

shown in Fig. 3, by increasing the grid points the accuracy
increases but at the same time the computational time rises
drastically. Moreover, the number of grid points also effects the
gear selection. To show this, the percentage of time instants that
the gear is selected differently compared to the gears selected
using 1200 grid points is illustrated in Fig. 3. Using the results
in Fig. 3, we choose 400 grid points in the simulations to get an
acceptable accuracy and computational time.

3.2 Convex optimization

Convex optimization is also used to solve the problem of find-
ing the optimal design and energy management. We first need to
define the convex powertrain and component models, in addi-
tion with the cost models and the performance requirements, to
solve a convex problem. For a vehicle model and a given driving
cycle, the gears and engine on-off need to be decided a-priori
and given to the convex optimization to preserve convexity.
Modeling of the powertrain and its components to guarantee
the convexity is the main step of the optimization method. Once
the problem is defined as a convex optimization problem, it can
effectively be solved by using solvers, in a relatively short time.
We use a tool called CVX ([Grant et al., 2010]) to automatically
translate the problem to a form required by a publicly available
solver, e.g. Sedumi. The constraints in the convex problem are
in forms of powertrain and component models, introduced in
section 2.2 and the maximum component ratings.

The decision variables of the optimization problem include,
firstly, the component scaling parameters Sp., Sgy, and sjcg,
which are all dimensionless scaling parameters for battery, EM,
and ICE. The second group consists of optimization variables
which are related to the energy management and are determined
for every time instant. These variables are EM torque Tg(k),
ICE torque, T)cg(k), battery current, i(k), battery state of en-
ergy, Ey(k), grid power, Pg(k), and braking power, Py, (k).

3.3 The combined convex optimization and DP method

The main idea introduced in this paper is to combine the
optimal results from DP and convex optimization, by using
the two methods alternately, to find the optimal component
sizes and energy management of a PHEV. In order to do this,
we start with DP using initial component sizes. DP provides
the optimal energy management and integer variables, namely
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Fig. 4. The combined convex optimization and DP method.
Dynamic programming finds the optimal energy manage-
ment, gear and engine on-off for given component sizes,
whereas convex optimization finds the optimal energy
management and component sizes for given gear and en-
gine on-off.

gears and engine on-off for the given component sizes. The
integer variables are then given to the convex optimization to
find the component sizes. This iteration is continued until the
cost and component sizes converge as shown in Fig 4.

4. RESULTS

In this section, the results of the iterative optimization of energy
management and component sizing are given. The optimization
is performed over a 176 km long (more than 10000 seconds)
real life driving cycle, followed by a performance cycle, in-
cluding 4 occasions where the car has possibility to charge the
battery with constant grid power for 8 hours, shown in Fig. 5.

The iteration starts with DP, given initial component sizes.
These initial inputs can have strong impact on the final results.
If not chosen correctly, they can result in a local optimum from
which the iterative procedure is not able to escape. There are
two main situations that can lead the iteration to local optimal
solutions. The first situation is if the engine is oversized in
the first iteration. In this way, to improve the efficiency, the
gears may be chosen so that the ICE torque becomes very
close to the maximum value. Using this gear shifting in convex
optimization puts a high demand on ICE torque and hence
results in a large ICE. In order to avoid this problem, the
maximum ICE torque is limited to 97% of its value. The limit
is relaxed if DP gives an infeasible solution, which means that
the ICE can not be decreased further. This manipulation is
justified since most torque demanding operating points are from
the performance cycle. At these points, DP without restriction
chooses a higher gear to increase efficiency. If the maximum
torque at these points is limited, a higher gear will be selected,
which demands lower engine torque and therefore size with
lower efficiency.

Similarly, when the initial battery size is bigger than the optimal
value. In this way, in the first iteration of DP, the vehicle is
propelled most of the time by the cheap energy from the battery
and the engine is turned off in order to reduce the losses.
Giving this optimal engine on-off to the convex optimization,
the battery stays oversized because the energy is provided often
by the battery, as the engine is turned off. In this way, the
iterative optimization never gets a chance to result in a smaller
battery size even if it is optimal.

To avoid this problem, a minimum feasible battery size is
chosen as the initial value. Here, the minimum allowed battery
is 2.39 kWh. This is because at speeds lower than the idling
speed the ICE is not used and the power is provided by the
battery. The result of the optimization in the first round is shown
in Fig. 5.

state of charge [%]

L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

speed [kph]

0 1000 2000 3000 4000 5000 6000 7000 8000 ~ 9000 10000
time [s]

Fig. 5. The optimal SoC (upper figure) and the speed profile of
the driving cycle (lower figure). The charging occasions
are also shown by red dots.
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Fig. 6. Number of battery cells, size of EM and ICE (upper
figure) and the total cost(lower figure), over 10 iteration
of convex optimization and DP starting with minimum
battery size.

The procedure of using convex optimization and DP is contin-
ued until the cost and component sizes converge. In Fig. 6 the
results of 10 iterations are given. As we can see, the optimal
sizes of the motor and the battery converge after the first iter-
ation. The cost and ICE size continue converging, but with a
slower rate until the last iteration. The total cost decreases from
€ 14.76 in the first iteration to € 13.77 in the last, which is 7%
difference.

The phenomena of prematurely converging to a local optimum
is shown in Fig. 7 when the iteration started with a large initial
battery size.

To evaluate the accuracy of the proposed method, we use DP
over a grid of component sizes shown in 8.

As seen in the figure, the optimal values obtained by DP and
iterative method, shown by red circle and star, are very close.
The total cost obtained by the iterative method is € 13.87 which
is even lower than the value from DP, € 13.9. This indicates
that the optimal value is not on the grid sizes, and to find
the correct value, DP needs to be run over smaller griding
around the current optimal point. However, this increases the
computational time even more. We have to bear in mind that the
computational time to find the optimal value using the iterative
method took around 13 hours whereas DP took around 1051
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Fig. 7. The size of ICE and EM, number of battery cells,(upper
figure) and the total cost (lower figure), over 10 iterations
of convex optimization and DP starting with a large initial
battery size.
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Fig. 8. Total cost over different sizes of battery, ICE and EM.
Darker color shows more cost efficient solutions and the
infeasible solutions are shown by cross. The optimal sizes
obtained by DP and iterative method are shown by red
circle and star.

hours. DP Iterations are run over 13*5%*8 component sizes.
For the selected 167 minutes long driving cycle, each iteration
takes around 2 hours of calculations on a Intel core 2, 2.67GHz
processor and 8GB memory.

5. CONCLUSION

In this paper, we used an iterative method of dynamic program-
ming and convex optimization to find close to optimal compo-
nent sizes, gear shifting, engine on-off and energy management.
The results show the cost and sizes converge to the optimal
value with a good accuracy after few iterations. For comparison,
DP is used on a grid of component sizes to find the optimal
design. The method does not guarantee global optima but when
taking some initiations into consideration, the iterative method
can find the component sizes close to the optimal in much
shorter computational time compared to DP. In the future work,
more investigations need to be done to ensure that the method
results in global optimal solution in various senarios. Moreover,
since using less grid points for the states and control inputs in
DP results in lower computational time, the effect of this can be
studied on the convergence of the solution.
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