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Abstract: Among various technologies to tackle the twin challenges of sustainable energy supply
and climate change, energy saving through advanced control plays a crucial role in decarbonizing
the whole energy system. Modern control technologies, such as optimal control and model
predictive control do provide a framework to simultaneously regulate the system performance
and limit control energy. However, few have been done so far to exploit the full potential
of controller design in reducing the energy consumption while maintaining desirable system
performance. This paper investigates the correlations between control energy consumption and
system performance using two popular control approaches widely used in the industry, namely
the PI control and subspace model predictive control. Our investigation shows that the controller
design is a delicate synthesis procedure in achieving better trade-off between system performance
and energy saving, and proper choice of values for the control parameters may potentially save
a significant amount of energy.
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1. INTRODUCTION

The Mankind has currently been challenged with two key
problems worldwide, namely the sustainable energy supply
and climate change. The International Energy Agency
(IEA) predicted an over 50 percent increase of the world
energy demand in 2030 (IEA (2005)), while dramatic cli-
mate change worldwide partly due to greenhouse gas emis-
sions (GGE) requires significant reductions of GGE in the
order of 60 percent or more by 2050 (TCG (2005)). With
the developments and innovations in control algorithm,
advanced control are widely and successfully applied to
the industry processes to tackle the twin challenges of
the increasing requirement of energy supply and climate
change. This is based on the fact that in modern industry,
from power generation such as the centrifugal governor to
efficient use of energy from the end users such as smart
home and advanced process control of large industrial
plants, control devices and equipments are widely used
to adjust and control most major energy consuming appli-
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ances. Therefore, energy saving through advanced control
can have profound impact.

In control engineering, the introduction of the feedback
control principle into the design of automated devices
can be traced back to a few thousand years ago. The
first governor designed by James Watt in 1764 using
proportional control to adjust the speed of a steam engine
marked the beginning of industrial revolution era, and has
transformed the living standards of the masses of ordinary
people (Lucas (2002)). Control theory has evolved from
classic control such as classic PID (Proportional-Integral-
Derivative) control, to modern control in dealing with
more complex and nonlinear dynamical systems in more
complex situations. Among a number of milestone control
approaches being proposed so far, PID control has still
been widely used in the industry, such as in the power
system operation and control as well as many industrial
process control (Yamamoto et al. (2009)). Other modern
control methods like the optimal control (Teleke et al.
(2010)), model predictive control (Zheng et al. (2013);
Qin and Badgwell (2003)), and robust control (Pal and
Chaudhuri (2005)), etc. have also found many successful
applications. Despite enormous progress has been made
in modern control theory and application in the last half
century, the twin challenges of sustainable energy supply
and climate change have thrown down the gauntlet for
control engineers to develop a new way of thinking and to
exploit the full potential in the controller design to reduce
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the energy consumption while maintaining the system
performance.

This paper investigates the correlations between control
energy consumption and system performance, and their
relations with controller design. It should be noted that
control energy and system performance have been both
considered in some modern control technologies in order
to find the optimal control laws, such as the optimal
control and model predictive control where the cost func-
tion to optimize the control sequence does consider the
both factors, and abundance of results are available for
the dual objective optimal control problem (Freudenberg
and Looze (1985); Vidyasagar (2011); Chen et al. (2001,
2003)). However, little has been done so far in the control
engineering literature to consider how these two factors are
related to each other and how to choose a proper control
target and a proper controller design strategy to maximize
the energy utilization (?) while achieving desirable system
performance. This is often referred to as part of the con-
troller synthesis in the literature.

Unlike early work where both control energy consumption
and system performance are considered in a weighted cost
function based on which a feasible or optimal control law
is derived, and weightings are often chose without any spe-
cific guidelines, this paper investigates the two criteria sep-
arately and investigates the detailed correlations among
them for different set of control parameters. To achieve
this, a simple first order plant with delay is taken as the ex-
ample, and the design of PI controller and subspace based
model predictive control are investigated. The paper shows
that there often exists a nonlinear correlation between the
control energy consumption and the system performance,
and with this detailed case study, it is demonstrated that
the controller design should carefully balance the sys-
tem performance and control energy consumption through
different choice of the control parameters. Further, the
paper illustrates that a proper choice of control parameters
in these two popular control methods can both reduce
energy consumption while maintaining desirable system
performance. On the contrary, improper choice of control
parameters will only waste energy without any benefit to
improve the system performance.

2. OPTIMIZATION OF PI CONTROLLER

2.1 Introduction

In this paper, the controller design for a typical first order
single-input single-output (SISO) linear system with a
time delay is investigated (Li et al. (2013)). This model
represents many typical real systems in power and process
industries.

Gp(s) =
K

Ts+ 1
e−τs (1)

where K, T and τ are amplification coefficient, time
constant and delay time respectively, which are easily
obtained from a step response curve. The feedback control
is introduced to regulate the system as shown in Fig. 1,
where Gc(s) is the controller.

Fig. 1. Feedback control block diagram

A PI controller is first investigated, which can be formu-
lated as

Gc(s) = Kp +Ki
1

s
(2)

where Kp and Ki are proportional and integral gains
respectively, which need to be carefully chosen to achieve
a desired performance.

The desired control purposes or system performance mea-
sures are often given in terms of the frequency domain
and/or the time domain, such as stability, steady state
error, and transient response specified in terms of peak
overshoot, rise time, settling time etc. The control energy

can be simply defined as
∫ tf
t0
u2(t)dt.

In some modern control technologies, such as optimal
control and model predictive control, both tracking perfor-
mance (tracking error) and control energy are combined to
produce a cost function to optimize the control sequence.
For example, in optimal control, the cost function is de-
fined as (Lewis et al. (2012)):

J = Φ[x(t0), t0, x(tf ), tf ] +

∫ tf

t0

L[x(t), u(t), t]dt (3)

where x(t) is the state, u(t) is the control, while Φ and L
are the end point cost and Lagrangian, respectively.

A particular form of the optimal control is the lin-
ear quadratic regulator (LQR) (Kwakernaak and Sivan
(1972)), where the cost function is defined as

J =
1

2

∫ ∞
0

[xT (t)Qx(t) + uT (t)Ru(t)]dt (4)

where Q and R are the weighting factors, which are defined
by human (engineers).

While the optimal control has provided a design framework
to adjust the system performance as well as limit the
control signals, there is no systematic means to specify
the weighting matrices and to investigate their relations
to the input energy consumption and control performance.
This is however crucially important for the role of energy
efficiency in decarbonizing the whole energy chain.

2.2 PI Controller Synthesis - Stability Issue

The stability is the first design consideration. The control
parameters should first ensure the stability of the system
for a given control structure. Since there is a delay term in
the model (delay often is caused by transport lag and the
distribution nature of the process), using the first order
Pade approximation, the delay can be approximated by

e−τs =
−τs+ 2

τs+ 2
(5)

It should be noted that the Pade approximation is only
used to give an initial ranges of the controller parameters
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and the ranges will be narrowed down in the simulation,
so the first order Pade approximation is sufficient.

Then, the characteristic equation of the feedback control
system in Fig. 1 with PI controller is given by:

∆ =Tτs3 + (2T + τ −KτKp)s
2

+ (2KKp −KτKi + 2)s+ 2KKi
(6)

To make the system stable, according to the Routh Crite-
rion, the following two inequalities should hold.

0 < Kp <
2T + τ

Kτ

0 < Ki <
2(KpK + 1)(2T + τ −KpKτ)

Kτ(4T + τ −KpKτ)

(7)

In the following simulation, K = 12, T = 16 and τ = 1.
From (7), the complete relation of Ki and Kp that makes
the system stable is illustrated in Fig. 2.
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Fig. 2. The relationship of feasible Ki and Kp

2.3 Control Parameters and System Performance

Once the feasible ranges of Ki and Kp that make the
system stable are obtained, the tracking performance and
control energy consumption for different settings of the
control parameters could be investigated for achieving a
good trade-off between the control energy reduction and
desirable tracking performance.

Note: The ranges of Kp and Ki in Fig. 2 are obtained
according to the first order Pade approximation model,
and the tracking performance will be quite bad when the
proportional gain Kp is close to the boundary of the ranges
of Ki satisfying the second equation in (7). In our following
simulations, the ranges for Kp and Ki are further reduced
in order to obtain better tracking performance. Examples
of feasible Ki and Kp are listed in Table 1.

Table 1. Ranges of feasible Ki and Kp

Ki 0.1 0.2 0.3 0.4 0.5

Kp 0.2∼1.9 0.3∼1.8 0.4∼1.7 0.5∼1.6 0.6∼1.5

In this paper, the tracking error is defined as

Ey =

T∑
k=1

(rk − yk)24T (8)

where yk is the actual system output and rk is the
reference input, 4T is the sampling interval, T is the total
simulation time and k is sampling step.

The control energy is defined as

Eu =

T∑
k=1

u2k4T (9)

Further, the total cost function (system performance) is
defined as Es, which is the sum of Ey and Eu, i.e. Es =
Ey + Eu.
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Fig. 3. Relation of system performance with different
control parameters

Fig. 3 shows the correlation between the control energy
Eu, tracking performance Ey and controller parameters.
In the experiments, the two parameters Ki and Kp are
incrementally changed with a magnitude of 0.1. The fol-
lowing observations can be obtained.

Observation 1: For the same Kp, the bigger the Ki

is, as more energy is consumed, the dynamic tracking
performance becomes worse. Further, the steady-state
error also needs to be taken into consideration. For this
reason, the integral gain Ki can never be set to zero.

Observation 2: For a fixed integral gain Ki, as the
proportional gain Kp increases, both the tracking error
and control energy decrease firstly and then increase. This
implies that the values of the control parameters which
lead to the increase of both tracking error and control
energy can not be selected.

Observation 3: For this system, when Kp is around 1.1
the tracking errors approach to the minimum and when
when Kp is around 0.8 the cost function values get near
to the minimum.

2.4 Tracking Performance for Different Ki and Kp

To visualize the tracking performance of the system for
different settings of the control parameters Ki and Kp

which make Eu, Ey and Es minimum respectively, Fig.4
gives the details of the system responses. The results are
also compared to the response with the Ziegler-Nichols
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(Z-N) tuning parameters which can be easily found in
many literatures about PID controller design (Ziegler and
Nichols (1942); Xue et al. (2002)). The detailed numerical
results are summarized in Table 2, where σ% is the
overshoot and ts is the settling time.
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Fig. 4. Tracking performance for different Ki and Kp

Table 2. System performance for different set-
tings of Ki and Kp

Ki \ Kp Eu Ey Es σ% ts

0.4 \ 1.2 4.78 2.57 7.36 83.98 17.9

0.1 \ 0.3 1.06 3.02 4.08 37.83 32.4

0.1 \ 1.0 2.06 1.54 3.60 31.19 10.8

0.1 \ 0.6 1.26 1.83 3.09 19.41 15.8

The first row of data in Table 2 are deduced by the Z-N
tuning method. From Fig. 4 and Table 2, it is obvious that
the system performances with Z-N tuning parameters are
not satisfied with almost every aspect. Settings of 0.1 and
0.6 provide a balance between control energy and tracking
performance and both the overshoot and settling time are
acceptable. This shows that the controller synthesis is a
delicate process in order to reduce the control energy while
maintaining desirable system performance.

2.5 Sensitivity Analysis

To further explore the nonlinear correlation between the
tracking performance and the control energy, the following
measures are defined.

The changes of control energy, tracking performance and
cost function are defined as follows:

Du(t) = δEu(t)

Dy(t) = δEy(t)

Ds(t) = δEs(t)

(10)

The sensitivity of tracking performance and cost function
with respect to the change of control energy are defined
as:

Syu(t) =
Dy(t)

Du(t)

Ssu(t) =
Ds(t)

Du(t)

(11)

Let Ki = 0.1, Fig. 5 shows the correlation between these
system measures (control energy, tracking performance)
and the proportional gain Kp.
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Fig. 5. System performance via control energy

The upper subgraph shows that all three performance
indexes decrease first and then increase. The cost function
transverses the x-axis and reach the minimum value at
around 0.8. Both the energy consumption and tracking
error increase when Kp is bigger.

From the bottom subgraph, it shows that at the beginning
both the control energy and tracking error decrease as Kp

increases and then with the growing of Kp the same energy
could only bring an insignificant decrease of the tracking
error. In other words, to improve the tracking performance
with the same degree, huge amount of energy is required.

3. SUBSPACE MODEL PREDICTIVE CONTROL

As an advanced control method, Subspace Model Pre-
dictive Control (SMPC) (Katayama (2005); Huang and
Kadali (2008)) has been widely used in the industry. In this
method, a number of controller parameters, including pre-
diction horizon, control horizon, tracking error weighting
and control weighting, need to be optimized beforehand.
For simplicity, only the correlation of the system energy
saving and the control weighting will be studied in this
paper.

Fig. 6. Framework of model predictive control
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3.1 Introduction of SMPC

A basic model predictive control system framework is
shown in Fig. 6, where Gm is the subspace prediction
model, the future prediction outputs ỹf are given by

ỹf = Lwwp + Luuf (12)

In this equation, matrices Lw and Lu are plant model pa-
rameters which are identified using the subspace method.
At time t, prediction controller can be designed using
equation (12). The data column vectors over a horizon
for the output and input signals are defined as:

ỹf =yt+1|t+N2
= [yt+1 · · · yt+N2−1 yt+N2

]T

uf =ut|t+Nu
= [ut · · · ut+Nu−2 ut+Nu−1]T

wp =wt−N |t = [yt−N · · · yt ut−N · · · ut−1]T
(13)

where N2 and Nu are the prediction horizon and control
horizon respectively, and N is the modelling horizon.

The following objective function is minimized to obtain
the optimal control law:

J = (rf − ỹf )TQy(rf − ỹf ) + uTf Puuf (14)

where Qy is the tracking error weighting matrix and Pu is
the control weighting matrix.

Qy =


q1
q2

. . .
qN2

 Pu =


p1

p2
. . .

pNu

 (15)

If the weightings on different time are all the same, the
controller parameters could be defined as Qy = IN2 and
Pu = pINu , where IN2 and INu are the identity matrices.

Then the optimal future control is:

uf = (pINu
+ LTuLu)−1LTu (rf − Lwwp) (16)

The input and output data are collected at each sampling
time and the model Gm is updated to design predictive
controller.

3.2 Control Weighting and System Performance

Considering the following discrete state space model. The
state space matrices G, H, C and D are obtained by
discretizing equation (1).

x(k + 1) = Gx(k) +Hu(k)

y(k) = Cx(k) +Du(k)
(17)

G =

[
0.8131 −0.0452
0.0226 0.9994

]
H =

[
0.1807
0.0023

]
C = [−0.3750 3] D = 0

(18)

Let the control horizon Nu = 5 and the prediction horizon
N2 = 10, p increases from 0 to 0.2 with an incremental step
0.05. The relations between control weighting p and system
performance within a finite simulation time T = 50s is
shown in Fig. 7.

According to Fig. 7, it can be observed that as the control
weighting p decreases, the tracking error decreases, while
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Fig. 7. Control energy and tracking error for different
control weightings

the control energy increases and this correlation is non-
linear. At a certain point, further increase of the control
energy will have much less effect on the improvement of
the tracking performance (in reducing the tracking errors).
This is well demonstrated in the cost function curve which
has a minimum point indicating that there exists a best
trade-off between control energy consumption and track-
ing performance. When p is bigger than 0.1, the change of
energy saving becomes insignificant, but the tracking error
keeps increasing.

3.3 Tracking Performance and Control Weightings

To further illustrate correlation of tracking performance
and control weighting, the system responses are detailed
in Fig. 8 and Table 3, where ess(%) and uss are the steady
state error and steady state input respectively.

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

1.5

S
y
st
em

o
u
tp
u
t

 

 

Time t

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

Time t

C
o
n
tr
o
l
en
er
g
y

Reference
p = 0

p = 0.03

p = 0.06

p = 0.09
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Table 3. System performance with different p

p Eu Ey Es ess(%) uss

0 8.34 1.15 9.49 0.98 0.083

0.03 1.73 1.45 3.18 3.02 0.081

0.06 1.17 1.76 2.93 7.21 0.077

0.09 0.93 2.11 3.03 12.96 0.073

For a better recognizable, the time scale of the bottom
subgraph is reduced to 10s. Fig. 8 and Table 3 show the
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cost function reaches the minimum when p is 0.06 which
means the global optimal solution is not the local optimal.
However, there exists a steady state tracking error and
the difference of ess is much bigger than the difference of
uss with different control weighting p. This means if the
simulation keeps running, the minimum Es could move
to a smaller control weighting p. In this simulation, the
energy cost is 1.73 and 1.17 when p is 0.03 and 0.06
respectively. For long term, it could potentially save a lots
of energy. For a much more complicated situation when
the cost function is defined with the incremental input,
the system stability need to be considered and the matrix
Qy can not be simply set to the unit matrix.

4. CONCLUSIONS

This paper has investigated in detail the correlation be-
tween control energy and the corresponding system per-
formance under different controller designs. Two popular
control strategies that have been widely applied, including
PI controller and subspace based model predictive con-
trol, are investigated to control a typical first order linear
system with a time delay. It has been shown that this
correlation is nonlinear for the design of the two controller
designs, and improper controller design may only waste
the control energy but bring little benefit to the improve-
ment of the system performance. On the other hand, a
proper controller design can not only save energy but also
maintain desirable system performance.

Our future work is to study from the perspective of control
theory to give a direct parameter optimal solution. And
SMPC controller parameters optimization with incremen-
tal input and the effect of N2 and Nu on the system per-
formance also need further investigation. The approaches
will be applied in the controller design for some real-
world energy intensive systems, such as power electronics
control in power transmission and distribution, and the
integration of renewable resources with the grid, as well
energy intensive manufacturing and processing systems.
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