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Abstract:
This paper considers the problem of inherent robustness analysis for nonlinear discrete–time systems
using the concept of a finite–time Lyapunov function. The main contribution is to prove that, for
sufficiently continuous dynamics and finite–time Lyapunov functions, inherent global input–to–state
stability to general disturbances can be established for nominally stable nonlinear systems. Moreover,
under mere continuity of the finite–time Lyapunov function and of the dynamics, inherent input–to–state
stability on a compact set is obtained.
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1. INTRODUCTION

Stability analysis of nonlinear systems is an inherently difficult
problem which is usually addressed by constructing Lyapunov
functions, see, e.g., (Khalil, 2002) and (Vidyasagar, 2002).
However, computing a Lyapunov function for general nonlinear
systems is rather difficult.

The finite–time Lyapunov function (FTLF) is a relaxation of
the classical Lyapunov function, where the decrease of the
Lyapunov function is required in a finite number of steps rather
than at each step. A similar relaxation was originally proposed
in (Aeyels and Peuteman, 1998), and it was also used in (Böhm
et al., 2012) and (Gielen and Lazar, 2012). Recently, it was
proven in (Bobiti et al., 2013) that for FTLF, any candidate
function can be used for stability analysis. Therein, FTLF were
proven to provide non–conservative stability analysis tests for
globally exponentially stable nonlinear systems, with a focus
on the tractability of such tests for linear systems. Given the
freedom of choosing any candidate function, FTLF is an at-
tractive approach for stability analysis of nonlinear systems. In-
deed, stability analysis via FTLF is opening new opportunities,
see (Lazar et al., 2013a), where scalable and non–conservative
FTLF stability tests were developed for switched linear sys-
tems.

However, while FTLF are attractive for stability analysis, it is
yet unknown if inherent robustness can be guaranteed by FTLF.
Since inherent robustness is a major concern for discrete–time,
possibly discontinuous systems, see, e.g., (Grimm et al., 2004),
(Lazar et al., 2009), (Lazar et al., 2013b), the goal of this paper
is to provide a framework for inherent input–to–state stability
(ISS) analysis via FTLF.

To this end, let us recall the usual approach to inherent ISS
via standard Lyapunov functions. ISS of discrete–time systems
was formulated in (Jiang and Wang, 2001) and it was further
explored in (Limón et al., 2006), (Magni et al., 2006), (Lazar
et al., 2008) and (Lazar and Heemels, 2009) in a Lyapunov
functions context. As shown in (Lazar et al., 2009), globally
exponentially stable systems may lack ISS even to arbitrar-

ily small inputs, if the nominal dynamics and the Lyapunov
function are discontinuous. On the other hand, in (Lazar et al.,
2013b) it is shown that if the Lyapunov function is sufficiently
continuous, then inherent, even global ISS can be guaranteed.

In this context, the question to be addressed by this paper is
to find the conditions under which inherent ISS is guaranteed
for nominally stable systems in a FTLF framework. It is illus-
trated through an example that, unlike the classical Lyapunov
functions, see (Lazar et al., 2013b), the existence of a K∞–
continuous (KIC) FTLF does not necessarily imply inherent
ISS. Therefore, a formal proof of inherent ISS is established,
under a set of assumptions concerning the nominal system dy-
namics, the perturbed system dynamics and the class of FTLF
candidates. More specifically, the main contribution of this
paper is to prove that ISS FTLF implies global ISS under the
assumptions that the nominal system dynamics is KIC and the
system is uniformly KIC with respect to the disturbance. More-
over, it is proven in this paper that under the same assumptions,
a KIC FTLF becomes an ISS FTLF as well. Therefore, under
certain conditions, existence of a FTLF guarantees ISS.

Furthermore, the paper introduces inherent ISS results for sys-
tems defined on compact sets, with general disturbances taking
values from a compact set, by FTLF.

The remainder of this paper is organized as follows. In Sec-
tion 2, basic notation and definitions are introduced, together
with the system class and the definition of a FTLF. Then, Sec-
tion 3 introduces an example motivating the analysis of inherent
robustness and the ISS results for discrete–time systems in the
context of FTLF. Section 4 provides conditions for ISS on
compact sets. Section 5 concludes the paper.

2. PRELIMINARIES

This section introduces basic notation as well as the system
class considered in this paper and the concept of a FTLF.

Let R, R+, Z and Z+ denote the field of real numbers, the set
of non–negative reals, the set of integers and the set of non–
negative integers, respectively. For every c ∈ R and Π ⊆ R,
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define Π≥c := {k ∈ Π | k ≥ c} and similarly Π≤c.
Furthermore, RΠ := R ∩ Π and ZΠ := Z ∩ Π. Let Sh := S ×
. . .× S for any h ∈ Z≥1 denote the h–times Cartesian–product
of S ⊆ Rn. Denote ◦ the operator of maps composition, i.e., for
two arbitrary maps α1 : D1 → C1, and α2 : D2 → C2, with
C2 ⊆ D1, α1 ◦ α2(x) = α1(α2(x)),∀x ∈ D2. Let αh := α ◦
. . . ◦ α for any h ∈ Z≥1 denote the h–times map composition
of α : C→ C. Let id : Rn → Rn be the identity function, i.e.,
id(x) = x, ∀x ∈ Rn. Observe that id−1(x) = id(x) = x. Let
B denote the open unit ball in Rn. Let O define the closure of
a set O. Also, let B (or B) denote the open (or closed) unit ball
in Rn.

For a vector x ∈ Rn, the symbol ‖x‖ is used to denote an
arbitrary p–norm; it will be made clear when a specific norm
is considered. For a sequence {xj}j∈Z+

, with xj ∈ Rn, x[k]

denotes the truncation of {xj}j∈Z+ at time k ∈ Z+, i.e., x[k] =
{xj}j∈Z[0,k]

, and x[k1,k2] denotes the truncation of {xj}j∈Z+
at

times k1 ∈ Z≥1 and k2 ∈ Z≥k1
, i.e., x[k1,k2] = {xj}j∈Z[k1,k2]

.
For a sequence {xj}j∈Z+

, with xj ∈ Rn, ‖{xj}j∈Z+
‖ :=

sup{‖xj‖|j ∈ Z+}.
A function α : R+ → R+ is said to belong to class K, i.e.,
α ∈ K, if it is continuous, strictly increasing and α(0) = 0.
Furthermore, α ∈ K∞ if α ∈ K and lims→∞ α(s) = ∞. The
function β : R+×R+ → R+ is said to belong to classKL, i.e.,
β ∈ KL, if for each fixed s ∈ R+, β(·, s) ∈ K and for each
fixed r ∈ R+, β(r, ·) is decreasing and lims→∞ β(r, s) = 0.
Fact 1.

The following statements are true:

(i) If α1, α2 ∈ K∞, then α1 + α2 ∈ K∞;

(ii) If α1, α2 ∈ K∞, then max(α1, α2) ∈ K∞;

(iii) If α1, α2 ∈ K∞, then α1 ◦ α2 belongs also to class K∞;

(iv) If α ∈ K∞, then α−1 ∈ K∞;

(v) If β1 ∈ KL and α1 ∈ K, then β := β1(α1(s), k) is also of
class KL;

(vi) If a function α : R+ → R+ is of class K, then α(x1 +
x2) ≤ α(2 max(x1, x2)) ≤ α(2x1) + α(2x2), for all
(x1, x2) ∈ R2

+.

Some of the above statements can also be found in (Limón
et al., 2006).

2.1 System class

Consider the discrete–time perturbed autonomous nonlinear
system

xk+1 = Φ(xk, vk), k ∈ Z+, (1)

where xk ∈ Rn is the state, vk ∈ Rdv is an unknown dis-
turbance input and Φ : Rn × Rdv → Rn is a nonlinear, pos-
sibly discontinuous function. Denote the corresponding non–
disturbed system by

G(x) := Φ(x, 0), ∀x ∈ Rn (2)
with G : Rn → Rn and G(0) = Φ(0, 0) = 0.

Let {xk(ξ)}k∈Z+
denote the solution of (2) from initial con-

dition ξ ∈ Rn, i.e., such that x0(ξ) := ξ and xk+1(ξ) :=

G(xk(ξ)) for all k ∈ Z+. Let {xk(ξ, v[k−1])}k∈Z+ denote
the solution of (1) from initial condition ξ ∈ Rn, such that
x0(ξ, 0) := ξ and xk+1(ξ, v[k]) := Φ(xk(ξ, v[k−1]), vk) for
all k ∈ Z+. Denote xk := xk(ξ, v[k−1]), or Φk(ξ, v[k−1]) :=

xk(ξ, v[k−1]) for all k ∈ Z≥1 and all v[k−1] ∈ (Rdv )k.

For any i ∈ Z≥1, let G
i

: Rn ⇒ Rn be a set valued map such
that

G
i
(X) := {Gi(x)|x ∈ X},

for any set X ⊆ Rn. By convention, G
0
(X) := X. Similarly, let

Φ
i

: Rn × (Rd)i ⇒ Rn such that

Φ
i
(X,Di) := {Φi(x, v[i−1])|x ∈ X, v[i−1] ∈ Di},

for any sets X ⊆ Rn and D ⊆ Rdv . By convention,
Φ

0
(X,D0) := X.

Definition 2. The system (2) is called globally KL–stable if
there exists a KL function β : R+ × R+ → R+ such that
‖xk(ξ)‖ ≤ β(‖ξ‖, k) for all (ξ, k) ∈ Rn × Z+.
Definition 3. (Jiang and Wang, 2001) The perturbed system (1)
is globally input–to–state stable (globally ISS) if there exists a
KL function β and a K function γ such that the corresponding
state trajectory satisfies

‖xk(ξ, v[k−1])‖ ≤ β(‖ξ‖, k) + γ(‖v[k−1]‖), (3)

for all (ξ, k) ∈ Rn × Z+ and all {vj}j∈Z+
with vj ∈ Rdv for

all j ∈ Z+.
Definition 4. A system is called zero–robust if it is not ISS for
any, arbitrarily small non–zero disturbances.
Definition 5. A real valued function V : Rn → R+ is called
K–infinity continuous (KIC) if there exists a function σV ∈
K∞ such that

|V (x)− V (y)| ≤ σV (‖x− y‖), (4)
for all (x, y) ∈ Rn × Rn.
Definition 6. A map G : Rn → Rn is called KIC if there exists
a function σx ∈ K∞ such that

‖G(x)−G(y)‖ ≤ σx(‖x− y‖), (5)
for all (x, y) ∈ Rn × Rn.
Definition 7. Let X ⊆ Rn. Then, a map G : X → X is called
Lipshitz continuous in X if there exists an a ∈ R+ such that

‖G(x)−G(y)‖ ≤ a‖x− y‖, (6)
for all (x, y) ∈ X× X.
Definition 8. A map G : Rn → Rn is called K∞–bounded if
there exists a function α ∈ K∞ such that

‖G(x)‖ ≤ α(‖x‖), (7)
for all x ∈ Rn.

Observe that the condition of K∞–boundedness on a system
which is globally KL–stable is not restrictive, since K∞–
boundedness is derived from KL–stability when k = 1. More-
over, if G is KIC, then G is also K∞–bounded. Nevertheless,
the converse does not hold.
Definition 9. A map Φ : Rn × Rdv → Rm is called KIC
uniformly in x if there exists a function σd ∈ K∞ such that,
for all x ∈ Rn,

‖Φ(x, v)− Φ(x,w)‖ ≤ σd(‖v − w‖), (8)

for all (v, w) ∈ Rdv × Rdv .
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2.2 Definition of a FTLF

Let us state the definition of a FTLF, as introduced in (Bobiti
et al., 2013) and (Lazar et al., 2013a).
Proposition 10. Let α1, α2 ∈ K∞. Suppose that the function
G : Rn → Rn corresponding to the dynamics (2) is K∞–
bounded and there exists a function V : Rn → R+ such that

α1(‖ξ‖) ≤ V (ξ) ≤ α2(‖ξ‖), ∀ξ ∈ Rn, (9a)
and that there exists anM ∈ Z≥1 and corresponding ρ ∈ R[0,1)

such that
V (xM (ξ)) ≤ ρV (ξ), ∀ξ ∈ Rn. (9b)

Then, system (2) is globally KL-stable.
Definition 11. The real valued function V : Rn → R+ which
satisfies the conditions of Proposition 10 is called a global
FTLF.

The proof of Proposition 10 is a particular case of the proof of
Theorem 13 on ISS, which corresponds to zero input, and is
omitted for brevity.

The idea that is employed in Proposition 10, i.e., to relax
the classical Lyapunov conditions such that the corresponding
function is decreasing after a finite time rather than at each time
instance, was inspired by the asymptotic stability criterion by
(Aeyels and Peuteman, 1998) for time–variant dynamical sys-
tems. Therein, conditions for asymptotic stability of both dif-
ferential and difference time–varying equations were obtained
in a similar fashion.

3. SUFFICIENT ISS THEOREMS BASED ON FTLF

3.1 Motivating example

It was indicated in (Lazar et al., 2013b) that the existence of a
KIC Lyapunov function is sufficient for inherent global ISS. It
is of interest to verify whether inherent ISS is also guaranteed
for a KIC FTLF.

An example of a system which admits a KIC FTLF and is not
ISS is inspired by Example 2 in (Lazar et al., 2009).
Example 1. Let the system

xk+1 = G(xk) = Aixk + fi, if xk ∈ Ωi (10)
with i ∈ {1, 2}, A1 = A2 = 0, f1 = 0, f2 = 1 and a partition
given by Ω1 = {x ∈ R|x ≤ 1}, Ω2 = {x ∈ R|x > 1}.
System (10) admits a FTLF V (x) = ‖x‖, for all x ∈ R, with
M = 2. Because the norm is KIC, it follows that system (10)
admits a KIC FTLF. However, as shown in (Lazar et al., 2009),
system (10) is not ISS, not even for arbitrarily small inputs. �

Example 1 shows a system that is GES, but it has zero–
robustness and it illustrates the fact that the existence of a KIC
FTLF does not guarantee ISS. This is in contrast with the results
in (Lazar et al., 2013b) on KIC Lyapunov functions, which are
proven to grant inherent ISS. This observation motivates finding
the conditions under which a KIC FTLF implies inherent ISS.

3.2 ISS from an ISS FTLF

The following assumptions are of use for the ISS analysis.
Assumption 1. The map G of system (2) is K∞–bounded, i.e.,
(7) holds for all x ∈ Rn.

Assumption 2. The map G of system (2) is KIC, i.e., (6) holds
for all (x, y) ∈ Rn × Rn.

Observe that Assumption 2 implies Assumption 1, while the
converse does not necessarily hold.
Assumption 3. The map Φ underlying the perturbed system (1)
is KIC uniformly in x, i.e., for all x ∈ Rn (8) holds for all
(v, w) ∈ Rdv × Rdv .
Lemma 12. Suppose Assumption 1 and Assumption 3 hold.
Then, there exist functions ω, η ∈ K∞ such that, for all j ∈
Z[1,M−1] and all v[j−1] ∈

(
Rdv

)j
,

‖xj‖ ≤ ω(‖x0‖) + η(‖v[j−1]‖), ∀x0 ∈ Rn. (11)

Proof. Let us first prove by induction that ∀j ∈ Z[1,M−1],
∃ωj , ηj ∈ K∞ such that

‖xj‖ ≤ ωj(‖x0‖) + ηj(‖v[j−1]‖). (12)

By Assumption 1 we get:
‖G(x0)‖ ≤ α(‖x0‖), (13)

for all x0 ∈ Rn. Moreover, from Assumption 3, with w = 0,
and using the triangle inequality and the inequality (13), it
follows:

‖x1‖ = ‖Φ(x0, v0)‖ ≤ ‖Φ(x0, 0)‖+ σd(‖v0‖)
≤ α(‖x0‖) + σd(‖v0‖), (14)

for all (x0, v0) ∈ Rn × Rdv , which means that (12) holds for
j = 1, with ω1 := α and η1 := σd. Suppose that (12) holds
for some j ∈ Z≥1. Following the same reasoning as in (14), it
follows that

‖xj+1‖ = ‖Φ(xj , vj)‖ ≤ α(‖xj‖) + σd(‖vj‖). (15)
Using (12) and Fact 1-(vi) further yields:

‖xj+1‖ ≤ α(ωj(‖x0‖) + ηj(‖v[j−1]‖)) + σd(‖vj‖)
≤ α ◦ 2id ◦ ωj(‖x0‖)

+ (α ◦ 2id ◦ ηj + σd)(‖v[j]‖). (16)
Next, letting ωj+1 := α◦2id◦ωj ∈ K∞ and ηj+1 := α◦2id◦
ηj + σd ∈ K∞, the inequality in (16) recovers inequality (12)
for j + 1. Then, letting

ω := max
j∈Z[1,M−1]

ωj ∈ K∞, (17)

and
η := max

j∈Z[1,M−1]

ηj ∈ K∞, (18)

where Fact 1-(ii) was used, yields that (7) holds. �

Let us define the main result which illustrates conditions under
which a system is globally ISS.
Theorem 13. Let α1, α2 ∈ K∞. Suppose Assumption 1 and
Assumption 3 hold and there exists a real valued function
V : Rn → R+ such that

α1(‖ξ‖) ≤ V (ξ) ≤ α2(‖ξ‖), ∀ξ ∈ Rn, (19a)
and that there exists an M ∈ Z≥1, a corresponding ρ ∈ R[0,1)

and a σ ∈ K such that
V (xM (ξ, v[M−1])) ≤ ρV (ξ) + σ(‖v[M−1]‖) (19b)

holds ∀ξ ∈ Rn,∀v[M−1] ∈
(
Rdv

)M
. Then, system (1) is

globally ISS.

Proof. Let k = MN + j, where N ∈ Z+ and j ∈ Z[M−1].
From (19b) it follows:
V (xk(ξ, v[k−1])) = V (xM (xk−M , v[k−M,k−1]))

≤ ρV (xk−M ) + σ(‖v[k−M,k−1]‖), (20)
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for all (ξ, k) ∈ Rn × Z≥1. Applying recursively the inequality
from (20) it follows that:

V (xk) ≤ρNV (xj) +

N−1∑
i=0

ρiσ(‖v[k−(1+i)M,k−iM−1]‖), (21)

for all (ξ, k) ∈ Rn × Z≥1.

Moreover, the inequality ‖v[k−(1+i)M,k−iM−1]‖ ≤ ‖v[k−1]‖
holds for any i ∈ Z[N−1]. Replacing this in (21), using (19a)
and the facts that N = k−j

M and σ ∈ K further yields:

α1(‖xk‖) ≤ V (xk) ≤ ρ
k−j
M V (xj) +

N−1∑
i=0

ρiσ(‖v[j,k−1]‖)

≤ ρ
k−j
M α2(‖xj‖) + σ(‖v[k−1]‖)

1

1− ρ
, (22)

for all k ∈ Z≥1. Taking into account that α−1
1 ∈ K∞ and

σ ∈ K, the inequality in (22) can be rewritten as:

‖xk‖ ≤ α−1
1

(
ρ

k−j
M α2(‖xj‖) + σ(‖v[k−1]‖)

1

1− ρ

)
≤ α−1

1

(
2ρ

k−j
M α2(‖xj‖)

)
+

+ α−1
1

(
2σ(‖v[k−1]‖)

1

1− ρ

)
, (23)

for all k ∈ Z≥1. Following Lemma 12 and considering that
α−1

1 , α2 ∈ K∞ and ξ := x(0), inequality (23) becomes:

‖xk‖ ≤α−1
1

(
2ρ

k−j
M α2(ω(‖ξ‖) + η(‖v[j−1]‖))

)
+ α−1

1

(
2σ(‖v[k−1]‖)

1

1− ρ

)
, (24)

for all (ξ, k) ∈ Rn × Z≥1. Denote

γ1 := α−1
1 ◦ 2id ◦ σ ◦ 1

1− ρ
id, (25)

which is a K–class function, because of Fact 1–(iii)-(iv). Ob-
serve that

ρ
k−j
M ≤ ρ

k−M+1
M . (26)

Moreover, by definition, it holds that ‖v[j−1]‖ ≤ ‖v[M−1]‖,
for all j ∈ Z[1,M ]. With these considerations, together with the
notation in (25) and with observation (26), the inequality in (24)
becomes:

‖xk‖ ≤α−1
1

(
2ρ

k−M+1
M α2(ω(‖ξ‖) + η(‖v[M−1]‖))

)
+ γ1(‖v[k−1]‖), (27)

for all (ξ, k) ∈ Rn × Z≥1. Denote c := 2ρ
−M+1

M > 0, ρ̄ :=

ρ
1
M ∈ R[0,1) and β̄(s, k) := α−1

1 ◦ cρ̄kid ◦ α2(s),∀k ∈ Z≥1.
From Fact 1–(iii)-(iv) it follows that β̄ ∈ KL. This means that:

β̄(ω(‖ξ‖) + η(‖v[M−1]‖), k) ≤
≤ β̄(2ω(‖ξ‖), k) + β̄(2η(‖v[M−1]‖), k)

≤ β̄(2ω(‖ξ‖), k) + β̄(2η(‖v[M−1]‖), 0), (28)

for all (ξ, k) ∈ Rn × Z≥1. Define:

β(s, k) := β̄(2id ◦ ω(s), k), (29)
for all (s, k) ∈ R+ × Z≥1, which is a class KL function, by
Fact 1-(v). Moreover, because
β̄(2η(‖v[M−1]‖), 0) = (α−1

1 ◦ cid ◦ α2 ◦ 2id ◦ η)(‖v[M−1]‖)
≤ (α−1

1 ◦ cid ◦ α2 ◦ 2id ◦ η)(‖v[k−1]‖)
=: γ2(‖v[k−1]‖) (30)

is a K function, then
γ(‖v[k−1]‖) := (γ1 + γ2)(‖v[k−1]‖) (31)

is a K function. Replacing the inequality (28) in (27) and given
the notation in (29) and (31), with γ1 and γ2 defined as in
(25) and (30), respectively, it follows that (3) holds. Therefore,
system (1) is globally ISS. �
Definition 14. The real valued function V : Rn → R+ which
satisfies the conditions of Theorem 13 is called an ISS FTLF.

Observe that indeed, the proof of Proposition 10 follows di-
rectly from the proof of Theorem 13, in the particular case when
vk = 0,∀k ∈ Z+.

Theorem 13 indicates that one way of proving ISS is by finding
an ISS FTLF. The next result illustrates an alternative way of
proving ISS directly from an existing KIC FTLF.

3.3 ISS FTLF from a FTLF

Theorem 15. Suppose Assumption 2 and Assumption 3 hold
and system (2) admits a FTLF, V , which is KIC, i.e., it satisfies
inequality (4). Then V is a ISS FTLF for system (1).

Proof. Let us first prove that
V
(
xk(ξ, v[k−1])

)
≤ V

(
Φk(ξ, 0)

)
+ σk(‖v[k−1]‖) (32)

holds for all k ∈ Z≥1, all ξ ∈ Rn and all v[k−1] ∈
(
Rdv

)k
, with

σk ∈ K.

To proceed with this proof we use mathematical induction.

For k = 1, inequality (32) follows directly by using, in order,
w = 0, the triangle inequality, the KIC property of V and
Assumption 3:
V (Φ(ξ, v0))− V (Φ(ξ, 0)) ≤ |V (Φ(ξ, v0))− V (Φ(ξ, 0)) |

≤ σV (σd(‖v0‖)). (33)
Denote σ1 = σv ◦ σd ∈ K in (33) and the inequality in (32) is
recovered for k = 1.

Suppose inequality (32) holds for k − 1:
V (xk−1) ≤ V

(
Φk−1(ξ, 0)

)
+ σk−1(‖v[k−2]‖). (34)

Then, for k we can write:
V (xk) = V

(
Φk−1(Φ(ξ, v0), v[1,k−1])

)
. (35)

Using (34) in (35) followed by addition and subtraction of a
V
(
Gk(ξ)

)
term together with the triangle inequality we obtain:

V (xk) ≤|V
(
Gk−1(Φ(ξ, v0))

)
− V

(
Gk−1(Φ(ξ, 0))

)
|

+ V
(
Gk(ξ)

)
+ σk−1(‖v[1,k−1]‖). (36)

By considering the KIC property of V and repeatedly using
Assumption 2 in (36) and then Assumption 3, together with the
notation σk := σV ◦ σk−1

x ◦ σd + σk−1, we obtain
V (xk) ≤σV (‖Gk−1(Φ(ξ, v0))−Gk−1(Φ(ξ, 0))‖)

+ V
(
Gk(ξ)

)
+ σk−1(‖v[k−1]‖)

≤V
(
Gk(ξ)

)
+ σk(‖v[k−1]‖), (37)

which means that (32) holds for all k ∈ Z≥1. If V is a FTLF,
then there exists an M ∈ Z≥1 and corresponding ρ ∈ R[0,1)

such that
V (GM (ξ)) ≤ ρV (ξ), ∀ξ ∈ Rn. (38)

Moreover, let

σ := σM =

M∑
j=1

σV ◦ σj−1
x ◦ σd. (39)
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Then, by inequality (32) it holds that:

V
(
xM (ξ, v[M−1])

)
≤ V

(
ΦM (ξ, 0)

)
+ σ(‖v[M−1]‖). (40)

Therefore, from (38) and (40) we obtain that:
V (xM (ξ, v[M−1])) ≤ ρV (ξ) + σ(‖v[M−1]‖), (41)

for all vi ∈ Rdv , i ∈ Z[0,M−1]. Hence, V is an ISS FTLF for
system (1), which completes the proof. �

Corollary 16. Suppose Assumption 2 and Assumption 3 hold
and system (2) admits a FTLF, V , which is KIC, i.e., it satisfies
inequality (4). Then system (1) is globally ISS.

The proof of Corollary 16 follows directly from Theorem 15
and Theorem 13.

3.4 Remarks on ISS by FTLF

With respect to the results derived so far the following remarks
are of interest.
Remark 1. Coming back to Example 1, observe that system
(10) is not KIC. The conclusion that system (10) is not KIC
can be deducted by observing that the system is not continu-
ous, which is a necessary condition for a system to be KIC,
see (Lazar et al., 2013b). Therefore, even though the system
admits a KIC FTLF, as the system dynamics G is not KIC,
Corrolary 16 does not apply. �

The conditions derived above are sufficient, but not necessary
for ISS. The following example shows a discontinuous piece-
wise linear system which is ISS.
Example 2. Define the system

xk+1 = G(xk) = Aixk, if xk ∈ Ωi (42)
with i ∈ {1, 2}, A1 = 0.3, A2 = 0.5 and a partition given by
Ω1 = {x ∈ R|x > 1}, Ω2 = {x ∈ R|x ≤ 1}, see Fig. 1 for a
graphical illustration.

x

G(x)

0

0.5
0.3

1

Fig. 1. Globally ISS discontinuous system.

Let us consider a Lyapunov function of the form V (x) = ‖x‖.
Then ‖G(x)‖ ≤ 0.5‖x‖ holds, which makes V (x) a KIC
Lyapunov function for system (42), and therefore, according
to Theorem IV.8 of (Lazar et al., 2013b), system (42) with
additive disturbance is globally ISS. However, as G is not KIC,
Corollary 16 can not be of use. �

Global results are difficult to verify in general, for nonlinear
systems. That is why in what follows we will focus on ISS
results for compact subsets of Rn.

4. INHERENT ISS ON COMPACT SETS

The setting of compact sets in ISS analysis allows the relaxation
of all KIC assumptions to K–continuity, which is equivalent to
mere continuity on compact sets, see (Lazar et al., 2013b).

Furthermore, it will be shown that compared to the standard no-
tion of a robustly positive invariant set, as used in the standard
Lyapunov approach in (Lazar et al., 2013b), a relaxed notion
of an k–periodically robustly invariant set suffices in the FTLF
approach, where k ∈ Z≥1. For k = 1, the standard notion of a
robustly invariant set is recovered.

To this end, let us first recall the definition of ISS with respect
to X and D, where X and D are compact subsets of Rn and Rdv ,
respectively, with the origin in their interior.
Definition 17. The perturbed system (1) is ISS on X with
respect to disturbances in D if there exists a KL function β
and a K function γ such that the corresponding state trajectory
satisfies

‖xk(ξ, v[k−1])‖ ≤ β(‖ξ‖, k) + γ(‖v[k−1]‖), (43)
for all (ξ, k) ∈ X × Z+ and all {vj}j∈Z+

with vj ∈ D for all
j ∈ Z+.
Definition 18. Let k ∈ Z≥1. The set X is called k–periodically
invariant with respect to the map G of system (2), if for all
x ∈ X, then Gk(x) ∈ X.
Definition 19. Let k ∈ Z≥1. The set X is called k–periodically
robustly invariant with respect to the map Φ of system (1)
and the set D, if for all x ∈ X, then Φk(x, v[k−1]) ∈ X,
∀v[k−1] ∈ Dk.

In this section, the following notation is of use. E denotes a
compact set containing all the trajectories starting from X, i.e.,⋃

i∈Z+

G
i
(X) ⊆ E,

and V denotes a compact set containing all the trajectories
starting from X with disturbances taking values in the compact
set D, ⋃

i∈Z+

Φ
i
(X,Di) ⊆ V.

Let us provide a version of Proposition 10 in terms of compact
sets, as in (Lazar et al., 2013a).
Proposition 20. Let X be a compact set. Let α1, α2 ∈ K∞.
Suppose that the function G : Rn → Rn corresponding to the
dynamics (2) is K–bounded for all x ∈ E, X is M–periodically
invariant with respect to the map G and there exists a function
V : Rn → R+ such that

α1(‖ξ‖) ≤ V (ξ) ≤ α2(‖ξ‖), ∀ξ ∈ E, (44a)
and that there exists anM ∈ Z≥1 and corresponding ρ ∈ R[0,1)

such that
V (xM (ξ)) ≤ ρV (ξ), ∀ξ ∈ X. (44b)

Then, system (2) is KL-stable in X. �

The instrumental assumptions for global ISS and Theorem 13
are reformulated in the context of compact sets as follows.
Assumption 4. The map G of system (2) is continuous on E.
Assumption 5. The map Φ underlying the perturbed system (1)
is continuous uniformly in x for all (x, v) ∈ V× D.
Theorem 21. Let α1, α2 ∈ K∞, let σ ∈ K, X ⊂ Rn and
D ⊂ Rdv be compact sets with the origin in their interior and
let X be M–periodically robustly invariant for system (2) with
respect to D. Suppose Assumption 4 and Assumption 5 hold
and there exists a real valued function V : Rn → R+ with
V (0) = 0 such that

α1(‖ξ‖) ≤ V (ξ) ≤ α2(‖ξ‖), ∀ξ ∈ V, (45a)
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and that there exists an M ∈ Z≥1, a corresponding ρ ∈ R[0,1)

such that
V (xM (ξ, v[M−1])) ≤ ρV (ξ) + σ(‖v[M−1]‖) (45b)

holds ∀ξ ∈ X,∀v[M−1] ∈ DM . Then, system (1) is ISS with
respect to X and D.

Proof. Let k = MN + j, where N ∈ Z+ and j ∈ Z[0,M−1].
From Lemma 12 it follows:

‖xMN+j‖ ≤ ω(‖xMN‖) + η(‖v[k−1]‖). (46)

Similarly to (23), and using inequality (26), then

‖xMN‖ ≤ α−1
1 ◦ 2ρ

k−M+1
M id ◦ α2(‖x0‖)+

+ α−1
1 ◦ 2id ◦ σ ◦ 1

1− ρ
id(‖v[k−1]‖), (47)

for all k ∈ Z[MN,MN+M−1]. Introduce now ‖xMN‖ from (47)
in (46), and following a similar reasoning as in (27)–(31) from
the proof of Theorem 13, it follows that system (1) is ISS with
respect to X and D. �

A function V that satisfies Theorem 21 will be referred to as an
ISS FTLF for system (1) with respect to X and D.

The proof of Proposition 20 can be recovered as a particular
case of the proof of Theorem 21, which corresponds to zero
disturbance.

Theorem 15 is reformulated in the context of compact sets as
follows.
Theorem 22. Let X,D be compact subsets of Rn and Rdv

respectively, with the origin in their interior. Suppose that X is
M–periodically robustly invariant for system (2) with respect
to D. Moreover, suppose Assumption 4 and Assumption 5 hold
and system (2) with x ∈ X admits a FTLF, V , which is
continuous on V. Then V is an ISS FTLF for system (1) with
respect to X and D, and hence, system (1) is ISS with respect to
X and D. �

The proof for Theorem 22 is similar with the proof of Theo-
rem 15, and it is omitted for brevity.

5. CONCLUSIONS

This paper approached the problem of inherent ISS analysis for
nonlinear discrete–time systems using the concept of a finite–
time Lyapunov function. It was proven that, for sufficiently con-
tinuous dynamics and finite–time Lyapunov functions, inherent
global input–to–state stability to general disturbances can be
established for nominally stable nonlinear systems.

Moreover, inherent input–to–state stability on a compact set
was obtained under simple continuity of the finite–time Lya-
punov function and of the dynamics.
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