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Abstract: Linear Model Predictive Control (MPC) is an efficient control technique that
repeatedly solves online constrained linear programs. In this work we propose an economic
linear MPC strategy for operation of energy systems consisting of multiple and independent
power units. These systems cooperate to meet the supply of power demand by minimizing
production costs. The control problem can be formulated as a linear program with block-angular
structure. To speed-up the solution of the optimization control problem, we propose a reduced
Dantzig-Wolfe decomposition. This decomposition algorithm computes a suboptimal solution
to the economic linear MPC control problem and guarantees feasibility and stability. Finally,
six scenarios are performed to show the decrease in computation time in comparison with the
classic Dantzig-Wolfe algorithm.

1. INTRODUCTION

Recently, energy systems have evolved into highly inte-
grated systems that deliver energy services to our homes
and businesses. Electric power networks, also known as
smart-grids, connect renewable energy sources (RES) to
traditional power plants, cooling networks, as well as
to other infrastructures. Increased reliability and perfor-
mance, cost reduction, and minimized environmental im-
pacts are the main benefits of the new energy systems.
However, a major issue is the design of the controllers
that coordinate and control the units of these energy
systems to ensure that total energy production satisfies
customer demand. Uncontrollable availability of renewable
energy sources (RES), as well as fluctuations in consumer
demand, yield power companies to utilizes dynamic control
of energy systems in the view of handling such variabilities.

This paper focuses on the design of a distributed algorithm
to compute optimal control sequences for a centralized
controller. We propose a Linear Economic Model Predic-
tive Control (MPC) strategy to coordinate and control the
independent and controllable units of energy systems in
the most economic way. Linear Economic MPC requires
repeated online solution of constrained linear optimization
problems. Therefore, the computational speed limits the
application of such a controller. Energy systems have inde-
pendent units, so the control problem has a block-angular
structure and the Dantzig-Wolfe distributed optimization
efficiently solves this class of linear programs. With re-
gard to speeding up the controller, we outline a reduced
Dantzig-Wolfe decomposition that reduces computation
times and guarantees feasibility and stability. This reduced
Dantzig-Wolfe decomposition can be applied to the Linear
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Economic MPC controller and calculates suboptimal local
solutions.

MPC is a well-known control strategy that has been ex-
tensively used in several applications. Distributed model
predictive control structures have attracted much atten-
tion, as shown in Scattolini (2009). Powerful tools to
compute robust and efficient optimal control sequences
were introduced by Conejo et al. (2006), who described
how decomposition techniques can be applied to the con-
trol problems by exploiting their structures and efficiently
solving the optimization problem. Sokoler et al. (2013)
compared the Dantzig-Wolfe decentralized linear MPC
with a centralized controller for large-scale systems and
Standardi et al. (2013) introduced an early termination
strategy to speed up the online computations; however,
this approach involved unavoidable extra costs. With the
aim of speeding up the control algorithms, suboptimal
approaches were developed, guaranteeing feasibility and
stability as reported in Scokaert et al. (1999); Zeilinger
et al. (2008); Pannocchia et al. (2011). Rawlings et al.
(2012) introduced the fundamentals of Economic MPC,
the closed-loop properties that can be achieved, such as
stability and convergence. However, few studies have ad-
dressed computational aspects of the Dantzig-Wolfe de-
composition, and most of these works are about mixed
integer and binary problems, see Kavinesh et al. (2009);
Klein and Young (1999); Rios. and Ross (2014). Little work
has been done on speeding up Dantzig-Wolfe decomposi-
tion for LPs. Burger et al. (2012) developed a distributed
simplex algorithm for degenerate LPs, while Frangioni
and Gendron (2013) introduced a stabilized Dantzig-Wolfe
decomposition subject to several assumptions.

The outline of this paper is as follows. Section 2 introduces
Linear Economic MPC. Dantzig-Wolfe decomposition and
its novel reduced version are formulated in Section 3.
Suboptimality and stability of the proposed algorithm are
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illustrated in Section 4. We show the performances of our
approach using numerical examples in Section 5, while
conclusions are in Section 6.

2. LINEAR ECONOMIC MPC COORDINATION OF
ENERGY SYSTEMS

The new energy systems are built by connecting individual
and controllable power units that need a controller to
satisfy the customer demand. The control problem must
compute for each power unit the most economic and
optimal production plan. We introduce the Economic
MPC strategy that balances power supply and demand
for such energy systems.

The following stochastic discrete state-space model de-
scribes a power unit in energy systems

xk+1 = Axk +Buk +Gwk + Edk (1a)

yk = Cxk + vk (1b)

zk = Czxk. (1c)

xk denotes the state variable and yk is the measurement.
Moreover, Standardi et al. (2012) includes process and
measurement noises, respectively wk and vk, being dis-
tributed as ∼ Niid(0, Rww) and ∼ Niid(0, Rvv). Due to the
large shares of renewable energy sources (RES), the model
needs to consider weather forecasts dk ∼ N(d̄k, Rdd,k)
predicted by external prognosis systems. The manipulated
variable, uk, denotes the input signal and it is subject to
hard constraints

umin ≤uk ≤ umax (2a)

∆umin ≤∆uk ≤ ∆umax (2b)

zk indicates the system output and it must be within the
interval [rmin,k, rmax,k]; this interval may represent fore-
cast consumer demand, or it can define indoor temperature
in a building, or temperatures in a refrigeration system, or
state-of-charge of a battery

rmin,k ≤zk ≤ rmax,k (3)

A decoupled Kalman filter estimates the state and the
output variables, while the certainty equivalence principle
substitutes all the variables with their mean values as
described in Standardi et al. (2012). It is worth noting
that this observer works locally for each unit and does not
involve the entire energy system.

The control strategy computes the control trajectory in the
most economic way, thus minimizing the production costs.
For each power unit, the cost of following the production
plan uk is

φi,k =

N−1∑
j=0

ĉ′i,k+j|kûi,k+j|k (4)

where ĉi,k+j|k denotes the production costs and is forecast
by external systems.

Altogether, the control problem is a linear problem be-
cause it applies to linear systems (1) subject to linear
constraints (2)-(3) and it minimizes a linear cost function
(4). Due to this economic objective, the controller opti-
mizes directly online the economic performances of the
energy systems computing the control sequences for each
power unit. Therefore, the Economic MPC policy applied

to an energy system consisting of P power units (1) can
be expressed as

min
ûi,k+j|k,ˆ̃sk+j+1|k

φk =

P∑
i=1

φi,k +

N−1∑
j=0

ˆ̃ρ′k+j+1|k
ˆ̃sk+j+1|k (5)

subject to the local constraints ∀i ∈ P and ∀j ∈ N
x̂i,k+j+1|k = Aix̂i,k+j|k +Biûi,k+j|k + Eid̂i,k+j|k (6a)

ẑi,k+j+1|k = Cz,ix̂i,k+j+1|k (6b)

umin,i ≤ ûi,k+j|k ≤ umax,i (6c)

∆umin,i ≤ ∆ûi,k+j|k ≤ ∆umax,i (6d)

r̂min,i,k+j+1|k ≤ ẑi,k+j+1|k ≤ r̂max,i,k+j+1|k (6e)

and subject to the following connecting constraints ∀j ∈ N
and ∀i ∈ P

ˆ̃zk+j+1|k =

P∑
i=1

C̃z,ix̂i,k+j+1|k (7a)

ˆ̃zk+j+1|k + ˆ̃sk+j+1|k ≥ ˆ̃rmin,k+j+1|k (7b)

ˆ̃zk+j+1|k − ˆ̃sk+j+1|k ≤ ˆ̃rmax,k+j+1|k (7c)

ˆ̃sk+j+1|k ≥ 0 (7d)

where ˆ̃zk+j+1|k denotes the overall power production, and
ˆ̃rmin,k and ˆ̃rmax,k define customer demand forecasts. The

connecting constraints include slack variables ˆ̃sk+j+1|k;

non-zero slack variables involve penalties ˆ̃ρk+j+1|k to pay,
as expressed in the objective function (5).

For large-scale energy systems consisting of multiple power
units, the control problem (5)-(7) includes several variables
and constraints; for this reason, decomposition techniques
are investigated to efficiently compute the optimal control
trajectories. Furthermore, the optimization control prob-
lem (5)-(7) consists of two sets of constraints: local con-
straints (6) for each power unit, and connecting constraints
(7) for the overall energy system. This linear programming
problem has a block-angular structure tailored for the
implementation of the Dantzig-Wolfe decomposition to
solve the control linear program. Section 3 introduces the
Dantzig-Wolfe decomposition technique.

3. THE REDUCED DANTZIG-WOLFE
DECOMPOSITION

The Dantzig-Wolfe decomposition is a specialized version
of the Simplex Method to solve linear programming prob-
lems that have a block-matrix structure, see Dantzig and
Thapa (2003). Among these systems, the block-angular
systems have independent blocks defining local constraints
and one set of coupling constraints. The linear program-
ming problem (5)-(7) has a block-angular structure that
defines local constraints (6) and a set of global constraints
(7).

We consider the linear program (8) with the block-angular
structure for i ∈M, where M = {1, ...,M}

min
qi

c′1q1 + ...+ c′MqM (8a)

s.t. F1q1 + ...+ FMqM ≥ f (8b)

Giqi ≥ gi (8c)
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This LP has i ∈ M, with M = {1, ...,M}, blocks and
each block defines a set of local constraints (8c) coupled
through the connecting constraints (8b). Moreover, qi ∈
Rn defines the vector of variables to be determined and
ci ∈ Rn is the vector of objective function coefficients. The
block-angular constraints matrix consists of Fi ∈ Rnf×n,
representing the coupling constraints, and Gi ∈ Rngi

×n,
denoting the local constraints; moreover, f ∈ Rnf and gi ∈
Rngi are involved in the connecting and local constraints,
respectively.

We briefly outline the classic Dantzig-Wolfe in Section 3.1
and the novel reduced form is introduced in Section 3.2.

3.1 Dantzig-Wolfe decomposition

The Dantzig-Wolfe algorithm is applied to the block-
angular linear program (8), in which each column of
coefficients can be freely chosen as any point from a convex
set Q as stated in the Theorem 1 of convex combination.

Theorem 1. Let Qi = {qi|Giqi ≥ gi}, with i ∈ M and
M = {1, ...,M}, be a polyhedral set in Rn. Every point
qi in the polyhedral set Qi can be expressed as a convex
combination of the finite set V = {1, ..., V } of its extreme

points vji and a non-negative linear combination of the
finite set K = {1, ...,K} of extreme rays rki

qi =

V∑
j=1

αijv
j
i +

K∑
k=1

βikr
k
i ,

V∑
j=1

αij = 1 (9)

with αij , βik ≥ 0.

Proof. See Dantzig and Thapa, 2003.

For the block-angular LP (8), each set of feasible polyhedra
Qi is bounded, closed and non-empty, thus we only include
the extreme points in the problem formulation as in Cheng
et al. (2008). However, Dantzig and Thapa (2003) included
the extreme rays in the problem formulation.

Substituting the convex combination (9) into the block-
angular LP (8) formulates the master problem (MP) or
extremal problem. It is worth noting that the MP has fewer
rows in the coefficients matrix than the original block-
angular program (8). However, the number of columns,
and therefore also the number of variables, in the MP is
larger, corresponding to all V extreme points of all M
polyhedra.

The Dantzig-Wolfe does not solve the impractical full MP
and generates at each iteration of the Simplex algorithm
only the column of the MP that has been selected to
come into basis. As a result, the algorithm formulates the
reduced master problem (RMP) (10) for L vertices of the
polyhedra, where L ≤ V

min
αij

γ =

M∑
i=1

L∑
j=1

pjiαij (10a)

s.t.

M∑
i=1

hjiαij ≥ f (10b)

L∑
j=1

αij = 1 i = 1, ...,M (10c)

αij ≥ 0 i = 1, ...,M, j = 1, ..., L (10d)

where αij is the optimization variable, γ is the objective

function, and pji = civ
j
i and hji = Fiv

j
i denote the cost and

the inequality constraints coefficients. However, in order to
select which column has to come into basis, the RMP needs
an initial basic feasible solution v0i . Dantzig and Thapa
(2003) proposed an algorithm to obtain such a starting
basic solution via Simplex Phase I. Similarly, Standardi
et al. (2012) introduced a warm-start strategy specialized
to the MPC strategy that provides initial basic feasible
solutions without solving any linear problems.

Let us assume that the initial extreme points v0i are avail-
able for each polyhedron i ∈M. Thus, the RMP provides
the dual variables π and µ, respectively, for linking (10b)
and convexity constraints (10c). The algorithm utilizes
these dual variables to generate only the column having
the most negative reduced cost without having to generate
all the remaining columns of the MP. This pricing problem
is expressed in the following subproblems

min
qi

ξi =
[
ci − F

′

i π
]′
qi (11a)

s.t Giqi ≥ gi (11b)

where ξi denotes objective function for the subproblem i. It
is evident that each subproblem i ∈M (11) is independent
and decoupled; hence, parallel computing techniques can
efficiently compute these i optimal solutions. The optimal
solution of the subproblem (11) identifies which column
has the smallest reduced cost for the MP. Thus, if the
optimal objective function value ξ∗i satisfies the following
condition

ξ∗i − µi ≥ 0 ∀i ∈M (12)

then all the reduced costs for the MP will be non-negative.
Hence, the Dantzig-Wolfe algorithm has an optimal solu-
tion to the MP and, consequently, to the original block-
angular problem (8) through convex combination (9).

In contrast, if ξ∗i − µi < 0, then we augment the columns
of the RMP by

pj+1
i = civ

j
i hj+1

i = Fiv
j
i (13)

where vji = qji is the optimal basic feasible solution of (11).

The classic Dantzig-Wolfe decomposition is illustrated in
Algorithm 1.

3.2 Reduced Dantzig-Wolfe decomposition

In this work, we propose a reduced version of the Dantzig-
Wolfe decomposition.

At each iteration of the Simplex algorithm, the Dantzig-
Wolfe decomposition computes only the column of the
RMP (10), which has to come into basis. This column has
the most negative reduced cost. Moreover, let us assume
that at iteration t, only a set of subproblems S ⊂ M
satisfies the optimality condition (12)

ξ∗s − µs ≥ 0 s ∈ S ⊂M (14)

In such a scenario, the classic Dantzig-Wolfe brings vari-
ables into basis by adding columns to the RMP (10) for
every subproblem i ∈ M, hence even for the set S of
subproblems.
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Algorithm 1 Classic Dantzig-Wolfe

Require: Initial feasible vertex for the RMP (10), see
Section 3.1.
if Any points are found then

Stop.
else

L=1
while Converged == false do

Solve the L− th RMP (10).
Solve subproblem i (11), ∀i ∈M.
if optimality condition (12) is satisfied ∀i ∈ M
then
Converged == true

else
Compute RMP coefficients ∀i ∈M (13).

end if
L = L+ 1

end while
end if

In contrast, if condition (14) holds, then the reduced
Dantzig-Wolfe does not add columns to the RMP (10)
for the set S of subproblems; this yields to update the
coefficients od the RMP as

pt+1
i = civ

t
i ht+1

i = Fiv
t
i , i ∈M\S (15)

At iteration t + 1, the reduced Dantzig-Wolfe solves the
following subproblems

min
qi

ξi =
[
ci − F

′

i π
]′
qi i ∈M\S (16a)

s.t Giqi ≥ gi (16b)

Consequently, the Dantzig-Wolfe applies the pricing prob-
lem on a reduced set of subproblems S. As a result, by
applying this reduced Dantzig-Wolfe decomposition, the
number of iterations decreases. Algorithm 2 illustrates the
reduced Dantzig-Wolfe decomposition.

4. SUBOPTIMALITY AND STABILITY IN LINEAR
MPC VIA REDUCED DANTZIG-WOLFE

The reduced Dantzig-Wolfe decomposition computes a so-
lution to the block-angular problem (8) that is not optimal
but it is feasible. In this Section we illustrate suboptimality
of the reduced Dantzig-Wolfe decomposition; moreover,
we demonstrate that this decomposition technique does
not affect the convergence, thereby it guarantees feasibility
and stability.

Subptimality The reduced Dantzig-Wolfe computes a
suboptimal solution to the block-angular problem (8). In
order to explain this suboptimality, we introduce Theorem
2 that provides the optimal solution for the MP in the
Dantzig-Wolfe decomposition.

Theorem 2. An optimal basic feasible solution of the RMP
(10) is also optimal for the MP if

ξ∗i = µi ∀i ∈M (17)

Then the algorithm computes the optimum in a finite
number of iterations.

Proof. See Dantzig and Thapa, 2003.

Algorithm 2 Reduced Dantzig-Wolfe

Require: Initial feasible vertex for the RMP (10), see
Section 3.1.
if Any points are found then

Stop.
else
S = {∅}
L=1
while Converged == false do

Solve the L− th RMP (10).
Solve subproblem i (16), for i ∈M\S.
if optimality condition (12) is satisfied ∀i ∈ M
then
Converged == true

else
if a subproblem s, s ∈M, satisfies the optimality
condition (12) then
S = {s} ,S ⊂M.
Compute RMP coefficients ∀i ∈M\S.

else
Compute RMP coefficients (13) ∀i ∈M\S.

end if
end if
L = L+ 1

end while
end if

Theorem 2 states that the optimal basic feasible solution
of the MP is given when every subproblem i, i ∈ M,
satisfies the condition (17). The reduced Dantzig-Wolfe
decomposition does not compute the optimality condition
(17) for every subproblem at the same time. Instead, this
reduced version stops computing the optimal solution for
a subproblem when this satisfies the optimality condition
(12), even if the other subproblems do not provide an
optimal solution. Accordingly, the reduced Dantzig-Wolfe
decomposition does not provide an optimal solution, as
Theorem 2 is not satisfied; thus, the solution is suboptimal,
however feasible.

Feasibility and stability Scokaert et al. (1999); Muske
and Rawlings (1993); Mayne et al. (2000); Chisci et al.
(1996) demonstrated how feasibility implies stability for
a linear MPC strategy. Because of this, the following
theorem illustrates the feasibility of the reduced Dantzig-
Wolfe decomposition.

Theorem 3. Any αij that solves the RMP (10) determines
a feasible solution qi for the block-angular program (8) by
the convex combination (9). Moreover, if γ has the mini-
mum of the RMP (10) for α∗i , then the convex combination
(9) generates an optimal feasible solution q∗i to the original
problem (8).

Proof. See Dantzig and Thapa, 2003.

Therefore, the reduced Dantzig-Wolfe decomposition guar-
antees feasibility that suffices for stability.

5. COMPUTATIONAL RESULTS

As mentioned previously, our intention is to show that
the novel reduced Dantzig-Wolfe decomposition speeds up
the algorithm, guaranteeing feasibility and stability. In
this section, we compare the performances of both classic
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Fig. 1. Overall power production of energy system con-
sisting of 75 power units in closed-loop simulations.
The grey area defines the customer demand interval.
The control problem is solved applying both classic
Dantzig-Wolfe, blue graph, and novel reduced decom-
position, red plot.
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Fig. 2. Objective function (total production costs) of en-
ergy system consisting of 75 power units in closed-loop
simulations. Simulations run both classic Dantzig-
Wolfe, blue graph, and novel reduced decomposition,
red plot.

and reduced Dantzig-Wolfe decomposition, as described in
the previous section. These are implemented in MATLAB in
closed-loop simulations. Section 3.1 introduces the need of
initial basic feasible solutions for the RMP. We apply the
warm-start technique described in Standardi et al. (2012).
Moreover, as mentioned in Section 2, we assume to have
the forecasts for weather dk, costs ĉi,k and penalties ˆ̃ρ.
The output bounds r̂min,k and r̂max,k represent customer
demand interval; these power consumption forecasts are
taken from the Nord Pool Spot Power Market and the
bounds are derived according to real data from Nord Pool
Spot (2012).

Our case studies are energy systems consisting of multiple
power units. In particular, these controllable units might
represent thermal power plants, gas turbines and diesel
generators. We model these units as described in Edlund
et al. (2010)

Zi(s) =
1

(τis+ 1)3
(Ui(s) +Di(s)) (18)

where Ui(s) denotes the control signal, Di(s) is the process
noise, and Zi(s) is the power produced. We consider six
energy systems consisting of: 25, 50, 75, 100, 125 and 150
power units. Furthermore, the time horizon is N = 70,
sampling time is 1 second and time steps are 100. The re-
duced Dantzig-Wolfe decomposition computes the control
trajectories for each power units of the energy system con-
sidered. We observe from Figure 1 that the overall power
production given by the implementation of the classic
Dantzig-Wolfe decomposition satisfies customer demand
as well. As expected, the suboptimal control sequence
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Fig. 3. Computation time for the classic Dantzig-Wolfe,
blue graph, and for the reduced version, red plot, Vs.
Number of power units in the energy system.
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Fig. 4. Objective function optimal values for the classic
Dantzig-Wolfe, blue plot, and for the reduced version,
red plot, Vs. Number of power units in the energy
system.

given by the reduced Dantzig-Wolfe decomposition makes
the overall power production meet the customer demand.
For the sake of completeness, results show the effect of sub
optimality in the deterioration of the objective function.
Figure 2 shows the objective function values of this case
study including 75 power units. The reduced Dantzig-
Wolfe decomposition is more expensive as it has higher
costs (red graph in the plot) than the classic Dantzig-Wolfe
decomposition (blue graph).

Let us consider all six case studies. Figure 3 shows that
the reduced Dantzig-Wolfe decomposition quickens the
controller, reducing computation times for all the study
cases. Moreover, Figure 4 illustrates the objective function
optimal values given by the reduced Dantzig-Wolfe decom-
position and the classic algorithm. In order to examine
the algorithm performances, Figure 5 shows the percent
decrease in the computational time and the percent change
in the optimal values of the objective function. The com-
putation times decrease up to 80%, while the deterioration
in the objective function optimal value exceeds 20% (upper
dashed line) for only 1 case study. Moreover, the percent
deterioration of the objective function is often below 10%
(lower dashed line), even when the number of power unit
in the case study increases.

6. CONCLUSIONS

In this paper we have introduced a reduced Dantzig-
Wolfe decomposition for linear Economic MPC controllers.
The problem formulation has been formulated as a lin-
ear economic MPC strategy to control energy systems
consisting of multiple independent units. We have briefly
described the classic Dantzig-Wolfe optimization and then
derived the reduced version. We have demonstrated how
the novel reduced Dantzig-Wolfe decomposition supports
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Fig. 5. Percent changes, Vs. Number of power units in
the energy system. Black bars denote percent decrease
in computation time, while grey bars denote percent
change in objective function optimal values. These
reductions in computational time and optimal values
are the reductions compared with the classic Dantzig-
Wolfe algorithm.

suboptimal and feasible solution for LPs; moreover, we
have illustrated the stability of the proposed algorithm. We
have collected the reduced Dantzig-Wolfe decomposition
computation results for six case studies in closed-loop
simulations. Results have demonstrated that the proposed
reduced Dantzig-Wolfe decomposition speeds up the algo-
rithm. Our study represents a new approach to the solution
of linear MPC and improves its applicability. The proposed
algorithm guarantees feasibility and stability computing a
suboptimal solution. The reduced Dantzig-Wolfe decom-
position can be applied to a wide range of systems and it
has potential in areas such as independent units building
up a larger system.
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