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Abstract: This paper addresses the problem of fault isolation in processes which are working in different
operating points. Due to nonlinearities and set-point changes, the statistical model which is obtained
from data is different from one operating point to another. Therefore the classical multivariate statistical
process monitoring approaches may not be suitable for monitoring and diagnosis purposes. For that, a
data-driven fault isolation method is proposed which splits the process into several local models. Based
on the local models, a probabilistic approach is proposed to determine the contribution of each variable
to the fault detection index and find the risky variables which are responsible for the fault. Finally, the
proposed method is demonstrated through its application on a laboratory setup of continuous stirred tank
heater.
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1. INTRODUCTION

Fault isolation plays a central role in process monitoring and
diagnosis and sometimes evolves to a real challenge for process
engineers. Basically, fault isolation is the task of gaining pro-
cess information about the location of the fault in the process,
Ding (2008). In a modern large scale process where the number
of faults, process components and measurements are huge the
fault isolation becomes a severe problem.

For decades, model-based methods have been widely used to
design fault diagnosis systems, Ding (2008). These approaches
involve rigorous development of process model based on first
principles. During last decades, the complexity of process
plants has been increased, which imposes great challenges in
development of model-based monitoring approaches and it be-
comes sometimes unrealistic for modern large scale processes.
Alternative to model-based approaches, data-driven methods
have been developed, which offer powerful tools to extract use-
ful information for design of monitoring systems based on the
available process measurements. Multivariate statistical pro-
cess monitoring (MSPM) approaches were successfully applied
for fault detection and diagnosis in many technical processes.
Principal component analysis (PCA), Qin (2003), partial least
squares (PLS), Wise and Gallagher (1996) and their nonlinear
and dynamic variants were studied in academic communities
and applied in wide range of industrial applications for fault de-
tection. On the other hand, several methods exist for diagnosis
purposes. Most popular ones are contribution analysis methods,
Alcala and Qin (2009a); Cherry and Qin (2006); Raich and inar
(1996) , which determine the contribution of variables to the
fault detection indices. The contribution analysis methods may
not explicitly determine the cause of fault alarm, but it can be
used as a guideline for process engineers to find the source of
fault.

The classical MSPM approaches are based on the assumption
that the data follows unimodel multivariate normal distribution.
In many industrial applications, the process under consideration
operates in different operating regimes due to different product
specifications, working environments and economic consider-
ations. In these cases, the above mentioned assumption might
not be satisfied due to nonlinearities in the process. Thus the
model derived from data may be only valid in one operating
point. Moreover, to design a monitoring system and achieve
higher level of automation, the statistical model should over-
lay all possible normal behavior of process and its underly-
ing structure. To cope with this problem, recently multimode
process monitoring approaches based on the mixture modeling
are developed. The process under consideration is assumed to
be linear in each operating point and the data available for
each operating point follow multivariate normal distribution
with different parameters. The task of mixture modeling is to
estimate the parameters of each local model. In Yu and Qin
(2008), a method is developed for fault detection in multimode
processes based on identification of finite Gaussian mixture
model (FGMM). For fault detection purpose, the authors have
developed a Bayesian inference strategy which combines the
local hypotheses with the posterior probabilities of each local
model. In Ge and Song (2010), the authors have extended
the probabilistic PCA (PPCA) approach Tipping and Bishop
(1999); Kim and Lee (2003) for multimode processes monitor-
ing. Moreover, a Bayesian regularization has been introduced as
well to determine the effective dimension of principal subspace.

Although different methods have been developed for data-
driven fault detection in multimode processes, the fault diag-
nosis and isolation aspects have not been taken into consider-
ation extensively. In Chen and Sun (2009), the authors have
developed a probabilistic contribution analysis method based
on missing variable approach. Once a fault is detected, the
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monitoring index will be recalculated with one variable being
missing. This will be repeated for all variables. The variable
corresponding to the smallest recalculated index will be de-
noted as the risky variable. The proposed idea has been ex-
tended to PPCA mixture model for fault detection and diagnosis
in multimode processes.

Motivated by the above mentioned works, a new probabilistic
approach for fault diagnosis in multimode processes is intro-
duced in this paper. to achieve that, a unified index is used for
fault detection. Similar to standard reconstruction based contri-
bution (RBC) analysis, once a fault is detected, the index will
be decomposed into two parts, one representing the behavior
of the monitoring index in normal operating conditions and the
other representing the contribution of the variables to the fault
which will be used for diagnosis purpose.

The structure of this paper is as follows. In Section 2, a brief
overview of multimode MSPM methods will be presented. Sec-
tion 3 describes the proposed diagnosis approach for multimode
processes. The paper continues with application of the proposed
method on a laboratory-scale continuous stirred tank heater
(CSTH) in Section 4 and ends with concluding remarks in
Section 5.

2. MULTIMODE FAULT DETECTION

PCA is most popular MSPM approach and has been success-
fully applied for chemical process monitoring. Let x ∈ Rm be a
sample of m sensors. The data matrix X ∈RN×m can be formed
using N samples of measurements. The matrix X is scaled to
zero mean and unit variance. The PCA based fault detection
system design involves performing an SVD on covariance data
matrix X in training step

1
N−1

XXT = [Ppc Pres]

[
Λpc 0
0 Λres

]
[Ppc Pres]

T
, (1)

and using T 2 and SPE indices in monitoring step, where

T 2 = xT PpcΛpcPT
pcx

SPE = xT PresPT
resx. (2)

Modern complex industrial plants are commonly working on
multiple operating conditions because of different product
specifications and some external restrictions. As a consequence,
the plant characteristics change from one operating condition
to another due to nonlinearity and set-point changes in the
system. Hence, the statistical model obtained from traditional
MSPM techniques for an operating mode is not valid anymore
for the others and will induce false alarms. This is because the
basic assumption in MSPM methods that the data should follow
unimodal Gaussian distribution. Under the assumption that the
data corresponding to each operating point follows a multivari-
ate Gaussian distribution with various statistical properties, the
available historical data can be seen as a mixture of Gaussian
components with different mean vectors and covariance matri-
ces.

Recently, some research efforts have been done for data-driven
nonlinear process identification and monitoring based on the
multiple model assumption with the help of mixture modeling
tools. The PCA process monitoring method has been extended
to be used for multimode process monitoring under Gaussian
mixture model (GMM) assumption (see for example Yu and
Qin (2008); Yu (2012a); Chen et al. (2006); Ge and Song

(2009); Ge et al. (2010); Haghani et al. (2012a,b)) and their
applications in monitoring of batch processes and semiconduc-
tor technology have been reported (see for instance Chen and
Zhang (2010); Yu and Qin (2009); Yu (2012b, 2011, 2012c)).

After obtaining the GMM, the PCA can be applied on each
local model to detect the faults, under the assumption that the
monitored sample is generated on the considered local model.
In order to generalize the fault detection to the global model,
using the results of local fault detection following form of fault
detection indicator

p(x(k) ∈ f ) =
K

∑
i=1

p(x(k) ∈ f |x ∈Mi)p(x ∈Mi), (3)

where p(x(k) ∈ f |x(k) ∈Mi) represents the local fault indica-
tor and p(x ∈Mi) represents the hypothesis that the sample is
generated in ith local model. The application of the global index
in fault detection and its derivation have been discussed by Yu
and Qin (2008); Yu (2012c); Haghani et al. (2012a,b).

3. PROBABILISTIC FAULT DIAGNOSIS

In practice, fault detection is usually followed by the isolation
step where location of the fault is determined. In context of
MSPM, isolation is usually accomplished with contribution
analysis where the process variables contributing to the fault
are determined and a contribution plot is constructed. The sta-
tistical model which is built by MSPM methods will be used for
analysis of the contribution of process variables or latent vari-
ables on the fault detection indices. Methods based on complete
and partial decomposition and angle based contribution analy-
sis have been developed and successfully applied for diagnosis
purposes. In these approaches, usually the quadratic form of
fault detection index is considered:

Index(x) = x̄T Dx̄, (4)
where x̄ ∈ Rm is the normalized process measurement and the
matrix D is constructed based on the monitoring index and the
MSPM method, for instance in PCA-based process monitoring
D = PpcΛ−1

pc PT
pc for T 2 (see (2)). The monitoring index can be

decomposed as

Index(x) = x̄T Dx̄ = ||D(1/2)x̄||2

=
m

∑
j=1

(
ξ

T
j D(1/2)x̄

)2
=

m

∑
j=1

cIndex
j , (5)

where cIndex
j is the contribution of the variable x j to Index(x)

and ξ j is the jth column of identity matrix as proposed by
Miller et al. (1998).

Recently, in the work of Alcala and Qin (2009b), it has been
revealed that the standard contribution analysis may lead to
misdiagnosis of the faults and an alternative method has been
proposed. The method is based on the reconstruction of a fault
detection index along a variable direction, hence it is called
reconstruction based contribution (RBC). When a fault happens
in the system with direction ξ j, the reconstructed measurement
vector can be represented as:

z j = x̄−ξ jf, (6)

where f is the reconstructed part to be determined and z j repre-
sents the fault-free behavior of variables and can be constructed
by finding the value of f which minimizes Index(z j)

Index(z j) = zT
j Dz j = ||D(1/2)(x̄−ξ jf)||2. (7)
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The optimal value for f can be obtained by derivation of
Index(z j) with respect to f:

d(Index(z j))

df
=−2(x̄−ξ jf)

T Dξ j. (8)

Setting (8) to zero yields to:

f = (ξ T
j Dξ j)

−1
ξ

T
j Dx̄. (9)

The reconstruction-based contribution of the variable x j to fault
detection index Index(x) can be described by

RBCIndex
j = ||D(1/2)

ξ jf||2 (10)
or

RBCIndex
j = x̄T Dξ j(ξ

T
j Dξ j)

−1
ξ

T
j Dx̄. (11)

It is interesting to point out that following relation exists be-
tween fault detection index, reconstructed index and recon-
struction based contribution:

Index(x) = Index(z j)+RBCIndex
j . (12)

Both reconstructed index, Index(z j) and RBCIndex
j can be used

for diagnosis purpose as shown by Alcala and Qin (2009b);
Dunia and Qin (1998).

Based on contribution analysis concept, several methods have
been developed and applied to different applications. An
overview of these methods and their generalization is given in
Alcala and Joe Qin (2011) and references therein.

Contribution analysis methods usually assume a single normal
operating mode for the plant. In this context, an abnormal event
will form a new operating region and the difference between
normal and faulty states is used to identify the variable con-
tribution. In many real applications the process itself works in
different operating region and using standard contribution anal-
ysis methods would lead to misdiagnosis of the faults. To solve
this problem, in this section a new fault isolation method is
proposed which follows the multimode fault detection concept
introduced in Haghani et al. (2012a) and tries to represent the
variable contributions in a probabilistic form.

To extend the fault isolation approaches to multimode cases,
the fault detection indices are generalized as an index which
represents the probability of fault p(x(k)∈ f ) given a sample of
measurement x(k). Using marginalization the above mentioned
probability can be represented as:

p(x(k) ∈ f ) =
K

∑
i=1

p(x(k) ∈ f |x ∈Mi)p(x ∈Mi), (13)

where p(x(k) ∈ f |x(k) ∈Mi) can be calculated by integrating
the probability density function (pdf) of the local fault detection
index up to its current value. In other words:

p(x(k) ∈ f |x(k) ∈Mi) = p(Index(x, i)≤ Index(x(k), i))

=
∫ Index(x(k),i)

0
pdf(Index(x, i))dx,

(14)
where Index(., i) represents the calculated value of the local
index based on the assumption that the sample belongs to Mi.
The index in (14) also serves as a local fault indicator for mode
Mi. Since 0 ≤ p(x(k) ∈ f ) ≤ 1, a confidence level (1− α)
can be specified for fault detection purpose with the following
hypothesis: {

p(x(k) ∈ f )≤ 1−α fault free
p(x(k) ∈ f )> 1−α faulty (15)

The main idea of this new fault isolation approach is to calculate
the contribution of a faulty measurement sample x(k), assuming
that it belongs to mode Mi and then combine it with the
hypothesis that the measurement x(k) is generated under the
mode Mi. The local fault detection index, Index(x(k), i) can be
decomposed using (12) as

Index(x(k), i) = Index(z j(k), i)+RBCIndex
j,i , (16)

where Index(z j(k), i) is the detection index according to the
reconstructed measurement along variable x j(k), assuming Mi

as the current operating mode and RBCIndex
j,i is the amount of

reconstruction based contribution for that. Using (16), the (14)
can be rewritten as

p(x(k) ∈ f |x(k) ∈Mi) =∫ Index(x(k),i)−Index(z j(k),i)

0
pdf(Index(x, i))dx

+
∫ Index(x(k),i)

Index(x(k),i)−Index(z j(k),i)
pdf(Index(x, i))dx.

(17)
The first term on right hand side of (17) represents the ef-
fects of reconstructed contribution RBCIndex

j,i into the local fault
probability and the second term represents the contribution
of reconstructed variable to the local fault probability. That
means, the first term can be used to evaluate the effect of the
variable x j on the deviation in local fault detection indicator
p(x(k) ∈ f |x ∈Mi). Moreover the first term in (17) can be
expressed as

PRBCIndex
j,i =

∫ Index(x(k),i)−Index(z j(k),i)

0
pdf(Index(x, i))dx

= p(0≤ Index(x, i)≤ Index(x(k), i)
− Index(z j(k), i)|x(k) ∈Mi), (18)

where PRBC stands for probabilistic RBC. Assuming that the
sample x(k) is generated in mode Mi, the variable x j corre-
sponding to the highest PRBCIndex

j,i is the most responsible vari-
able for deviation in the fault detection indicator. This concept
is shown in Fig. 1. The pdf of index is known a priori (e.g. by
considering normal distribution for data in each mode, it can be
approximated by χ2 distribution). The PRBCIndex

j,i is calculated
by integrating the pdf of local fault detection index up to current
value of RBCIndex

j,i , or by calculating its cdf.

Generalizing it to the multimode processes, a PRBC can be
defined as:

0

0.5

1

c

Fig. 1. Probabilistic reconstruction based contribution analysis
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PRBCIndex
j =

K

∑
i=1

PRBCIndex
j,i p(x(k) ∈Mi)

=
K

∑
i=1

p(0≤ Index(x, i)≤ Index(x(k), i)

− Index(z j(k), i)|x(k) ∈Mi)p(x(k) ∈Mi). (19)

The posterior probability p(x(k) ∈Mi) is used in (19) to incor-
porate the contribution of each local model to the PRBCIndex

j .
The PRBCIndex

j in (19) represents the contribution of variable
x j in the global fault detection index in (13). In standard RBC,
after detection of a fault the contribution of each variable to
the fault detection index, Index(x(k)) is calculated according
to (11). In contrast, here when a fault is detected using (13),
p(x(k) ∈ f ) will be decomposed into PRBCIndex

j according to
(19) using (18), which indicates which process variable has the
highest contribution in deviation of p(x(k) ∈ f ).

It is worth pointing out that 0≤ PRBCIndex
j ≤ 1 and the variable

x j(k) with the highest PRBCIndex
j has more contribution to the

fault and possibly represents the source of the malfunction in
the system.

To calculate the probability p(x(k) ∈Mi) the posterior proba-
bility that the reconstructed measurement z j(k) belongs to the
mode Mi is used. This is due to the fact that x(k) is assumed
to be faulty measurement, therefore may not provide a correct
representation of the actual operating mode of the process.
Therefore the reconstructed measurement z j(k) which repre-
sents the estimation of fault free measurement assuming that the
fault happens in the jth sensor, is replaced in marginalization.
To this end, the Bayesian inference strategy is used to calculate
this posterior probability

p(z j(k) ∈Mi) =
p(z j(k)|Mi)p(Mi)

p(z j(k))
=

wig(z j(k)|θi)
K
∑

l=1
wlg(z j(k)|θl)

.

(20)

where wi is a priori probability that a sample belongs to a
mode and g(z j(k)|θi) is the pdf of normal distribution with
parameters θi where wi and θi are obtained in off-line training
using GMM tool, as shown by Haghani et al. (2012a).

Once a fault is detected using (13), the reconstructed index
Index(z j(k), i) will be calculated using (12) and inserted in (19)
together with the Index(x(k), i) and the posterior probability
p(z j(k) ∈Mi), to calculate the probabilistic contribution of
variables to the fault, and the variables corresponding to the
largest contributions are the risky variables.

4. CASE STUDY

In order to achieve statements about the performance and
effectiveness of the proposed algorithm, it has been applied to
an industrial benchmark. The used plant was a laboratory setup
of a continuous stirred tank heater (CSTH).

These systems are often used in control of chemical processes
to ensure optimal conditions for a reaction. Inside the CSTH
a certain temperature and level of reactants are being held,
that those define the operating point under which an optimal
reaction is possible. The considered CSTH plant uses water as
reactants. Fig. 2 shows the system structure and components.

The stirred tank is the main component in which a specific pre-
heated amount of reactants, in this case water, is mixed, heated
further and held at a given temperature. The tank is surrounded
by a water filled heating jacket where its temperature can be set
via adjusting the power of a heater. Hence, an increasing of the
temperature inside the stirred tank is possible by heating the
jacket which leads to an equally distributed steady heat flow
from jacket through the tank’s wall into the reactant. Another
property of the systems it a steady through flow of reactants.
Whereas the input is a hand-controlled valve the outflow is
controlled by a pneumatic valve and thus can be used for level
control. Before leaving the system, the outflowing water is
used to preheat the incoming reactant via a heat-exchanger to
minimize the temperature difference between inflow and tank
content to 5−10 ◦C and save energy.

The dynamics of CSTH plant can be described by mass and
energy balance equations:

htank(t1) =

t1∫
t0

1
A ·ρ

(ṁin(t)− ṁout(t))dt +htank(t0), (21)

and

Ttank(t1) =

t1∫
t0

1
cp ·m(t)

(Qin(t)−Qout(t))dt +Ttank(t0), (22)

whit htank is the level of water inside the tank [m], ṁin, ṁout are
in- and outflowing water mass flow rates [kg/s] , Ttank is the
temperature of water in the tank [K], Qin,Qout are the rates of
heat flow in and out of the tank [W] and A,ρ,cp,m are the cross
section of the cylindrical tank [m2], density of water [kg/m3],
specific heat capacity of water [J/(kg.K)] and the mass of water
in the tank [kg], respectively.

Direct measurement of reactants level and temperature in the
main tank as well as the mass flow into the tank ṁin is possible.
The mass flow out of the tank ṁout is directly manipulated via
a pneumatic valve. The mass of water in the tank m defines the
relation between enthalpy and temperature in (22) and can be
put in front of the integral since it is assumed to be constant in
one operating point.

The heat flow into the tank Qin can be described as a nonlinear
function of the controllable power of the heater Pheater, which
is the controllable power of the heater [W], hh j the water level
in the heating jacket [m] and the level of the water in the tank.

Furthermore, the inflowing preheated and the outflowing re-
actant can be described as additional heat flows in and out of
the system, Qin f l and Qout f l , respectively. They are depending
on the mass flows and the masses temperature which can be
assumed to be constant in one operating point. Accordingly,
the heat flows can be considered as constant, as well. Another
heat flow Qout was introduced to describe all the losses due to
non-optimal effects such as insulation. Taking these definitions
into account, (21) and (22) become:

htank(t1) =
1

A ·ρ

t1∫
t0

(ṁin(t)− ṁout(t))dt +htank(t0)

Ttank(t1) =
1

cp ·m

t1∫
t0

(Qin(Pheater(t),hh j,htank(t))

−Qout(t)+Qin f l(t)−Qout f l(t))dt +Ttank(t0) (23)
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T1 : Water temperature inside the stirred tank

T2 : Water temperature inside the heating jacket

T3 : Inflow water temperature

T4 : Reserved water temperature

L1 : Water level inside the stirred tank

F1 : Cold water flow

TIC : Temperature controller

LIC : Level controller

P : Pumps

V : Valves

M : Motors

Fig. 2. Piping and instrumentation diagram of CSTH plant

values M1 M2 M3
level L1 [cm] 10 12 18

level heating jacket [cm] 20 20 20
temperature T1 [◦C] 50 45 50

through flow F1 [L/h] 105 105 105
Table 1. Values defining plant operating points

Equation (23) depicts the dynamic behavior of the system for
the reactants level on the one hand and its temperature on
the other one. Both dependencies on the operating point and
nonlinearities are included and can be seen in the model, as
well.

The application of multimode technique for fault isolation,
proposed in Section 3, is studied in the sequel. To carry out
this study, three different operating points, as shown in Table 1,
are chosen for the CSTH testbed. For each operating point 500
samples were used to train the model using GMM tool.

For validation purpose, faulty operation is induced by scaling
the signal given to level controlling valve V 1 behind the con-
troller output. Figure 4 shows the run of all measurable plant
variables for normal and faulty operation in M1, M2 and M3
each consisting of 100 samples. In on-line monitoring step,
the process variables X are measured and the multimode fault
detection method proposed by Haghani et al. (2012a) is imple-
mented for monitoring. The fault detection index p(x(k)∈ f ) is

0 100 200 300 400

0

1
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p
(x

(k
)∈

f 
)

Fig. 3. Result of fault detection using proposed static approach
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Fig. 4. Process variables for CSTH plant
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Fig. 5. Probabilistic reconstruction based contribution plot

depicted in Fig. 3 over the faulty and normal operation intervals.
The horizontal dashed line represents the threshold with 97%
confidence level for α = 0.03. It can be seen that the fault is
successfully detected within the confidence level.

To identify the possible source of malfunction in the system,
the probabilistic contribution analysis method is applied after
detection of the fault. The result is shown in Fig. 5. The re-
sult shows that the measured signal related to the valve V 1’s
position has the highest contribution to the fault. Moreover, the
measured temperature T 4 signal which is the liquid temperature
in reservoir contributes to the fault. As a consequence, it can
be concluded that the source of the fault might be the heat ex-
changer and connecting valve V 1 or pump, which is confirmed,
since in this case the source of the fault was valve V 1.

5. CONCLUSION

In this paper a probabilistic approach has been developed
for fault diagnosis in multimode processes. For that an index
has been used for fault detection purpose which represents
the probability that a fault happens. After detection of fault
the index has been decomposed into two parts which one
represents the fault free behavior of the index and the other
represents reconstruction based contribution of variables to
the fault detection index. A Bayesian strategy has been used
to extend the results to multimode processes. For validation
purpose, the proposed diagnosis method has been applied on
a CSTH testbed and the result shows that fault is successfully
isolated.
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