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Abstract: The object of this paper is to address data-driven fault detection design for systems
with unsteady trend, which shows cyclicity, monotonicity and non-zero mean. Firstly, mean
theorem and covariance theorem are proposed and proved. The former is the mean property
of projection matrix, and the latter is the recursive formula for covariance matrix of regression
residual. Secondly, an improved fault detection statistic, called Least Square T2 (LST2), is
proposed. It can partly solve the detection problem for systems with unsteady trend. The
improvement can also partly cope with the limitations of the traditional multivariate detection
methods, such as Principal Component Analysis (PCA). Thirdly, based on the two theorems, a
recursive algorithm and a moving window algorithm of LST2 are given, thus both time and space
complexity are greatly reduced for online detection. The effectiveness of the presented detection
statistic is evaluated with an application of monitoring satellite attitude control system. The
case study result shows that the false alarm rate of LST2 is much lower than that of T2 based
on PCA, while LST2 is more sensitive to fault.

Keywords: Fault detection and diagnosis, time-varying systems, recursive identification, time
series modelling, estimation and filtering.

1. INTRODUCTION

It is costly to obtain well-established mathematical models
for large-scale complex stochastic systems, thus the model-
based fault diagnosis methods in (Ding, 2008), such as di-
agnostic observer (DO) and parity space (PS), sometimes
can not be applied directly in practice. However, a com-
plex system is often equipped with various sensors, which
record the real-time information of the monitored system.
How to utilize the monitored data to estimate the system
model and realize the data-driven fault detection is now
a hot research topic. Basic data-driven and model-based
process monitoring (PM) as well as fault detection and
isolation (FDI) methods are surveyed from the application
viewpoint in (Qin, 2003; Ding, 2011 a). Without a prior
of the system matrices and order, Ding (2012) proposed
several design schemes for parity subspace and observer-
based FDI systems, respectively. Many traditional meth-
ods can handle fault diagnosis task for systems with steady
trend, however, control systems in practice are not always
steady. Data from unsteady systems are usually cyclical,
monotone and with non-zero mean, such as an cyclical
industrial data in Fig. 1 and satellite attitude data in Fig.
5, which show non-stationary mean and monotone trend.
Multivariate statistics (MS) detection methods such as
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principal component analysis (PCA), Fisher discriminant
analysis (FDA), partial least square (PLS) and canonical
variant analysis (CVA) in (Russell, 2000), will be with high
false alarm rate and high missed detection rate in such
unsteady cases.

To solve the unsteady problems, some dynamic and adap-
tive methods are constructed. Such methods include multi-
way principal component analysis (M-PCA) in (Nomikos,
1994), Recursive PCA (R-PCA) in (Li, 2000), moving
window PCA (MW-PCA) in (Wang, 2005; He, 2008) and
dynamic PCA (DPCA) in (Ku, 1995). M-PCA is based
on the assumption that the monitored system can run for
many times beforehand and store all data to compute the
system unsteady trend. This assumption for M-PCA is
too harsh and require large storage capacity. Both R-PCA
and MW-PCA are techniques that make adaptation of the
PCA model to accommodate the model unsteady trend. R-
PCA is incremental, while MW-PCA is both incremental
and decremental. They can partly cope with the unsteady
trend problem, but they are still not satisfactory because of
two limitations, slow adaptation and large condition num-
ber (CN), which will be explained more detailed in Section
3. DPCA is desirable due to its simplicity for interpreting
the time-correlation, but it is usually constrained in linear
series correlation.

Time series modeling (TSM) is a tool in system identifi-
cation. The task for TSM is to fit the time series by the
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Fig. 1. Unsteady industrial process(Ding, 2011 a)

given function bases, ex. polynomial basis or Trigonomet-
ric function bases.

The core idea of this paper is to fit the observed data
by selected function bases, then the prediction residual
and the covariance of least square regression residual are
used to compose an improved detection statistic, which has
a similar form of Hostelling T2 statistic, so it is named
Least Square T2 (LST2). When recursive identification
techniques are used in LST2, we obtain the recusive
LST2(R-LST2) and moving window LST2(MW-LST2). It
reveals that PCA-T2 is a special case of LST2 when
functions bases are constant, What is more, The idea of
LST2 is similar to that of DPCA-T2, when functions bases
are just polynomials.

The paper is structured as follows. In Section 2, some
preliminaries related to regression are given, based on
which mean theorem and covariance theorem are proposed
originally. In Section 3, two limitations of traditional
PCA are analyzed. Also an improved detection statistic,
named LST2, is composed to cope with the limitations. In
Section 4, R-LST2 algorithm and MW-LST2 algorithm are
included. Case study, conclusion and appendix are made
in following Sections, respectively.

2. TWO KEY THEOREMS

2.1 Function Bases, Design Matrix and Regression

Function bases are

(f1 (t) , f2 (t) . . . , fn (t)), (1)

which is designed for regression. Usually polynomial func-
tions are fit for monotone data while trigonometric func-
tions for cyclical data. Number of polynomial bases, n,
can be selected by correlation plots in (Lennart, 1999).
Personal prior knowledge and visual insight about the
monitored data are also important for selecting the type
and the number of functions.

Design matrix corresponding to the function bases is

Xk
∆
=


f1 (1) f2 (1) · · · fn (1)
f1 (2) f2 (2) · · · fn (2)

...
...

...
...

f1 (k) f2 (k) · · · fn (k)

 . (2)

For example, if fi (t) = ti−1, i = 1, · · · , n, then xij = i(j−1),
with i = 1, . . . , k and j = 1, . . . , n. Block form of the design
matrix is

Xk =

(
Xk−1

xT
k

)
, (3)

where xT
k = (f1 (k) , f2 (k) . . . , fn (k)).

Projection matrix is defined by design matrix as

Hk
∆
= Xk

(
XT
k Xk

)−1
XT
k (4)

It is easy to verify that both the projection matrix Hk

and its complement matrix (I −Hk) are symmetrical,
idempotent and positive semi-definite.

Monitored k-successive data are denoted as Yk ∈ Rk×m,
and the regression model by Xk is

Yk = Xkβk + Ek. (5)

where Ek is regression residual and Xk is defined in (2).
The least square estimation of βk is

β̂k =
(
XT
k Xk

)−1
XT
k Yk, (6)

The regression residual is

Ek = Yk −Xkβ̂k = (Ik −Hk)Yk. (7)

The prediction residual for yk is

ek|k−1 = yk −
(
xT
k β̂k−1

)T

. (8)

2.2 Mean vector and Covariance Matrix

Suppose

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
...

ak1 ak2 · · · akn

 ∈ Rk×n.
The sample mean and covariance based on a collection of
instances of the random vector is used in the sequel and
their definition is for convenience given below.

Mean vector for A is defined as

A
∆
=

(
1

k

k∑
i=1

ai1,
1

k

k∑
i=1

ai2 . . . ,
1

k

k∑
i=1

ain

)
∈ R1×n. (9)

Covariance matrix for A is defined as

Cov (A)
∆
=

1

k
(A− repmat(A, k))T(A− repmat(A, k)), (10)

where repmat(A,m) is a notation from Matlab, denoting
m-rows of which are copies of A . Note that A ∈ R1×n is
a row vector.
Properties from (11) to (15) will are useful for proving the
theorems in the Section 2.4.
Basic properties of mean vector are

A1A2 = A1A2, (11)

A1 +A2 = A1 +A2, (12)(
A1

A2

)
=

1

k1 + k2

(
k1A1 + k2A2

)
. (13)

where k1 and k2 are the row numbers. Note that
A1A2 6= A1A2.
Basic properties of covariance matrix

Cov (A) =
1

k
ATA−AT

A, (14)
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Cov (A1A2) = AT
2 Cov (A1)A2. (15)

Note that Cov (A1A2) 6= AT
1 Cov (A2)A1.

2.3 Two Necessary Equations of Inverse Matrix

are two equations of inverse matrix, which can be inferred
in (Peigorsch, 1989),

(A+BCD)
−1

= A−1 −A−1B
(
DA−1B + C−1

)−1
DA−1,

(16)

(
A B
C D

)−1

=

(
Ã−1 −A−1BD̃−1

−D̃−1CA−1 D̃−1

)
, (17)

where Ã = A−BD−1C and D̃ = D − CA−1B. (16) and
(17) are used to prove the following two theorems.

2.4 Mean Theorem and Covariance Theorem

Mean theorem and covariance theorem are the foundation
for R-LST2 and MW-LST2 algorithm in Section 4.

Theorem 1. (Mean Theorem) Xk, Hk and mean vector
are defined in (2), (4) and (9), suppose that one of the
basis functions is a nonzero constant function, then

(I −Hk) = 0. (18)

According to (18) and (11), we have

Ek = (Ik −Hk)Yk = (Ik −Hk)Yk = 0, (19)

which shows that the mean vector for least square estima-
tion is zero. According to (10), (7), (15), (14) and (19), we
have

Cov(Ek) =
1

k
Y Tk (I −Hk)Yk. (20)

When new data are added, i.e. Yk−1 is replaced by Yk,
the regression parameter as well as regression residual
covariance should be updated. The recursive formula for
Cov (Ek) is shown in following theorem.

Theorem 2. (Covariance Theorem) Ek, ek|k−1 and

Cov(Ek) are defined in (6), (7) and (18), respectively,

and λk
∆
= xT

k

(
XT
k−1Xk−1

)−1
xk , then following equation

holds.

Cov(Ek)

=
(k − 1)

k
Cov(Ek−1) +

1

k (1 + λk)
ek|k−1e

T
k|k−1.

(21)

According to (21) and (16), we obtain the recursive for-
mula for Cov−1 (Ek) as following

Cov−1(Ek) =
k

k − 1
[Cov−1(Ek−1)

−
Cov−1(Ek−1)ek|k−1e

T
k|k−1Cov

−1(Ek−1)

(k − 1) (1 + λk)
(

1 + eT
k|k−1Cov

−1(Ek−1)ek|k−1

) ].
(22)

Due to space constraints, the proof is omitted. The basic
techniques for the proof are inductive reasoning, based on
(16) and (17).

3. THE IMPROVED DETECTION STATISTIC

In this section, an improved detection statistic is given
and named least square T2 (LST2), which can cope with
two limitations of PCA. T2 statistic based on PCA is
commonly used statistics for fault detection, and it has
following form

T 2 (y) = yTPaΛ−1
a PTa y, (23)

where a is the number of principal component and
PTa ΛaPa is the first a-component of PmΛmP

T
m, and there

are m columns in Y. The singular value decomposition of
Cov (Y ). In this paper we suppose that a = m, i.e.

T 2 (y) = yTPmΛ−1
m PTmy = yTCov−1 (Y ) y. (24)

3.1 Two Limitations of T2 based on PCA

Limitation 1: Slow Adaptation
If Y and y in (24) are respectively replaced by Yk−1 and
yk, (24) will turn into

T 2 (yk) = yTk Cov(Yk−1)
−1
yk. (25)

Because Yk−1 and yk are centered and scaled, thus the
original form of (25) is

T 2 (yk) =
(
yk − Y

T

k−1

)T
Cov(Yk−1)

−1
(
yk − Y

T

k−1

)
∆
= eTk|k−1Cov(Yk−1)

−1
ek|k−1.

(26)

In the view of prediction, (26) considers Y k−1 as the
prediction of the yk and the detection statistic, PCA-
T2, is composed by the prediction residual ek|k−1 and the
train covariance Cov (Yk−1). This strategy works only if
the monitored data are steady. When data are monotone,
cyclical and with non-zero mean, PCA-T2 will be too slow
to adapt the normal change. In the view of fitting, multi-
variate statistics is an under-fitting model for the unsteady
process, thus both train and test residuals are very large.
Large train residual indicates high lost detection rate and
large test residual indicates high false alarm rate.

Limitation 2: Large Condition Number
Condition number (CN) of the data matrix is an index of
the relativity of the variables (columns). Large CN means
large relativity. CN is defined as

CN (Y ) = λmax/λmin,

where λmax is the maximum eigen-value of Cov (Y ) and
λmin the minimum. Because PCA-T2 neglects the un-
steady trend of output variables and predicts yk by Y k−1,
the slow adaption will result in extremely large CN of
Cov (Yk−1), see Example 2.

3.2 An Improved Detection Statistic

Although data Yk are usually not steady, when the trend,

Xkβ̂k, are eliminated, Ek and ek|k−1 will be steady and
with distribution close to normal. Suppose that Yk−1 are
fault-free train data, Xk−1 is design matrix defined in (2)
and yk is to be detected, then the improved statistic, with
a similar form of (26), is

LST 2 (yk) = eTk|k−1Cov
−1(Ek−1)ek|k−1, (27)
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Fig. 2. Flow chart of constructing LST2

where the regression residual Ek−1 is from (7), Cov(Ek−1)

is the covariance and ek|k−1 = yk −
(
xT
k β̂k−1

)T

is the pre-

diction residual, with β̂k−1 =
(
XT
k−1Xk−1

)−1
XT
k−1Yk−1.

For every selected significance level α, the threshold for
detection statistic LST2 is

LST 2
α =

mk (k − 2)

k(k − 1−m)
F(1−α) (m, k − 1−m) , (28)

where (k − 1) and m are respectively the row and column
number of Yk−1. In practice, the prediction residual is
often larger than the regression residual, thus a modified
threshold may be used instead in order to reduce the false
alarm rate

LST 2
α = γ

m (k − 1) (k + 1)

k(k−m)
F(1−α) (m, k −m) , γ ≥ 1. (29)

The flow chart of constructing LST2 is shown in Fig.2.

3.3 Two Improvements of LST 2

Improvement 1: Faster Adaptation than PCA-T2

In fact PCA-T2 is a special case of LST2. When n = 1
and (f1 (t) , f2 (t) . . . , fn (t)) = f1 (t) ≡ 1, i.e. the function

bases are constant, then
(
xTk β̂k−1

)T
= Y k−1 and LST2

turns into PCA-T2. What is more, when n > 1, usually(
xT
k β̂k−1

)T

6= Y k−1, where
(
xT
k β̂k−1

)T

acts as the trend

of the system. LST2 does not neglect the unsteady trend
of the data, thus it will ensure smaller regression residual
and faster adaptation, which explains why it wins a lower
false detection rate and higher detection rate, see Fig.3
and Fig.4 in Example 1, which shows that LST2 ensures
faster adaptation and lower false alarm rate.

Example 1 Fault-Free Data With Monotone Trend
Data are with single variable and 100 samples. They are
monotone, fault-free, generated by

y (t) = 0.1 ∗ t+ e(t),

where t = 1,2,...,100, and e(t) ∼ N (0, 1) is independent
normal noise with 0 mean and 1 variance. The first 60

Fig. 3. Performance of PCA-T2 in Example 1

Fig. 4. Performance of LST2 for data in Example 1

samples are treated as train data, and the left 40 are
validation data. We can find from Fig.3 and Fig.4 that the
residual for PCA-T2 is much larger than that of LST2,
while the validation false alarm rate for LST2 is much
lower.

Improvement 2: Smaller Condition Number

Example 2 Linear and Relative Data.
Data are with 5 variables and 100 samples. They are
monotone, false-free and generated by

yi (t) = 0.1 ∗ i ∗ t+ ei(t),

where ei(t) ∼ N (0, 1), i=1,...,5 and t=1,2,...,100. The 5-
dimension data are linear relative. The condition numbers
(CN) of PCA-T2 and LST2 are shown in Table 1.

Table 1 shows that the CN of LST2 is much smaller than
that of PCA-T2. When n > 1 and the condition number
of LST2 is always smaller than that of PCA-T2. Small
CN means the computation is stable, thus LST2 needs
no dimension reduction any more, which will bring great
convenient to following recursive algorithms in Section 4.
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Table 1. Different Condition Numbers

Statistic Covariance λmax λmin Condition Number

PCA-T2 Cov (Yk−1) 45776 88 520

LST2 Cov (Ek−1) 129 104 1.24

4. R-LST2 AND MW-LST2 ALGORITHMS

In this section, formulae for updating LST2 are given.
They are recursive LST2 (R-LST2) algorithm and moving
window LST2 (MW-LST2) algorithm, which ensures low
computation complexity for online detection.

4.1 R-LST2

When new data arrives, LST2 should be updated recur-
sively. The core idea of recursive algorithm is to reduce
the computation complexity by recursive formulae. In (27),
we can see that LST 2 (yk) relies on two part, ek|k−1 and

Cov−1(Ek−1). The first part, ek|k−1, can be updated as
follows in (Lennart, 1999)

β̂k = β̂k−1 +Kk|k−1e
T
k|k−1 (30)

where

Kk|k−1 =
Qk−1xk

1 + xTkQk−1xk
, (31)

Qk−1 =
(
XT
k−1Xk−1

)−1
, (32)

Qk = Qk−1 −Kk|k−1x
T
kQk−1. (33)

The second part, Cov−1(Ek−1), can be updated according
to (22). We obtain the complete algorithm as below.

Algorithm 1 Recursive least square T2 (R-LST2)

Input:
Previous train data Yk−1 and current validation data yk.
Output:
Detection result and Updated Parameters.
Initialization:
step 1: Compute β̂k−1 according to (6);
step 2: Compute Cov(Ek−1) according to (20).
Prediction and Detection:
step 3: Compute ek|k−1 according to (8);

step 4: Compute T 2 (yk) and T 2
α according to (27) and

(28). If T 2 (yk) > T 2
α, alarm, otherwise go to step 5.

Update:

step 5: Update β̂k according to (30);
step 6: Update Cov−1(Ek) according to (22);
step 7: Update Qk according to (33).

4.2 MW-LST2

Recursive algorithm is to update the detection statistic
by adding the effect of the new normal data, yk. The
opposite question is how to update the detection detection
by subtracting the effect of the old when the old data,
y1, is outdated. This strategy is named moving-window
algorithm. Because the moving-window is a dual process
to recursive, thus we will give the moving window LST2

(MW-LST2) without proof. R-LST2 is only part of MW-
LST2, i.e. step 1-7 are totally the same to Algorithm 1.

Algorithm 2 Moving window least square T2(MW-LST2)

Input: the same as that in Algorithm 1.
Output: the same as that in Algorithm 1.
Initialization:as step 1-2 in Algorithm 1.
Prediction and Detection:as step 3-4 in Algorithm 1.
Update-Incremental: as step 5-7 in Algorithm 1.
Update-Decremental:

step 8: Compute e1|k = y1 −
(
xT

1 β̂k

)T

;

step 9: Update β̂k−1 = β̂k −K1|ke
T
1|k, K1|k =

Qkx1

1−xT
1 Qk

x1

;

step 10:Compute λk = xT
1 Qk−1x1, update Cov−1(Ek−1)

= k−1
k

[
Cov−1(Ek) +

Cov−1(Ek)e1|ke
T
1|kCov

−1(Ek)

k(1+λ
k)
(

1−eT
1|kCov

−1(Ek)e
1|k

)] .
5. CASE STUDY ON SATELLITE ATTITUDE

CONTROL SYSTEM

5.1 Data Description

Data of satellite attitude control system (SACS) is pro-
vided by CASA (China Aerospace Science and Technology
Corporation). There are 7 sensors/variables, see Table 2.
The monitored data have 500 samples. We can see that the
SACS data is highly non-stationary with monotone trend.
Fault happens at time point 353, which is caused by sun
sensor on pitching axis, i.e. the 4-th variable at time point
353, see Fig.5.

Table 2. Data of SACS

code sensor acronym

1 earth sensor on rolling axis EarthPhi
2 earth sensor on pitching axis EarthTheta
3 sun sensor on rolling axis SunPhi
4 sun sensor on pitching axis SunTheta
5 gyroscope on rolling axis GeoPhi
6 gyroscope on pitching axis GeoTheta
7 gyroscope on yawing axis GeoPsi

5.2 Train Residual and Condition number comparision

The first 320 fault-free samples are used as train data,
then the residual of PCA-T2 is the blue curve in Fig.6.
The dimension of polynomial function base for LST2 is
3, i.e. n=3 and (f1 (t) , f2 (t) . . . , fn (t)) =

(
1, t, t2

)
. As is

explained in Section 3.3 that PCA-T2 is a special case
of LST2, i.e. n=1 and (f1 (t) , f2 (t) . . . , fn (t)) ≡ 1. We
can find in Fig.6 that the residual of PCA-T2, points
of ’green *’, is larger than that of LST2, the points of
’black +’. This phenomenon is more obvious for the 3rd
and 4th variable, which are monotone. What is more, the
condition numbers of PCA-T2 and LST2 are respectively
CNPCA−T 2 = 8.8× 108 and CNLST 2 = 4.8 ∗ 104, which
means CNPCA−T 2 � CNLST 2 .

5.3 Detection Result comparision

The detection statistic and threshold for PCA-T2 can be
seen in the upper sub-figure of Fig.7. It can be found
that although the data between 335 and 352 are fault-
free, PCA-T2 is with high false alarm rate, while is not
LST2 is with much lower false alarm rate. What is more,

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

8263



Fig. 5. Fault begins at the 353rd sample of SACS

Fig. 6. Train residual for PCA-T2 and LST2

Fig. 7. Detection result for PCA-T2 and LST2

the LST2 is larger in fault time (from 353 to 500), which
means that LST2 is more sensitive to fault than PCA-T2.

6. CONCLUSIONS

We propose an improved detection statistic, LST2, which
catches the unsteady trend of fault-free data and has two

important improvements, faster adaptation and smaller
condition number. LST2 can partly cope with the limi-
tations of the standard detection statistic PCA-T2. All
superiority of LST2 is verified in the examples and the case
study. We propose and prove two useful theorems, mean
theorem and covariance theorem. They are the theoretical
foundation of R-LST2 and MV-LST2 algorithms, which
can greatly reduce the computation complexity for on-line
detection.
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