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Abstract: This paper proposes a novel underwater image processing approach for different targets de-
tection and preliminary positioning of a miniature robotic fish with low computational resources. A key
aspect of our approach is that the image processing algorithm is performed online, i.e., while swimming,
rather than as an offline process. Another key aspect is that the algorithm distinguishes the targets
adaptively within large distance range. Specifically, considering the poor quality of underwater image as
well as the low computational resources of the robot, a real-time image preprocessing algorithm, named
accelerated automatic color equalization(AACE) model, is first adopted to improve color contrasts and
sharpness of borders of the image. Further, HSV-based adaptive threshold segmentation, lump detection,
reflection elimination and landmark matching are executed successively in a robust way for locating the
target and calculating the distance between the robot and target. A series of relevant experiments with the
robotic fish are conducted systematically to demonstrate that the proposed image processing approach is
adaptive, efficient and real-time for online applications of the vision-based miniature swimming robots.

Keywords: Underwater image processing, online and adaptive, AACE model, low computational costs,

biomimetic robotic fish.

1. INTRODUCTION

As the increasing demands for underwater resources, underwa-
ter robots have been the hot research topics in the last several
decades. Vision, the most direct way to acquire rich information
of nearby aquatic environment, plays a vital role for underwater
robots similar to the eyes for aquatic animals. For example,
when executing underwater missions, such as inspection and
repair of underwater man-made structures, vision-aided under-
water robots can directly recognize their surrounding targets
and obstacles and react timely and accurately. Therefore, un-
derwater image processing which deals with the vision-based
information of underwater robots, has draw considerable atten-
tions within the last decades (Feihu et al. (2013); Horgan and
Toal (2006); Raimondo and Silvia (2010)).

Due to the particularity of the water medium, underwater image
processing is confronted with great challenge. Compared with
the ground-based images, underwater images have considerably
poor quality, such as marine snow, poor contrasts, color dis-
tortions and degradation. In addition, images become blurred
when underwater robots are moving. Therefore, in most cases,
image preprocessing is the first step to enhance the quality of
underwater images. Several underwater image preprocessing
algorithms have been proposed in the literature (Bazeille et al.
(2006); Chambah et al. (2003); CJ and PU (2011); Igbal et al.
(2007); Mahiddine et al. (2012)), which resulted in remarkable
improvements in image quality. Nevertheless, most of these
algorithms process offline videos acquired by underwater in-
struments. Moreover, they always run on computers and take
high computational costs.
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Followed by image enhancement, underwater image processing
is executed to extract specific information (for instance, target
and obstacle) for different applications, such as station keeping
and localization. Many image processing algorithms have been
proposed and partially implemented on the underwater robots.
Nevertheless, the majority of them are executed offline similar
to the preprocessing procedure (Lee et al. (2012); Sehgal et al.
(2004)). In addition, the algorithms are basically designed for
underwater robots with large size and on-board PC system (Lee
et al. (2012); Sehgal et al. (2004); Yu et al. (2001)). Generally,
these robotic systems possess high computational ability and
large energy storage, which can afford to run complex image
processing algorithms to suit many underwater situations (Fei-
hu et al. (2013)). On the other hand, as the biomimetic swim-
ming robots with miniature size and high flexibility have draw
more and more attentions in recent years, the corresponding low
computational image processing algorithm is in urgent need of
being developed and applied on those robots. Although several
suitable algorithms have been established and applied on the
miniature underwater robots (Hu et al. (2009); Negre et al.
(2008)), they never mentioned the preprocessing algorithm for
improving the image quality.

Therefore, based on the previous projects on vision-based
robotic fish (Wang et al. (2013)), this paper proposes a nov-
el adaptive and online underwater image processing approach
for different targets detection and preliminary positioning of a
miniature robotic fish with 5 Hz refreshing rate. Compared with
other underwater image precessing algorithm, online, adaptive
and low-computation are three main aspects of our approach.
In particular, a real-time AACE algorithm is first adopted to
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improve underwater image quality under the low computational
costs condition. Further, HSV-based adaptive threshold seg-
mentation, lump detection, reflection elimination and landmark
matching are executed successively for locating the target and
calculating the distance between the robot and target in a robust
way, which can be employed for further online localization and
motion control.

The rest of this paper is organized as follows. Section II propos-
es the AACE algorithm for underwater image preprocessing.
Section III gives the description of underwater image process-
ing. The robotic fish and experimental platform are described in
Section IV. Systematical experiments and results are provided
in Section V to validate the proposed approach. Section VI
concludes this paper.

2. UNDERWATER IMAGE PREPROCESSING: AACE
MODEL

Besides the common problems of underwater image, online
image processing is confronted with image blur caused by
the moving robot. Therefore, considering the enhancement of
image quality as well as the low computational resources of
robot, an AACE model is adopted for image preprocessing.

Inspired by some adaptation mechanisms of the human vision,
ACE model is able to adapt to widely varying conditions
of light intensity and to extract visual information from the
environment effectively. It can improve the quality of images,
mainly in controlling the color contrasts, maximizing image
dynamic range and sharpening boarder of image (Artusi et al.
(2006)). However, as the high computational costs of ACE, it
can not be competent to real-time applications. Therefore, an
accelerated ACE (AACE) model (Artusi et al. (2006)), which
sharply decreases the computational time, is slightly revised
and adopted in this paper. The scheme of AACE is exhibited
in Fig. 1, where /. is the input image, Iy is a subset of
the original image obtained by random sampling, Ry, . is an
intermediate result of the selected subset, Oy, is final output
of the selected subset, O, is final output of the whole input
image and subscript ¢ respectively denetes R, G, B chromatic
channels as the original output format of camera is RGB.

Dynamic Tone
Reproduction
Scaling

=

Random Isub.c Chromatic/Spatial
Sampling Adjustment

sub ,c

1H~

Osup ,c|SVD-based gc’
Mapping

Fig. 1. The main structure of the AACE model.

To decrease the computational cost drastically, AACE first
selects a subset, Iy, from the original image by random
sampling. Note that the size of the selected image can be used
to regulate the computational time for different applications.
Then, an intermediate image R,y - is obtained by transforming
each pixel i separately for each channel ¢, namely

r(lyub7c(i) - Isub,c(j))
d(i, J)

Yijetun it g )

Li jelyp j#i
Rsub,c(i) =

6]

where d(i, j) is an Euclidean distance weighting the global and
local filtering effect. The denominator is a normalization factor,

which is introduced to avoid vignetting near borders of image.
The term 7,4y is the maximum value of r(-) function, which is
defined as a signum function:

-1, if p<O;
r(p) =sgn(p) = { 0, if p=0; 2)
1, otherwise.

Next, for the purpose of enhancing detail quality of the image,
an additional global balance between gray world and white
patch is added to extend dynamic range of Ry, to [0, Dpgy)-
The output takes the form

Osub,c(i) = I'Ound[Dmid +ScRsub,c(i)] 3)

where D, is the available dynamic maximum value. For RGB
format in this paper, Dyux = 255, Diig = Dyax/2 and s, =
Dyia/max(Reyp ¢ (7)).

After that, polynomial functions are used to define the mapping
function between the input subset I, . and the output subset
Ojsup.c. Here the first order polynomial is considered and defined
as follows:

R, = a1 +anki+ai3Gi +asB; (4a)
G, = az1 +ankR;+axG; + aub; (4b)
B, = a3 +axnR;+a33G; +azbB; (4c)

where index i stands for the input subset image and index
o stands for the output subset image processed by AACE
algorithm. The coefficients a stand for the unknown coefficients
that control the behaviour of the mapping function. Generally,
these polynomial functions are over-determined system. Hence,
SVD method is used to extract these unknown coefficients.
Once behaviours of the mapping function are extracted, they are
applied to the whole input image I, to acquire the final output
image O, .

3. UNDERWATER IMAGE PROCESSING

After preprocessing, the image quality improves quite a few.
Nevertheless, problems of image noises, image reflections and
color distortions are still existing in the images. These problems
are tackled by using an adaptive as well as efficient image pro-
cessing strategy, which is mainly illustrated in Fig. 2. Finally,
the distance between the robot and the target is obtained online
in an adaptive and efficient way.

3.1 HSV-based Adaptive Threshold Segmentation

First, HSV (Hue, Saturation and Value) color space is employed
for threshold segmentation. It is basically different from the
well-known RGB color space since it separates out the intensity
(luminance) from the color information (Sural et al. (2002)).
Thus, it can avoid the effect of nonuniform illumination in
underwater environment to a great extent. Furthermore, we find
that the color contracts between the target and background
gradually get higher as the distance (ds, explicitly defined in
later section) between the robot and target get closer. Therefore,
we make use of d; to regulate color threshold of the target
adaptively, which results in robust target color extraction.

We experimentally choose Hue chance as the dominant feature
to identify colors of the targets. First, the AACE-processed
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Fig. 2. Flow diagram of online underwater image processing
algorithm.

image O, is converted from RGB color space to HSV color
space. And from now on, the subscript ¢ will respectively
denote H, S, V channels. Then, each pixel i will be recognized
adaptively as color v, if it satisfies

HY™ — kyd, < Oy (i) < Hy™ + kyd
Oy(i) > Sy™ ®)
0, (i) > vmin

where v denotes red, yellow and green in this paper, k, denotes
the regulating factor of color v, HM™" and HM* denote the
lower and upper threshold of color v in Hue channel, ST
and V7" are minimal values for Saturation and Value channels,
respectively. S™" and V™" are applied to get rid of the noises
in image background. Thresholds of target colors are obtained
by plenties of experiments in advance.

3.2 Lump detection and Reflection Elimination

After adaptive threshold segmentation, both targets and some
noises are extracted at the same time. In most cases, the targets
gather lumped while the noises are single or in small groups,
hence, a lump detector is introduced to dispose of the noises.
The detector has a lump window ( i. e., critical size) to judge
the obtained lumps: while the size is larger than the critical, the
corresponding lump is recorded, otherwise, the lump will be
removed.

Next, since the underwater target is close to the surface of the
water, there is a reflected lump in the image. In addition, noises
sometimes are also mistakenly detected as lumps. Considering
that the real lump is always the maximum and takes lower po-
sition, one simple reflection elimination approach is presented,
as illustrated in Fig. 3. Note that when more than two lumps are
detected, the real lump is generated by voting.

Lump number
calculation

equals zero? No lump

The real lump

The lower is the
real lump

Voting for the real lump
(maximum(50%)+low
position(50%))

Fig. 3. Flow diagram of reflection elimination.

3.3 Landmark Matching and Distance Calculation

After reflection elimination, landmark matching is performed to
identify the real target. To improve the robustness of recogni-
tion, we use two different colored landmarks parallel linked as
an effective target. First, an open-source contour approximation
function (in OpenCV library) is used to independently extract
the rectangular profile of the two colored landmarks. Then, the
target matching succeeds if the distance between central lines
of two landmarks are less than a critical value, both in vertical
and horizontal directions. The small critical values indicate that
the two landmarks are linked with tolerated recognition errors
in boundary.

Finally, when effective target is detected in the image, basically,
according to pinhole imaging principle, the distance between
the robot and the target is calculated. Fig. 4 shows related
parameters in distance calculation and the distance d; is defined
as follows

drh myh
=+/d24m?= /(L2 o y2
dy=1\/d.>+m (h0)+(ho) (6)

where d, is the distance between the optical center of camera
and the center of field, m is the distance between the center of
field and center of target, 4 is the height of the target, m, is the
distance between the center of field and center of landmark in
the image plane, A, is the height of the target in the image plane.
dy is the focal length of the camera which can be obtained
by dy = diinLo/h where Ly is the height of the image plane
in pixels (Lyp = 144 in this paper) and d,;, is the distance
between the camera and the landmark when the landmark is
filled with the image plane in the longitudinal direction. And
dmin 1s obtained by experimental measurement in advance. Note
that unit of h,, m,, dy and L is pixel while unit of m, h and
dpmin 1s meter. We suppose that central line of the target and
center of the camera are in the same horizontal plane, which is
roughly satisfied with careful target arrangement. In the end,
Kalman filter is adopted to smooth the calculated distance,
which provides a stable output for further applications.
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Fig. 4. Schematic diagrams of the distance and angle measure-
ment.

4. ROBOTIC FISH AND EXPERIMENTAL PLATFORM
4.1 Overview of Robotic fish

Configuration of the autonomous/wireless-controlled robotic
fish is illustrated in Fig. 5. It consists of a well-streamlined
main body, a pair of pectoral fins and one caudal fin, and
therefore the robot can perform multiple swimming modes,
such as forward and backward swimming, turning and pitching.
In particular, Raspberry Pi, a credit-card-sized and low-cost
micro computer, is adopted as the main controller of the robot.
It has a Broadcom BCM2835 system on a chip (SoC), which
includes an ARM1176JZF-S 700 MHz processor. The robot is
autonomously operated by a Linux system (Debian). Moreover,
a low-cost tiny COMS camera with 1.3 million pixels is used to
acquire underwater images. The maximum size of image of the
camera is 1024 x 768 pixels. However, size of 176 x 144 pixels
is adopted in the experiments, for the purpose of satisfying the
real-time requirement with the low-performance processor.

Tail
Switch Balancing weights

Battery

Fig. 5. The configurations of robotic fish.

4.2 Experimental Platform

In the experiments, the robot swims in a swimming tank (300
cm x 200 cm x 30 cm) with six targets (effective landmarks)
uniformly distributed against the wall of tank. The targets are
generated by different colored landmarks with combinations of
red, yellow and green, which are RG, GR, YR, RY, GY and
YG. RG and GR denote, respectively, red-green and green-
red, and so on. The experimental scenario is exhibited in
Fig. 6. Generally, the image processing algorithm is executed
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by the robot online, when the robot swims towards different
targets from a distance of 150 centimeters. At the same time,
the related results are recorded and restored on the flash of
Raspberry Pi in real time. Simultaneously, a vision tracking
platform is used to track position of the robot and calculate the
distance between the robot and the target by using an overhead
HD camera. The maximum errors of the tracking platform is 3
cm, therefore, the calculated distance by the tracking platform
is regarded as the real distance.

AR

Fig. 6. The swimming tank and robotic fish in the experiments.

5. EXPERIMENTS AND RESULTS

The proposed image processing algorithm is validated on a
miniature robotic fish. Systematically, results of AACE pre-
processing, image processing and the calculated distance are
provided to show adaptiveness and high-efficiency of the on-
line algorithm while the algorithm is running on the miniature
swimming robot with low computational resources.

5.1 Results of AACE Preprocessing

This section demonstrates the contrastive results between the
original and AACE-processed images, obtained while the robot
is swimming to different targets, as illustrated in Fig. 7.
It is obvious that the quality of images is remarkably im-
proved after AACE preprocessing. Specifically, thep colors
of AACE-processed images become more bright, borders get
more sharped and the color contrasts are enhanced. These im-
provements deeply benefit the subsequent image processing,
which will be validated in later section. Therefore, the proposed
AACE algorithm gives a satisfactory solution to the poor qual-
ity of underwater image.

More importantly, the AACE algorithm takes low computation-
al costs. This makes it a reality for image preprocessing on the
miniature underwater robots with low computational resources,
especially for those biomimetic swimming robots with embed-
ded systems.

5.2 Results of Image Precessing

After preprocessing, image processing is performed in a robust
way. Figure 8 shows the contrastive results of image processing
while the robot catches sight of a red-green target. From Fig.
8(b) and (c), we can see that the noises have been remarkably
removed after AACE. This is due to that AACE amplifies
the color contrast between the target and the noises. After
lump detection, small noises are completely dislodged and
the possible landmarks are sought out, as exhibited in Fig.
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Fig. 8. Contrastive results of the image processing with (down) and without AACE (up). (a) The original images. (b) Recognized
red color after threshold segmentation; (c) Recognized green color after threshold segmentation; (d) Recognized red lumps
after lumps detection; (e) Recognized green lumps after lump detection; (f) Recognized red lump after reflection elimination;
(g) Recognized green lump after reflection elimination; (h) Recognized final target.

Fig. 7. Pairs of images before (a) and after AACE preprocessing
(b), when robotic fish is swimming at a distance of 150 cm
and 50 cm to the target.

8(d) and (e). In the pictures, the target is identified both with
and without AACE. Nevertheless, a careful inspection reveals
that the AACE-processed result has higher accuracy, since the
recognized target without AACE has a small shift to the right
direction compared with the real target. This is also verified by
Fig. 8 (e) and (g).

Furthermore, the adaptiveness of the algorithm is systematical-
ly tested by massive experiments where the robot swims to dif-
ferent targets from the distant to the near. Figure 9 illustrates the
contrastive results with and without AACE at the same time. It
is obviously observed that AACE extends the robot’s ability in
target perception distance. In addition, AACE-processed results
have a higher accuracy in the recognized size of target. This
may benefit further vision-based applications, such as motion
control and localization.

More commonly, recognition ratios of the algorithms are calcu-
lated. As shown in Table I, at the greater distance (120 cm ~
150 cm), AACE remarkably improves the final target recog-
nition ratios of the robot. Broader sensing range is of great
significance for the robot in an unknown environment since it

Fig. 9. The image precessing results without (a) and with
AACE preprocessing (b), when robotic fish is swimming
to various targets at different distances.

can make more comprehensive planning and response. At the
middle distance (90 cm ~ 120 cm), recognition ratios improve
slightly by using AACE . Contrastively, the recognition ratios
with AACE decrease a little at the near distance (60 cm ~ 90
cm). This may be caused by the relative large changes in target
colors at near distance by using AACE, which can be avoided
by using more reasonable threshold value.

5.3 Distance Calculation Results

To smooth the calculated distance from Eqn. (6), Kalman filter
is adopted. This section illustrates the features of the original
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Table 1. Recognition ratio of algorithm with and

without AACE (%).
Distance (cm) RG GR RY YR GY YG
120~150 157 244 315 50 54 43.8
120~150 (AACE) 833 449 519 773 839 802
90~120 972 984 948 418 80.0 679
90~120 (AACE) 955 99.1 97.0 753 909 804
60~90 975 973 982 962 938 878

60~90 (AACE) 929 972 973 953 894 88.6

and Kalman-filtered distances while the robot is operating. The
experiment is performed as follow: in the beginning, the robot
catches the vision of one effective target without moving at a
distance of 140 cm; at t = 12 s, the robot swims toward to
the target with the approximate speed of 8 cm/s. Fig. 10 shows
the results of the calculated distances with and without Kalman
filter. It is notable that the filtered distance is more stable and
accurate compared with the real distance.
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real distance

100
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0 2 4 6 8 10 12 14 16 18
Time[s]

Fig. 10. The calculated distance processed with and without
Kalman filter.

6. CONCLUSION AND FUTURE WORK

This paper proposes a novel adaptive and online underwater
image processing approach implemented on a miniature robotic
fish with low computational resources. To tackle the problem of
nonuniform illumination, poor color contrast and motion blur in
underwater image, an AACE model is performed to preprocess
the obtained image, which greatly improves the image qual-
ity and benefits the subsequent image processing. After that,
adaptive threshold segmentation, lump detection, reflection e-
limination are sequentially executed, and then, the targets are
identified in a robust way while the robot is swimming. Finally,
a Kalman-filtered distance between the robot and the target is
calculated for further real-time applications.

The algorithm is performed online while the robotic fish is
swimming in a tank with six artificial colored targets. The
conducted results have demonstrated that the proposed under-
water image processing algorithm is adaptive, efficient and low-
computation, which makes it very suitable to practical appli-
cations of the miniature (bio-inspired) swimming robots with
limited computational resources.

It is anticipated that the proposed underwater image process-
ing algorithm will benefit practical applications of underwater
robots, such as vision-based motion control and global localiza-
tion. For these purposes, interesting topics like visual control

system, multi-sensor localization system are worthy of further
investigation.
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