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Abstract: Differential Evolution (DE) is one of the most powerful stochastic real parameter, population-

based optimization algorithms. It is similar to Genetic Algorithms (GAs), except that it uses differential 

mutation technique as the main operator to arrive at the best trial solution. The performance of DE is 

sensitive to the choice of the mutation and crossover strategies and their associated control parameters 

such as the amplification factor F and the crossover rate CR. Inappropriate choice of control parameter 

values may result in significant deterioration of the performance of the algorithm. In this paper, a self-

adaptive DE is applied to design a controller for damping low frequency oscillations in a power system. In 

self-adaptive DE, the control parameters such as the mutation scale factor F and crossover rate CR are 

adapted as the population evolves. The performance of the proposed self-adaptive DE-PSS (jDE-PSS) is 

compared with that of the classical DE-PSS (CDE-PSS). Simulation results show that for damping low-

frequency oscillations, jDE-PSS gives the best performance. 



1. INTRODUCTION 

In the last three decades, there has been a growing interest in 

applying Evolutionary Algorithm (EA) to solve optimization 

problems. Until now, Genetic Algorithms has been the most 

used EA (Abdel et al, 1999), (Bomfim et al, 2000), (Davis, 

1996), (Goldberg,1989), (Michalewicz, 1996). Recently, 

Differential Evolution (DE) has received increasing attention 

due to its simplicity and its straightforward strategy 

(Mulumba et al, 2011), (Price et al, 2005), (Shayeghi et al, 

2008). This algorithm was first proposed by Price and Storn 

(Price, and Storn, 1997). It is a stochastic population-based 

optimization that uses differential mutation technique as the 

main operator to arrive at the best results (Ali et al, 2009), 

(Price et al, 2005). However, the performance of DE is 

sensitive to the choice of the mutation and crossover 

strategies and their associated control parameters such as the 

amplification factor F and the crossover rate CR (Suganthan 

and Quin, 2005), (Tang, et al, 2008). Inappropriate choice 

of control parameter values may result in significant 

deterioration of the performance of the algorithm (Brest et al, 

2006). In general, DE users select the initial parameter 

settings for the problem at hand from previous experience or 

from the literature. Then trial-and-error method is used to 

fine tune these parameters. However, with the trial and error 

approach there is no guaranty that the best parameters will be 

obtained (Zhang and  Sanderson, 2009); moreover, in some 

cases, the time for finding the parameters is unacceptably 

long. In the last few years, several researchers have proposed 

methods to make the control parameters of DE adaptive 
(Suganthan and Quin, 2005), (Tang, et al, 2008), (Zhang and  

Sanderson, 2009).  

In this paper, we explore the idea of self-adaptive DE and 

applied it to design a power system controller (also known as 

Power System Stabilizer-PSS) to damp low frequency 

oscillations in a power system. Low frequency oscillations 

arise because of heavy transfer of power over long distance. 

In the self-adaptive DE used in this paper, the control 

parameters such as the mutation scale factor F and crossover 

rate CR are adapted as the population evolves (Brest et al, 

2006).  

The effectiveness of the proposed self-adaptive DE-PSS 

(jDE-PSS) is assessed by comparing its performance with 

that of the classical DE-PSS (CDE-PSS). Simulation results 

show that jDE-PSS is more effective than CDE-PSS in 

damping the low-frequency oscillations. 

 

2. BACKGROUND OF DE  

2.1  Overview 

DE is a parallel direct search method that uses a population 

of points to search for a global optima of a function over a 

wide search space (Price et al, 2005). Like GAs, DE is a 

population based algorithm that uses operators such as 

crossover, mutation and selection to generate successive 

populations that we hope will improve over time (Davis, 

1996), (Ali et al, 2009). The main differences between the 

two search methods are briefly summarized below (Mulumba 

et al, 2011), (Price et al, 2005):  

 GAs rely on the crossover to be able to explore the search  

space and escape from local optima. DE on the other 

hand, relies on the mutation parameters (i.e., F) as a 

search mechanism and the selection operation to direct 

the search toward the prospective regions in the search 

space. 

 In DE, all solutions have the same chance of being 

selected as parents regardless of their fitness values. 
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Some of the features of DE are: ease of use, efficient 

memory utilization, lower computational complexity. 

 

2.2  DE Operator  

In DE, the population is constituted of Np candidates 

solutions. Each candidate is a D dimensional real–valued 

vector, where D is the number of parameters. 

The summary of DE’s operation is as follows (Price et al, 

2005), (Mulumba et al, 2011) 

 Step 1(Initialization): DE generates Np vectors candidates 

xi,g, where “i” represents the vector and “g” the 

generation. The i
th

 trial solution can be written as 

xi,g=[zj,i,g] where j=1,2,…,D. The vector’s parameters are 

initialized within the specified upper and lower bounds 

of each parameter Zj
L
  zj,i,g  Zj

U
. 

 Step 2 (Mutation): In this process, four vectors are 

randomly selected from the initial population,where one 

is chosen as the target vector, and another is selected as 

the base vector. The difference of the remaining two 

vectors, is scaled by a factor F and is added to the base 

vector to form the mutant vector. This is the most 

popular strategy called DE/rand/1/. For a given 

parameter vector xi,g, we randomly select three vectors 

xr0,g, xr1,g, and xr2,g, such that the indices i, r0, r1, and r2 

are distinct. The equation below shows how mutant 

vectors are created. 

 

).( ,,,0, 21 grgrgrgi xxFxv           (1)                                                                                                

 

where vi,g is the mutant vector (or donor vector) and the 

base vector is denoted by xr0,g. The indices r0, r1, and r2 

are mutually exclusive integers randomly chosen from 

the range [1, Np]. The mutation scale factor F is a 

positive real number between 0 and 2 that controls the 

rate at which the population evolves (Price, and Storn, 

1997). 

 Step 3 (Recombination or crossover): In this stage DE 

crosses each vector with a mutant vector, as in (2), to 

form a trial population. This is a binomial crossover. The 

purpose is to enhance the potential diversity of the 

population. 

 



 


                                      

 ]     (0,1)[ if    

,,

rand,,

,, otherwisex

jjCRrandv
u

gij

jgij

gij

     (2)

                            

  where 

 CR  [0, 1] is the crossover probability defined by the 

user. jrand [1, 2, …, D]  is randomly chosen index, 

which ensures that ui,g gets at least one component from 

vi,g. If the randomly generated value between 0 and 1 is 

less than CR, the parameters of the trial solutions are 

copied from the mutants vj,i,g, otherwise, they are copied 

from the target vector. 

 Step 4 (Selection): The selection of vectors to 

populate the next generation is accomplished by 

comparing each vector ui,g of the trial population to its 

target vector xi,g from which it inherits parameters. 

The values of the vectors are obtained using the 

function in (3) 



 

                           

     )(  )( if    

otherwise

ff

gi,

gi,gi,gi,

1gi, x

xuu
x        (3)                                                                   

In the above, we assume the minimization of a function. 

As soon as the new population is installed, the cycle from 

step 2 to step 4 is repeated until the optimum is located or 

the termination criterion is satisfied. 

 

It should be mentioned that the values of DE control 

parameters F, CR can have a significant impact on the 

performance of the algorithm. In general, the selection of the 

parameters is done using trial-and-error method, which in 

many cases is time consuming. The best way to deal with this 

problem would be to make the control parameters of DE 

adaptive. That is, the values of the parameters F, CR are 

changed during the run (Suganthan and Quin, 2005), (Tang, 

et al, 2008), (Zhang and  Sanderson, 2009) 

One of the most attractive approaches is to make the 

parameters self-adaptive by encoding them into the 

chromosome (individuals) so that they to undergo the actions 

of genetic operators and evolve with the individuals (Brest et 

al, 2006). The best of these parameters will lead to better 

individuals which in turn are more likely to survive and 

produce better offspring solutions. Below, we will discuss the 

self-adaptive DE approach used in this paper. 

3. BACKGROUND OF SELF-ADAPTIVE DE 

DE’s ability to find the global maximum is mainly dependent 

on the mutation and crossover process. The differential 

mutation allows DE to explore the search space for the global 

maximum or minimum. This process is controlled by the 

mutation scale factor F[0 2]. ‘F’ controls the rate at which 

the population evolves. On the other hand, the crossover 

ensures that the diversity of population is maintained so as to 

avoid premature convergence. Hence this process is directly 

dependent on the crossover constant ‘CR’. 

A modified version of the self-adaptive DE (jDE) proposed 

by (Brest et al, 2006) which uses a strategy based on 

DE/rand/1/bin is used in this paper. The strategy proposed 

here is the DE/rand/2/ bin instead of the DE/rand/1/bin. The 

population size is fixed during the optimization whilst 

adapting the control parameters Fi and CRi associated with 

each individual. Each individual in the population is extended 

with parameter values as shown in Fig.1. In other words, the 

control parameters that are adjusted by means of evolution 

are F and CR. The initialization process sets Fi = 0.5 and CRi 

= 0.9 for each individual. jDE regenerates (with probabilities 

1= 2= 0.1 at each generation) new values for Fi and CRi 
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according to uniform distributions on [0.1,1] and [0,1], 

respectively. The following (4)-(5) are used to update F and 

CR: 

 


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where randj, j = 1, 2, 3, 4, are uniform random values on [0, 

1], and  1= 2= 0.1 represent the probabilities to adjust the 

control parameters. The newly generated parameter values 

are used in the mutation and crossover operations to create 

the corresponding offspring vectors that will replace the 

previous parameter values if the offspring survive in the 

selection. It is believed that better parameter values tend to 

generate individuals which are more likely to survive, and 

thus the newly generated better values are able to go into the 

next generation. 

 

The DE/rand/2 mutation strategy adopted in this paper is 

given below 

 

).().( ,4,,,,0, 321 grgrgrgrgrgi xxFxxFxv 

                           (6) 

 

where, for a given parameter vector xi,g, we randomly select 

five vectors xr0,g, xr1,g, xr2,g, xr3,g, and xr4,g, such that the 

indices i, r0, r1, r2, r3, and r4 are distinct. 

 

 

 

                 Fig.1: Self-adaptive encoding 

 

Fig. 1. Encoding of the chromosomes of self-adaptive DE. 

 

4. SYSTEM MODEL AND OPERATING CONDITIONS 

The power system considered in this paper is a single 

machine infinite bus (SMIB).  The generator is connected to 

the infinite bus through a double transmission line. The non-

linear differential equations of the system are linearized 

around the nominal operating condition to form a set of linear 

equations (Mulumba et al, 2011). The generator is modeled 

using a 6
th

 order machine model, whereas the AVR was 

represented by a simple exciter of first order differential 

equation (Kundur,1994).  

The system is represented by a set of linear equations as 

follows: 














                                     

 
x 

                                     DuCxy

BuAx
dt

d

                        (7)                                                                                                                    

where: 

A is the system state matrix 

B is the system input matrix 

C is the system output matrix 

D is the feed forward matrix 

x is the vector of the system states 

u is the vector of the system inputs 

y is the vector of the system outputs 

For the design of the controller, several operating conditions 

were considered. These operating conditions were obtained 

by varying the active power output and the reactive power of 

the generator as well as the line reactance to represent the 

uncertainties due to varying operating conditions in the 

system model. For simplicity, four operating conditions are 

presented in this paper as listed in the Table 1. This table 

shows the operating conditions with the open loop 

eigenvalues and their respective damping ratios in brackets. 

Table 1.  Selected Operating Conditions 

Case Active Power 

Pe (p.u) 

Line Reactance 

Xe (p.u) 
Eigenvalues () 

1 1.000 0.300 -0.268 ± j4.457 

(0.060) 

2 1.000 0.500 -0.118 ± 3.781i 

(0.048) 

3 1.000 1.700 -0.133 ± 3.311i 

(0.040) 

4 1.000 0.900 -0.0997 + 2.947 

(0.034) 

 

5.  FITNESS FUNCTION  

The fitness function is used to provide the measure of how 

individuals performed. In this instance, the problem is to tune 

the PSS parameters such that the PSS is able to stabilize a set 

of plant modes simultaneously over a certain range of 

specified operating conditions. Therefore, the PSS parameters 

are optimized simultaneously. The block diagram of the PSS 

has the form given in the Appendix (Kundur, 1994). There 

are five parameters that need to be optimized: the PSS gain 

gain K, and the time constants T1, T2, T3 and T4. Since the 

washout value is not critical, it was not optimized and was set 

to 5 sec. 

The fitness function that was used is given as follows: 

 

))min(max ij(J           (8) 

             i = 1,2,3, …, n     eigenvalues 
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 j=1,2,3, …, m     operating conditions 

 Where 
22

ijij

ij

ij









  is the damping ratio of the ith 

closed – loop eigenvalue of the jth  operating condition. ij   

is the real part of the eigenvalue and ij  is the frequency. 

6.  CONTROLLER DESIGN  

6.1  Application of the Conventional DE  

The configuration that was used for CDE is as follows: 

 

Population: 30  

Generation: 100  

Mutation scale factor F: 0.9 

Crossover CR: 0.9 

 

Note that the values of parameters CR and F as given 

above were obtained using trial and error method. These 

values give the best possible performance of the DE algorithm 

for the problem at hand. 

6.2  Application of Self-adaptive DE 

The configuration that was used for jDE is as follows 

 

Population: 30  

Generation: 100  

Mutation scale factor F: Adaptive 

Crossover CR: Adaptive 

 

The parameter domain for both CDE and jDE are: 

 

5≤Kp≤20 

0≤T1, T3≤1 

0.015≤T2, T4 ≤0.5 

 

The parameters of the designed controllers are shown in 

Table 2. It should be mentioned that the algorithm selects 

automatically the optimal gain and time constants of the 

controllers based on the best objective function. It can be 

seen from table 2 that the gain of jDE is slightly higher than 

that of CDE. Furthermore, the time constants T1-T4 are higher 

for jDE than for CDE.  

 

Table 2.  Parameters of the designed controllers 

Controller K  T1  T2  T3  T4  

CDE-PSS 17.20 0.010 0.15 4.84 0.27 

jDE-PSS 18.90 4.640 1.67 3.21 1.50 

 

Also the ratio T1/T2 is approximately 0.065 for CDE but for 

jDE it is approximately 2.78, whereas the ratio T3/T4 is about 

17.79 for CDE and approximately 2.14 for jDE. Therefore 

the overall control effort needed for CDE is higher than that 

needed for jDE to achieve the same performance.  

 

7.  SIMULATION RESULTS  

7.1  Eigenvalue Analysis 

Table 3 shows the closed-loop eigenvalues and damping 

ratios in brackets. It can be seen that jDE-PSS gives the best 

damping ratio under all operating conditions considered. It is 

also observed that as the system becomes weaker (i.e., line 

reactance bigger), the performance of CDE is deteriorating. 

On the other hand, the damping provided by jDE is consistent 

under all operating conditions. Therefore, jDE can be 

considered to be more robust than CDE. 

 

Table 3.  Closed-loop eigenvalues and damping ratios 

Case CDE-PSS jDE-PSS No PSS 

1 -1.52 ± j3.41 

 (0.410) 
-1.92j3.98 

(0.430)  

-0.268 ± j4.457 
(0.060) 

2 -1.13j2.74 

(0.380) 

-1.57j3.23 

(0.440) 

-0.118 ± 3.781i 

(0.048) 

3 -0.83j2.32 

(0.330) 

-1.34j2.69 

(0.450) 

-0.133 ± 3.311i 

(0.040) 

4 -0.49j1.69 

(0.280) 

-1.16j2.25 

(0.460) 

-0.0997 + 2.947 

(0.034) 

 

7.2  Small Disturbance 

A small disturbance was simulated by applying a 10% 

step change in the reference voltage. The step responses for 

speed deviation of the generator are presented in Figs. 2-5.   

Fig. 2 shows the responses of the rotor speed deviations for 

case 1. It can be seen that all controllers are able to damp the 

oscillations and improve the stability of the system. However, 

jDE-PSS has a slightly higher overshoot and undershoot but 

settles within 2.5 sec. as compared to CDE-PSS which settled 

in about 3 sec. 

Figure 3 shows the responses for case 2. It is observed that 

the speed deviation of jDE-PSS displays a better performance 

in terms of settling time than that of CDE-PSS; however, the 

overshoot is slightly higher for jDE-PSS than for CDE-PSS. 

Figs. 4-5 show the speed responses of the system for cases 

3 to 4, respectively. In both cases, jDE-PSS gives relatively 

large undershoots than CDE-PSS, this can be due to the 

slightly higher gain of jDE-PSS as discussed previously. 

However, jDE-PSS provides the best performance in terms of 

settling time. In particular in case 4, where the system is 

weaker than the previous cases, jDE-PSS settled quicker (in 

about 5.5 sec) compared to CDE which settled in about 10 

sec.  
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Fig.2 Speed deviations for a step response (case 1) 
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Fig.3 Speed deviations for a step response (case 2) 
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Fig.4 Speed deviations for a step response (case 3) 
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Fig.5 Speed deviations for a step response (case 4) 

7.3  Nonlinear Simulations under Large Disturbance 

A large disturbance was simulated by applying a three-phase 

fault on one of the transmission lines. The fault was cleared 

by disconnecting the line after 5 cycles. Because of the 

severity of the fault, case 4 was not considered in the 

simulations. For simplicity, only some of the simulations 

related to cases 2-3 will be shown here. 

Fig. 6-9 show the rotor angle, rotor speed, terminal voltage of 

the generator, and the exciter field voltage responses, 

respectively for case 2. It can be seen that although both the 

CDE-PSS and the jDE-PSS are able to stabilize the system, 

overall,  jDE-PSS gives the best performance in terms of 

overshoots, undershoots and settling time. The large control 

effort needed by CDE-PSS is evident in the field voltage as 

depicted in Fig. 9.  

Fig. 10-13 show the rotor angle, rotor speed, terminal voltage 

of the generator, and the exciter field voltage responses, 

respectively for case 3. Again, jDE-PSS is seen to give a 

better performance in terms of overshoots, undershoots and 

settling time. CDE-PSS required a large control effort in 

terms of the field voltage to provide similar performance as 

as depicted in Fig. 13. 
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Fig. 6  Rotor angle responses following a three-phase fault 

(case 2) 
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Fig. 7  Rotor speed  responses under three-phase fault  

(case 2) 
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Fig. 8  Terminal voltage responses under three-phase fault 

(case 2) 
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Fig. 9  Exciter field voltage   responses under three-phase 

fault (case 2) 
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Fig. 10  Rotor angle responses following a three-phase fault 

(case 3) 
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Fig. 11  Rotor speed  responses under three-phase fault  

(case 3) 
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Fig. 12  Terminal voltage responses under three-phase fault 

(case 3) 
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Fig. 13  Exciter field voltage  responses under three-phase 

fault (case 3) 

 

8. CONCLUSIONS 

In this paper, self-adaptive DE is used to design controller for 

damping low frequency oscillations in a power system. It is 

shown that there are clear advantages in using self-adaptive 

DE as compared to the conventional DE. Firstly, the time 

consuming trial-and-error approach is removed and secondly, 

there is a high possibility that the algorithm will converge to 

optimal values. Results based on eigenvalue analysis and 

time domain simulations show that under small disturbance, 

the self-adaptive DE performs better than the classical DE. 

These results were confirmed by nonlinear simulations based 

on large disturbance. Work is in progress to extend the self-

adaptive DE approach to controller design in multi-machine 

power system in the future. 
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Appendix A. BLOCK DIAGRAM OF THE PSS 

 

Fig. A1 PSS block diagram 
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