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Abstract: This paper studies the reduction of the conservativeness of robust nonlinear
model predictive control (NMPC) via the reduction of the uncertainty range using guaranteed
parameter estimation. Optimal dynamic experiment design is formulated in the framework of
robust NMPC in order to obtain probing inputs that maximize the information content of
the feedback and simultaneously to guarantee the satisfaction of the process constraints. We
propose a criterion for optimal experiment design which provides a minimization of parameter
uncertainty in the direction of improved performance of the process under robust economic
NMPC. A case study from the chemical engineering domain is studied to show the benefits of
the proposed approach.
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1. INTRODUCTION

Many studies have been devoted to the problem of real-
time optimal process control. The most challenging prob-
lems involve handling of nonlinearities and uncertainties
of the processes. This paper is focused on the reduction
of the parametric uncertainties of the processes for per-
formance improvement of nonlinear model-based control
approaches.

We consider a model of the process described by a set
of nonlinear ordinary differential equations (ODEs) and
output equations in sampled form as

xk+1 = f(xk,uk,dk), (1a)

yk = g(xk), (1b)

where k stands for the sampling instant, x denotes the nx-
dimensional vector of process states, u represents the nu-
dimensional vector of process control variables (inputs),
d is the nd-dimensional vector of uncertain parameters
of the process model with a priori known bounds Dk :=
[dL

k ,d
U
k ], and y denotes the ny-dimensional vector of model

outputs (predictions of measurable state combinations).
The superscripts L and U representing the lower and upper
bounds of an interval box are understood component-wise
throughout the paper. We want to control the process,
i.e. determine the control inputs for (1), such that

J (yk+1,uk) :=

Np−1
∑

k=0

L(yk+1,uk), (2)

1 The authors thank Professor Sebastian Engell for fruitful dis-
cussions and useful suggestions. This research was funded by the
European Commission under grant agreement number 248940 (EM-
BOCON), 291458 (MOBOCON) and from the Deutsche Forschungs-
gemeinschaft under grant agreement number EN 152/39-1.

representing the chosen economic performance criterion,
is minimized on a finite prediction horizon of a length Np

subject to the set of constraints of the form

h(yk+1,xk+1,uk,dk) ≤ 0, ∀k ∈ {0, . . . , Np − 1}, (3)

being satisfied. Optimal trajectories of control inputs can
be found by means of mathematical optimization.

Given the efficiency of modern optimization tools that
provide fast and reliable resolutions to many of the arising
problems of nonlinear constrained optimization (Houska
et al., 2011), the handling of uncertainties, here present by
parametric uncertainties dk, remains the most challenging
problem of real-life applications of the optimizing control
schemes. One of the possible approaches to optimizing
control, in the presence of uncertain parameters in (1),
is the utilization of robust control. Various schemes have
been presented in this framework (Nagy and Braatz, 2004)
while different levels of conservativeness of the resulting
robust optimizing control scheme were observed.

The use of multi-stage robust nonlinear model predictive
control (NMPC), suggested in Lucia et al. (2013), repre-
sents a recent approach that was shown to achieve a low
degree of conservativeness compared to other state-of-the-
art robust approaches. The strength of this approach lies
in exploiting the future information that becomes available
via feedback (measured outputs) at each sampling time of
the process run. A scenario tree of possible realizations of
uncertainties is considered to represent possible deviations
of the process from nominal predictions. The robustly
optimizing control is then found by recursive resolution
of the NMPC problem over the set of generated scenarios
with (2) as an objective evaluated on the prediction hori-
zon subject to (3) where each scenario is assigned with
the different probability of occurrence. The key here is
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the use of recourse, i.e. future control inputs along the
scenario tree are adapted to the observations, reducing the
conservativeness of the approach.

It is an obvious fact that by reducing the range of paramet-
ric uncertainty Dk, i.e. narrowing the employed scenario
tree, a dramatical improvement can be achieved in terms of
the conservativeness of the resulting robustly optimal con-
trol input. Dual control, originally proposed in Feldbaum
(1960) and also studied in Åström andWittenmark (1971),
tackles this problem. The aim of dual control is to strike
the balance between finding the optimizing inputs for the
criterion (2) and inputs that excite the process sufficiently
to reduce the (a posteriori estimated) bounds on the pa-
rameter values Dk thanks to information incorporated in
feedback. The dynamic programming formulation of the
problem (Bertsekas, 2000) is often found computationally
intractable for nonlinear systems, but the minimization
of the uncertainty (the range of possible dk) can also be
achieved via means of optimal design of dynamic experi-
ments.

The aim of this paper is to study possible improvements of
the on-line robust NMPC scheme via a combination of in-
puts optimizing the chosen criterion of optimal experiment
design and the inputs optimizing the economic criterion in
the framework of multi-stage NMPC.

2. MULTI-STAGE NONLINEAR MODEL
PREDICTIVE CONTROL

Multi-stage NMPC (Lucia et al., 2013) represents a robust
NMPC approach that is based on modeling the uncertainty
by a tree of discrete scenarios (see Fig. 1). The tree
structure makes it possible to take into account future
control inputs and disturbances explicitly. In this way,
future control inputs depend on the value of the previous
realization of the uncertainty, acting as recourse variables
that counteract the effect of the uncertainty. Therefore,
multi-stage NMPC is a closed-loop NMPC approach (Lee
and Yu, 1997) in contrast to typical open-loop min-max
approaches that optimize over a sequence of control inputs
checking the constraints for all the cases of the uncertainty.
This reduces the conservativeness of the approach consid-
erably (Scokaert and Mayne, 1998).

The main assumption of the approach is that the uncer-
tainty can be described by a set of discrete scenarios. In the
case of discrete-valued uncertainties, multi-stage NMPC
computes the exact optimal feedback policy and it is there-
fore the best solution possible of the robust NMPC prob-
lem within a finite horizon guaranteeing the constraint
satisfaction as well. For the real-valued realizations of the
uncertainty, the multi-stage NMPC computes approximate
robust feedback when a suitable scenario tree is chosen as
shown in different simulation studies (Lucia et al., 2012,
2013; Lucia and Engell, 2013). While for a general non-
linear system, constraint satisfaction is not guaranteed for
the values of uncertainty that are not explicitly considered
in the scenario tree, the values of parameters that produce
the worst-case scenario are found on the boundaries of
the parameter interval box very often (Srinivasan et al.,
2003a). Therefore, a suitable scenario tree should include
scenarios with extreme values of all the parameters. It
is then clear that the main challenge of the approach is

that the size of the resulting optimization problem grows
exponentially with the number of uncertainties and with
the length of the prediction horizon. Given a certain choice
of Np, a simple strategy to avoid the exponential growth
of problem size is to consider the uncertainty to remain
constant after a certain point in time (called robust hori-
zon) as illustrated in Fig. 1. See Lucia et al. (2013) for a
more detailed explanation of this concept.

The scenario tree setting assumes a discrete-time formula-
tion of an uncertain nonlinear system that can be written
as:

x
j
k+1 = f(x

p(j)
k ,uj

k,d
r(j)
k ), (4a)

y
j
k = g(xj

k), (4b)

where each state vector xj
k+1 at stage k + 1 and position

j in the scenario tree depends on the parent state x
p(j)
k

at stage k, the control inputs u
j
k and the corresponding

realization r of the uncertainty d
r(j)
k (for example in Fig. 1,

x6
2 = f (x2

1,u
6
1,d

3
1)). The uncertainty at the stage k is

defined by d
r(j)
k ∈ {d1

k,d
2
k, . . . ,d

s
k} ⊂ Dk for s different

possible combinations of values of the uncertainty. We
define the set of occurring indices (j, k) in the scenario
tree as I.

The optimization problem that has to be solved at each
sampling instant can be written as:

min
y

j

k+1
,x

j

k+1
,u

j

k
,∀(j,k)∈I

J̃ (yj
k+1,u

j
k) (5a)

subject to:

x
j
k+1 = f(x

p(j)
k ,uj

k,d
r(j)
k ), ∀ (j, k + 1) ∈ I, (5b)

y
j
k = g(xj

k), ∀ (j, k) ∈ I, (5c)

0 ≥ h(yj
k+1,x

j
k+1,u

j
k,d

r(j)
k ), ∀ (j, k) ∈ I, (5d)

u
j
k = ul

k if x
p(j)
k = x

p(l)
k , ∀ (j, k), (l, k) ∈ I, (5e)

where J̃ (yj
k+1,u

j
k) :=

∑N

i=1 ωiJi(y
j
k+1,u

j
k). Here we as-

sign the probability ωi for the scenario Si, i ∈ {1, . . . , N}
to occur. A scenario is defined as the path in the scenario
tree from the root node x0 until each one of the leaf nodes.
The cost of each scenario reads as:

Ji(y
j
k+1,u

j
k) :=

Np−1
∑

k=0

L(yj
k+1,u

j
k), ∀yj

k+1,u
j
k ∈ Si. (6)

In order to represent the real-time decision problem cor-
rectly, the control inputs cannot anticipate the realization
of the uncertainty at the instant k. This is modeled by the
non-anticipativity constraints (5e) that force all the control

inputs uj
k that branch at the same parent node x

p(j)
k to be

equal. The definition of problem (5) allows the uncertainty
to vary over the time. In this study we will assume that
the uncertain parameters are constant for simplicity, hence
the notation d0 ∈ D0 := [dL

0 ,d
U
0 ].

3. ROBUST OPTIMAL DYNAMIC EXPERIMENT
DESIGN

Optimal dynamic experiment design has been widely used
since the seventies of the last century, especially in the
field of system identification (see Gevers et al. (2011) for
a review). In general, it can be formulated as the problem
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Fig. 1. Scenario tree representation of the uncertainty
evolution for multi-stage NMPC.

of designing the input trajectories to the system (1) that
generate measurements outputs from which parameters
can be identified with maximal possible certainty.

Such a problem can be defined via minimization of an
appropriate measure, φ(F), of the Fisher information
matrix defined as:

F :=

Ne−1
∑

k=0

sTy,k+1Qsy,k+1, (7)

where Ne stands for the horizon where the optimal ex-
periment is realized, Q is the inverse of the covariance
matrix of the measurement noise, and sy,k+1 represents
the matrix of parametric output sensitivities, here defined
in the fully relative form suggested by Munack (1991):

sx,k+1 = f s(sx,k,xk,uk,d), (8a)

sy,k = gs(sx,k,xk), (8b)

where the sensitivity of the ith state w.r.t. the jth param-
eter obeys the dynamics

f s
i,j =

dj
xj,k

(

∂fi
∂xT

{sx,k}j +
∂fi
∂dj

)

, (9)

where {·}j represents the jth column of a matrix. The
function gs is derived analogously respecting (1b).

Among the several different possible experiment design
criteria (Munack, 1991), we choose a modified E-design
criterion:

φmE(F) =
(

max
i

λi(F)
)

/
(

min
i

λi(F)
)

, (10)

where λi represents ith eigenvalue of F. This choice is
motivated by the minimization of the most uncertain
parameter while achieving uncorrelated parameter esti-
mates and it represents one of the generally recommended
choices (Franceschini and Macchietto, 2008).

As we aim primarily at the minimization of the economical
criterion (2) under uncertainty we propose a new optimal
experiment design criterion. This uses the modified E-
design with a scaled Fisher matrix such that:

φ(F) = φmE

(

diag−1

[

∂J̃ ∗

∂w(D)

]

F diag−1

[

∂J̃ ∗

∂w(D)

])

,

(11)

where the scaling matrix contains the sensitivities of the
optimal value of the robust economic objective w.r.t. the
width of the range of parametric uncertainty.

A similar scaling was proposed in Recker et al. (2013)
where the sensitivity of the economic cost is considered
w.r.t. the parametric uncertainty. In contrast to that ap-
proach, we directly take into account the fact that if
parametric uncertainty is present, a robust operation will
be needed. As mentioned above, the conservativeness of
the robust operation directly depends on the range of the
uncertainty. Therefore we use as scaling factor the poten-
tial gain in the robust economic operation w.r.t. reduction
in the parameter uncertainty range. Note that modern
nonlinear programming solvers are capable of providing
parametric sensitivity information w.r.t. the calculated
optimum and thus, gathering of the scaling matrix can be
automated when solving the problem (5) for some D. In
this work, the problem of optimal dynamic experiment de-
sign is formulated in the framework of multi-stage NMPC,
hence Eq. (11) is reformulated as (6), in order to strike
for the uncertainty in the objective and in the process
constraints which are formulated accordingly.

4. GUARANTEED PARAMETER ESTIMATION

Given a set of output measurements ym at Ne time points
1, . . . , Ne, classical parameter estimation seeks for one par-
ticular instance de of the parameters for which the (pos-
sibly weighted) normed difference between measurements
and the corresponding model outputs y is minimized.
This optimization problem, for instance in the least-square
sense, is given by:

de ∈ arg min
d∈D0

Ne
∑

i=1

‖ym
k − yk‖

2
2, (12a)

s.t. model (1), (12b)

The confidence of the parameter estimates subject to mea-
surement noise can then be approximated via ellipsoidal
set whose shaping matrix (variance-covariance matrix of
the estimates) can be approximated as an inverse of (7).

In contrast, guaranteed (bounded-error) parameter estima-
tion accounts explicitly for the fact that the actual process
outputs, yp, are only known to be corrupted by some
bounded measurement errors e ∈ E := [eL, eU ], so that

y
p
k ∈ ym

k + [eL, eU ] =: Y k. (13)

Here, the main objective is to estimate the set De of all
possible parameter values d such that yk ∈ Y k for every
k = 1, . . . , Ne; that is,

De :=











d ∈ D0

∣

∣

∣

∣

∣

∣

∣

∃x,y :
xk+1 = f(xk,uk,d),
yk = g(xk),
yk ∈ Y k, ∀k ∈ {1, . . . , Ne}











. (14)

Depicted in red in Fig. 2 is the set of parameters De

projected in the (d1, d2) space that generate trajectories
satisfying yk ∈ Y k, k = 1, . . . , Ne.

Obtaining an exact characterization of the set De is not
possible in general, and one has to resort to approxi-
mation techniques to make the problem computationally
tractable. We use a variant of the Set Inversion Via Interval
Analysis (SIVIA) algorithm by Jaulin and Walter (1993)
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D ∈ Dout

De

D ∈ Dbnd

D0

Fig. 2. Illustration of guaranteed parameter estimation
concepts in the parameter space.

in order to approximate the solution set De as closely as
possible. More concretely, the set De is approximated us-
ing the union of parameter sub-boxes that approximate its
interior (Dint) and over-approximate its boundary (Dbnd).
An illustration of such parameter sub-boxes is shown in
Fig. 2 where Dout stands for the partition of parameter
space guaranteed to have empty intersection with De.
Upon termination, this algorithm returns partitions Dint

and Dbnd such that

⋃

D∈Pint

D ⊆ De ⊆

(

⋃

D∈Dint

D

)

∪

(

⋃

D∈Dbnd

D

)

=: DNe
.

(15)
Further details on possible implementation variants of
the described procedure can be found in Paulen et al.
(2013a,b).

5. PROPOSED ALGORITHM

The main contribution of this paper is the presentation
of a novel algorithm for the reduction of the uncertainty
present in the model by applying robust optimal design of
experiments and thus reducing the conservativeness intro-
duced by a robust NMPC approach. The main motivation
for proposing the novel OED criterion (11) is to estimate
better the parameters that have a higher impact on the
robust economic operation of the system. Since the Fisher
information matrix provides only an approximation of the
variance-covariance matrix of the estimated parameters,
we propose the use of guaranteed parameter estimation
to ensure more accurate approximation of the possible
parameter values taking into account the measurement
noise. We propose to apply the inputs generated via robust
OED for a fixed number of steps Ne, then the maximum
and minimum values of the estimated parameters obtained
via guaranteed parameter estimation (set DNe

) are used
to build a new scenario tree for multi-stage NMPC which is
solved until the end of the control problem. The complete
algorithm can be seen in Algorithm 1.

All the optimization problems reported in this work
are solved using IPOPT (Wächter and Biegler, 2006)
via CasADi (Andersson et al., 2012). The sensitivities
entering in (11) are calculated using sIPOPT (Pirnay
et al., 2012) and the guaranteed parameter estimation is
implemented using GOLIB (http://www3.imperial.ac.

Algorithm 1 Robust NMPC with uncertainty reduction

Input: k = 0;Ne > 0;x0;D0

1. while k < Ne do

1.1 Calculate
∂J̃ ∗

∂w(D)
with D = D0.

1.2 Solve the robust OED problem by minimiz-
ing (11) formulated as (6) in the framework of (5)
with the prediction horizon Ne − k.

1.3 Increment k, k := k + 1.
end of while

2. Run guaranteed parameter estimation using the ob-
tained measurements, getting DNe

as a result.
3. Generate a new scenario tree using the guaranteed

maximum and minimum values of the parameters
from DNe

.
4. Run multi-stage NMPC by solving (5) with an eco-

nomic cost function until the end of the control task.

uk/environmentenergyoptimisation/software) and li-
brary MC++ (http://projects.coin-or.org/MCpp).

6. CASE STUDY

We consider one of the traditional problems of optimal
control of a chemical reactor. An exothermic chemical reac-
tion A+B→C is run in a fed-batch reactor equipped with
a cooling jacket. We use the setup of the experiment being
closely similar to Srinivasan et al. (2003b) and Ubrich et al.
(1999).

The reaction system is described by the following set of
ODEs:

dcA
dt

= −kcAcB −
u

V
cA, cA(0) = cA,0, (16)

dcB
dt

= −kcAcB +
u

V
(cB,in − cB), cB(0) = cB,0, (17)

dcC
dt

= kcAcB −
u

V
− cC, cC(0) = 0, (18)

dV

dt
= u, V (0) = V0, (19)

where ci represents concentration of the substance i, k
stands for the reaction rate, V is the volume of the re-
actor, and u represents the feed flowrate of reactant B
with concentration cB,in=10molL−1. The considered ini-
tial conditions cA,0, cB,0 and V0 take values of 2molL−1,
0.46mol L−1 and 0.7 L respectively.

The reaction is run under isothermal conditions where the
inlet cooling jacket temperature is assumed to be adjusted
to maintain the temperature in the reactor at T = 70◦C.
The respective evolution of the temperature of cooling
medium inside the jacket obeys:

Tj(t) = T −
(−∆H)kcA(t)cB(t)V (t)

αA(t)
, (20)

where ∆H is the reaction enthalpy, α is a heat transfer
coefficient and and A is the contact area between the jacket
and the reactor.

In order to prevent an uncontrollable behavior of the
reaction under a cooling failure (thermal runaway), the
maximum attainable temperature is restricted to:

Tcf = T (t) + min
i∈{A,B}

ci
(−∆H)

ρcp
≤ Tmax, (21)
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Fig. 3. Concentration cC, temperature Tcf and control
input u obtained from running robust optimal OED
for different design criteria.

where ρ denotes the density and cp the heat capacity of the
reaction mixture. Additionally, the volume of the reactor is
bounded by its maximum value, V ≤ Vmax and the control
input is bounded (umin ≤ u ≤ umax) as well.

The control task is to achieve a desired mass of the
product C as fast as possible, nC = cCV ≥ nC,des. In this
work we approximate the minimum time problem by a
maximization of the mass of product C (nC) over a finite
prediction horizon, since simulation studies showed that
the results obtained are almost equivalent. All the values
of parameters present in the model and constraints are
taken from Srinivasan et al. (2003b). It is considered that
the parameters k and ∆H are uncertain and have constant
but unknown values in the range ±30% with respect to
their nominal values. The measured quantities (cA, cB
and Tj) are subject to the noise Eci = [−0.05, 0.05] and
ETj

= [−0.5, 0.5] which is simulated using the appropriate
rounding of the value of simulated outputs for the purpose
of reproducibility of the results obtained here.

In the remainder of the paper, we show the results of
applying Algorithm 1 to the presented case study. The
first step is the robust optimal dynamic experiment design.
In order to achieve robust performance and satisfaction of
the constraints for all the possible values of the uncertainty
(±30%), the OED problem is formulated as in (5) using
a scenario tree that contains the maximum, minimum
and nominal value of the uncertain parameters with a
robust horizon equal to 1. The OED problem is solved in a
shrinking horizon fashion forNe = 10 steps and a sampling
time Ts = 0.1 h. The results for three different OED
criteria are shown in Fig. 3. The economic design uses as
objective function the maximization of the concentration
of product C (nC), the Modified E design minimizes the
OED criterion defined in (10) and the proposed algorithm
minimizes the criterion (11).

After Ne = 10 steps, guaranteed parameter estimation
is run where the obtained sets of guaranteed parameter
estimates are shown in Fig. 4. We are interested in the
projections of the resulting set on the parameter axes,
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Fig. 4. Sets of guaranteed parameter estimates resulting
from the measurements and control inputs obtained
from optimal OED for different design criteria.

because these determine the generation of the (new) sce-
nario tree for the solution of problem (5). As expected,
the robust OED with an economic cost yields the biggest
ranges of the parameters which justifies the utilization of
dual control for this case study. The modified E design
gives smaller ranges and the proposed OED criterion (11)
yields a smaller range for ∆H and a bigger range for the
parameter k. As expected, all the sets contain the ’true’
values of the parameters that in this case were assumed to
be 20% bigger than the nominal value.

Due to the novel scaling of the Fisher matrix introduced
in (11), ∆H can be estimated with a higher accuracy and
this results in a superior performance compared to the
OED using other criteria (see Fig. 5) when multi-stage
NMPC is run with the new scenario tree based on the
parameter estimates and with an economic cost function
(maximization of nC). The reason for this is that ∆H
has a higher impact on the robust economic operation of
the plant, since it influences directly the constraint on the
temperature Tcf . As can be seen in Fig. 5, the economic
optimal operation of the plant consists in driving the sys-
tem as close as possible to the temperature constraint Tcf .
Multi-stage NMPC calculates automatically a back-off to
ensure that the constraint is not violated for any value
of the uncertainty. If the range of the uncertainty that
has to be taken into account is wider, then the necessary
back-off is bigger and the resulting economic performance
decreases. In this case, the lower bound on the uncertain
parameter ∆H is the most important factor for the back-
off. Therefore the dual control-like procedure that uses
the OED with modified E design criterion gives a perfor-
mance similar to the performance achieved by sole robust
economic cost optimization despite yielding a narrower
range of parameter uncertainty. The algorithm proposed
in this paper achieves a batch time reduction by 1.5 hours
which stands for a 7.5% improvement over running robust
NMPC with economical cost and the same procedure for
estimation of the uncertainty.

7. CONCLUSION

A novel strategy for robust NMPC with improved per-
formance via uncertainty reduction was presented. A new
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Fig. 5. Concentration cC , temperature Tcf and control
input u obtained from running multi-stage NMPC
with a scenario tree generated with parameter bounds
obtained by the guaranteed parameter estimation for
different OED design criteria.

criterion for optimal OED is proposed in order to prioritize
the more accurate estimation of the parameters that have
a higher influence on the robust economic operation of the
system. In order to avoid the unreliable approximation
on the parameter ranges associated with typical OED
approaches, a guaranteed parameter estimation approach
is used to obtain the bounds of the uncertain parameters.
The obtained bounds are used to build a new scenario
tree with reduced uncertainty and a better economic per-
formance is achieved. Simulation results of a chemical
reactor show the potential of the approach and the possible
improvements compared to a typical OED design and to
a standard robust economic operation of the plant.
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